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Background: Although some evidence suggests that machine learning algorithms may outperform classical statistical methods in
prognosis prediction for several orthopaedic surgeries, to our knowledge, no study has yet used machine learning to predict
patient-reported outcome measures after rotator cuff repair.

Purpose: To determine whether machine learning algorithms using preoperative data can predict the nonachievement of the min-
imal clinically important difference (MCID) of disability at 2 years after rotator cuff surgical repair with a similar performance to that
of other machine learning studies in the orthopaedic surgery literature.

Study Design: Case-control study; Level of evidence, 3.

Methods: We evaluated 474 patients (n = 500 shoulders) with rotator cuff tears who underwent arthroscopic rotator cuff repair
between January 2013 and April 2019. The study outcome was the difference between the preoperative and 24-month postop-
erative American Shoulder and Elbow Surgeons (ASES) score. A cutoff score was calculated based on the established MCID of
15.2 points to separate success (higher than the cutoff) from failure (lower than the cutoff). Routinely collected imaging, clinical,
and demographic data were used to train 8 machine learning algorithms (random forest classifier; light gradient boosting machine
[LightGBM]; decision tree classifier; extra trees classifier; logistic regression; extreme gradient boosting [XGBoost]; k-nearest
neighbors [KNN] classifier; and CatBoost classifier). We used a random sample of 70% of patients to train the algorithms, and
30% were left for performance assessment, simulating new data. The performance of the models was evaluated with the area
under the receiver operating characteristic curve (AUC).

Results: The AUCs for all algorithms ranged from 0.58 to 0.68. The random forest classifier and LightGBM presented the highest
AUC values (0.68 [95% CI, 0.48-0.79] and 0.67 [95% CI, 0.43-0.75], respectively) of the 8 machine learning algorithms. Most of the
machine learning algorithms outperformed logistic regression (AUC, 0.59 [95% CI, 0.48-0.81]); nonetheless, their performance
was lower than that of other machine learning studies in the orthopaedic surgery literature.

Conclusion: Machine learning algorithms demonstrated some ability to predict the nonachievement of the MCID on the ASES 2
years after rotator cuff repair surgery.
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Shoulder pain is the third most common musculoskeletal
complaint that drives patients to look for health care serv-
ices, affecting 18% to 26% of adults.34 These conditions are
usually labeled as subacromial pain syndrome. They may
often be associated with rotator cuff tears or injuries,

which is why those with shoulder pain look for a shoulder
specialist.37

There has been an increasing trend in the surgical indi-
cation of rotator cuff surgical repairs in those with rotator
cuff tears during the last decades,7,31,37 generating a high
economic burden for treating this population.33,37 How-
ever, the functional results and retear rate after surgical
repair are still disappointing.39 Therefore, although rota-
tor cuff surgical repair has considerable clinical benefits
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in symptomatic patients with rotator cuff tears,22 the ques-
tion of who would likely benefit from surgical treatment
remains.

Choosing which surgery may be a good option depends
on the interaction of several preoperative information,
including14,46 the time of conservative treatment without
clinical improvement (ie, 6 months) and the belief that
rotator cuff tears may worsen and impair patient progno-
sis in the future, even without evidence of it.5 This infor-
mation is often used by clinicians to decide when to
prescribe surgical treatment or continue using conserva-
tive approaches. However, these heuristics do not
truly assist clinicians during their decision-making pro-
cess to deliver surgical treatment for those most likely
to benefit from it.5

Few studies in the literature developed prognostic mod-
els to address this issue by identifying prognostic factors
for treatment outcomes using classical statistical methods
(eg, regression models) for clinical or structural outcomes
with large sample sizes.12,20,27,36 However, although some
models have shown promising results in predicting rotator
cuff healing,27 the clinical utility of algorithms developed
to predict disability has often been limited, and their per-
formance has been disappointing.

Recently, methods that combine computational science
and statistics to maximize the accuracy and predictive
power of data, known as machine learning,51 have begun
to be used to predict clinical outcomes in several health
conditions.9,30,40,45 These studies have shown that machine
learning algorithms can predict, with high performance,
the achievement of clinically significant outcomes after
several orthopaedic surgeries.26 However, to our knowl-
edge, no study has used machine learning to predict
patient-reported outcome measures after rotator cuff
repair.

The main goal of this study was to determine whether
machine learning algorithms using preoperative data can
predict the nonachievement of clinically significant disabil-
ity improvement 2 years after rotator cuff surgical repair
with a similar performance to that of other machine learn-
ing studies in the literature on orthopaedic surgeries. We
hypothesized that machine learning algorithms would pre-
dict the nonachievement of the minimal clinically impor-
tant difference (MCID) with a similar performance to
that of other machine learning studies in the literature
on orthopaedic surgeries—with the area under the receiver
operating characteristic curve (AUC) values of .0.7.

METHODS

Data Source

We observed a cohort of 474 patients (n = 500 shoulders)
with subacromial pain syndrome associated with rotator
cuff tears who underwent arthroscopic rotator cuff repair
between January 2013 and April 2019. The surgical proce-
dures were performed by 4 surgeons in the same institution.
The inclusion criteria were as follows: primary arthro-
scopic rotator cuff repair (partial or complete); having
undergone standardized predata collection; and having
preoperative magnetic resonance imaging (MRI). Those
who had debridement without rotator cuff repair, open
or mini-incision surgeries, or previous surgery in the
same shoulder were not included. The study protocol
received institutional review board approval, and the
requirement for informed consent was waived. This study
followed the guidelines of the Transparent Reporting of
a multivariable prediction model for Individual Prognosis
Or Diagnosis.42

Surgery and Rehabilitation

The surgeries were performed in beach-chair or lateral
decubitus positions under general anesthesia associated
with brachial plexus block, depending on the surgeon’s
preference. Bursectomy was routinely performed. Depend-
ing on the surgeon’s preference, acromioplasty was either
performed or not. Patients with symptomatic arthrosis in
the acromioclavicular joint—defined as pain on local palpa-
tion with MRI findings—underwent distal resection. The
long head of the biceps was approached when it presented
subluxation or dislocation partial lesions .25% or in the
presence of type 2, 3, or 4 superior labrum anterior to pos-
terior lesions.49 Tenotomy was performed for patients aged
�60 years. Tenodesis was performed on younger patients,
athletes, or those with a body mass index of .25 kg/m2,
regardless of age.

Rotator cuff repair was performed in single or double
rows for posterosuperior tears and single rows for subsca-
pularis tears. Immobilization with a sling was maintained
for 4 to 6 weeks. Movements with the elbow, wrist, and fin-
gers were allowed from the first day after surgery. Passive
exercises were started after the end of the third week.
Active assisted and free active exercises were started after
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the sling was removed. Muscle strengthening was per-
formed only after a significant gain in movement, around
the 12th week. Patients were released for sports activities
at 6 months, as long as the range of motion and strength
were reestablished.

Study Outcome

The outcome of this study—also known as the target
variable—was the difference between the preoperative and
24 monthly postoperative scores of the American Shoulder
and Elbow Surgeons (ASES) standardized shoulder assess-
ment form.47 A cutoff score was calculated based on the
established MCID of 15.2 points to separate success (higher
than the cutoff) from failure (lower than the cutoff).38

Predictors

Predictors were selected according to already identified
risk factors routinely collected at the institution. Demo-
graphic characteristics and comorbidity data were col-
lected by a research assistant in the preoperative period
using a questionnaire that collected information on patient
characteristics, previous illnesses, and life habits, such as
smoking.

Predictors with information on the type, location, and
extent of shoulder injuries were obtained retrospectively
through the analysis of the MRI files together with the
radiological report by an attending orthopaedic surgeon
(E.A.M.) with .10 years of experience who was blinded
as to the surgical procedures and patients’ clinical out-
comes. In all patients, the interval between the examina-
tion and surgery was \12 months.

The following variables were selected from the analyses:
(1) supraspinatus tear evaluated according to tendon thick-
ness (partial or full-thickness tear); (2) retraction (\3 or
�3 cm); (3) extension (affects part of the tendon or the
entire extension affected); (4) tear of the anterior portion;
(5) infraspinatus tear, categorized into tendon thickness
(intact, partial tear, or full-thickness tear), retraction (\3
or �3 cm), and extension (intact, superior portion, or the
entire tendon); (6) subscapularis tear, categorized as
intact, partial tear of the upper third, full-thickness tear
of the upper third, or tear involving the upper two-thirds
or the entire tendon; (7) fatty degeneration of the supraspi-
natus, (8) infraspinatus and subscapularis muscles
(according to Goutallier et al17 and modified by Fuchs
et al13); (9) long head of the biceps tear (stable, partial
tear, complete tear) and instability (topical, subluxated,
dislocated, depending on its position in the biceps sulcus,
or not applicable in cases of complete tear); and (10) the
presence of arthrosis of the glenohumeral joint (absent or
present). Symptomatic acromioclavicular arthrosis was
defined as pain on local palpation with MRI findings,
such as capsuloligamentous thickening and osteophytosis.

Statistical Analysis

We used a random sample of 70% of patients to train the
algorithms, and 30% were left for performance assessment,

simulating new data. Stratified cross-validation with 10
folds was used to train the models and adjust hyperpara-
meters. The predictors were normalized by the z score.
The strategy of the last observation carried forward was
adopted, with 12-month outcome data when there were
missing outcome variable values at 24 months. Patients
with missing data at 24 and 12 months were excluded
from the analysis.

The borderline Synthetic Minority Oversampling Tech-
nique (SMOTE) was used to balance classes of the target
variable.19 Automated methods of selection of variables
were not used because they were chosen on theoretical
basis from experts; however, a multicollinearity test was
performed, and any variable with .0.9 of correlation was
removed.6 Hyperparameter optimization of all algorithms,
including logistic regression, was performed to optimize
the AUC by the Optuna library,1 with the tree-structured
Parzen estimator4 as the search algorithm and asynchro-
nous successive halving algorithm32 as the early stopping
algorithm. We applied the same preprocessing steps and
feature selection techniques to all algorithms in the study
to ensure a fair comparison. The AUC was used to evaluate
the performance of the models. We also extracted the accu-
racy, precision, recall, and F1 score to evaluate the models.
The 95% bootstrap confidence interval was calculated to
assess the variability of these metrics. To interpret the
final model, the SHAP (SHapley Additive exPlanations)
was used to understand the influence of the variables.35

After removing highly correlated variables (r . 0.9) and
identifying variables (eg, patient number), 24 variables
were selected to develop the predictive models. The algo-
rithms used were as follows: random forest classifier, light
gradient boosting machine (LightGBM), decision tree clas-
sifier, extra trees classifier, extreme gradient boosting
(XGBoost), k-nearest neighbors (KNN) classifier, CatBoost
classifier, and logistic regression.

RESULTS

During the period evaluated, 651 surgeries were per-
formed for rotator cuff repair. The following were excluded:
84 open procedures, 10 debridement surgeries, 26 cases
with previous shoulder surgery, 12 patients without post-
operative clinical evaluation, and 19 patients with incom-
plete pre- or perioperative evaluation data. The analyzed
sample consisted of 474 patients (n = 500 shoulders).
Data imputation from outcomes at 12 months was neces-
sary in the functional assessment in 76 cases (15.2%)
because of missing data at 24 months. Therefore, 474
patients were included in the study and further divided
into train and test datasets. The preoperative predictors
and their summarized values can be seen in Tables 1 to
3. As the target variable was highly imbalanced—that is,
17.2% of participants did not reach the minimum MCID
in 24 months after surgery—it was further corrected
with the borderline SMOTE technique.19

The most common models for prediction with structured
data were then fitted. Table 4 presents the performance
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and variability (ie, 95% bootstrap CIs) of the models in the
test dataset, ordered by the AUC metric. The model with
the best AUC metric was the Random Forest Classifier
(0.68 [95% CI, 0.48-0.79]). An interface with the trained
random forest classifier algorithm deployed was developed
for clinical application using Streamlit (https://bit.ly/
rotatorcuffsurgeryAI).

The SHAP was used to interpret the relationship of pre-
operative predictors with the model outcome that pre-
sented the best performance (Figure 1). The most

relevant predictor was the extent of supraspinatus
affected, in which patients with complete supraspinatus
involvement were more likely to not reach the MCID 24
months after surgery. The second most relevant predictor
was the preoperative ASES score, in which the higher
the preoperative score, the greater the chance of not reach-
ing the MCID 24 months after surgery. The third most rel-
evant predictor was the presence of Goutallier grade �2
fatty infiltration of the supraspinatus tendon, in which
patients without it were more likely not to reach the
MCID. The fourth most relevant predictor was age, in
which younger patients were more likely to not reach the
MCID. The interpretation of the other models can be found
in the Supplemental Material, available separately.

DISCUSSION

We found that machine learning algorithms could predict
the nonachievement of the disability MCID 2 years after
a rotator cuff repair surgery. Still, their performance was
lower than that of other machine learning studies in the
orthopaedic surgery literature.26 The mean AUC of all
algorithms was 0.62 in the test set, of which the Random
Forest Classifier and LightGBM presented the highest
measures (0.68 and 0.67, respectively). In addition, the
mean recall and precision were relatively low (0.41 and
0.25, respectively).

A recent systematic review has identified 18 studies
that used machine learning algorithms to predict MCIDs
after several orthopaedic surgeries, of which 7 concerned
outcomes after spine surgery, 6 after sports medicine pro-
cedures, 3 after total joint arthroplasty (hip and knee),

TABLE 1
Demographic and Comorbidity Predictors of Patients

Included in the Models (N = 474)a

Predictor Value

Age, y 57.8 6 8.9
Sex

Male 230 (46)
Female 270 (54)

Diabetes 75 (15)
Rheumatoid arthritis 28 (5.6)
Smoker

Current 53 (10.6)
Past 79 (15.8)

Traumatic lesion 71 (14.2)
Worker’s compensation 64 (12.8)
Previous injections 71 (14.2)
Preoperative ASES score 41.6 6 19.2

aData are presented as mean 6 SD or frequency (%). ASES,
American Shoulder and Elbow Surgeons.

TABLE 2
Supraspinatus and Infraspinatus MRI Predictors

Included in the Modela

Predictor Value

Supraspinatus
Partial tear 72 (14.4)
Full-thickness tear 428 (85.6)
Retraction \3 cm 339 (67.8)
Retraction �3 cm 161 (32.2)
Entire extension affected 224 (44.8)
Anterior portion affected 409 (81.8)
Fatty degeneration: Goutallier grades 0 and 1 394 (78.8)
Fatty degeneration: Goutallier grade 2 77 (15.4)
Fatty degeneration: Goutallier grades 3 and 4 29 (5.8)

Infraspinatus
Partial tear 36 (7.2)
Full-thickness tear 101 (20.2)
Retraction \3 cm 452 (90.4)
Retraction �3 cm 48 (9.6)
Superior portion affected 115 (23)
Entire tendon affected 22 (4.4)
Fatty degeneration: Goutallier grades 0 and 1 423 (84.6)
Fatty degeneration: Goutallier grade 2 53 (10.6)
Fatty Degeneration: Goutallier grades 3 and 4 24 (4.8)

aData are presented as frequency (%). MRI, magnetic resonance
imaging.

TABLE 3
Subscapularis, Long Head of the Biceps, and Glenohumeral

Joint MRI Predictors Included in the Modela

Predictor Value

Subscapularis
Intact tendon 260 (52)
Partial tear of the upper third 159 (31.8)
Full-thickness tear of the upper third 51 (10.2)
Full-thickness tear of the upper two-thirds or more 30 (6)
Fatty degeneration: Goutallier grades 0 and 1 403 (80.6)
Fatty degeneration: Goutallier grade 2 34 (6.8)
Fatty degeneration: Goutallier grades 3 and 4 7 (1.4)

Long head of the biceps
Intact tendon 403 (80.6)
Partial tear 66 (13.2)
Complete tear 31 (6.2)
Stable 358 (71.6)
Subluxated 71 (12.2)
Dislocated 40 (8)
Not applicable (complete tear) 31 (6.2)

Glenohumeral joint
Glenohumeral arthritis 39 (7.8)

aData are presented as frequency (%). MRI, magnetic resonance
imaging.
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and 2 after shoulder arthroplasty.26 Most studies per-
formed well in predicting the MCID, with AUCs ranging
from 0.7 to 0.9.

Although we were not able to find other studies that
developed machine learning algorithms to predict out-
comes after rotator cuff repair surgery, 2 studies used
machine learning to predict MCID achievement after pri-
mary shoulder arthroplasty. In both studies, the patients
were separated into cohorts undergoing anatomic shoulder
arthroplasty and reverse arthroplasty. Kumar et al24,25

used the XGBoost classifier to accurately predict MCID
achievement, with AUCs between 0.7 and 0.98.

While the random forest classifier model was 8 points
ahead in the AUC compared with the logistic
regression—a model commonly used in health care for
predictions—the more complex ensemble models (ie,
LightGBM, XGBoost, CatBoost) did not outperform ran-
dom forest. One possible explanation for this is that the
ensemble models perform better with massive quantities
of data, and the present study used a few variables and

TABLE 4
Performance Measures of the Prediction Modelsa

Model Accuracy AUC Recall Precision F1 Score

Random forest classifier 0.78 (0.69-0.88) 0.68 (0.48-0.79) 0.41 (0.12-0.73) 0.35 (0.10-0.65) 0.38 (0.11-0.60)
LightGBM 0.68 (0.58-0.78) 0.67 (0.43-0.75) 0.45 (0.16-0.75) 0.24 (0.08-0.42) 0.34 (0.11-0.51)
Decision tree classifier 0.75 (0.65-0.85) 0.62 (0.41-0.64) 0.17 (0.01-0.40) 0.19 (0.01-0.45) 0.18 (0.01-0.38)
Extra trees classifier 0.73 (0.63-0.83) 0.60 (0.45-0.75) 0.37 (0.11-0.69) 0.26 (0.07-0.50) 0.31 (0.08-0.51)
Logistic regression 0.66 (0.54-0.77) 0.59 (0.48-0.81) 0.62 (0.33-0.90) 0.26 (0.11-0.42) 0.37 (0.17-0.54)
XGBoost 0.60 (0.49-0.72) 0.60 (0.39-0.72) 0.50 (0.20-0.80) 0.20 (0.06-0.35) 0.29 (0.10-0.45)
KNN classifier 0.79 (0.69-0.88) 0.58 (0.44-0.70) 0.25 (0.01-0.50) 0.30 (0.01-0.60) 0.27 (0.01-0.50)
CatBoost classifier 0.58 (0.48-0.69) 0.59 (0.41-0.73) 0.54 (0.25-0.83) 0.20 (0.07-0.35) 0.29 (0.11-0.47)

aData in parentheses are 95% bootstrap CIs. AUC, area under the receiver operating characteristic curve; KNN, k-nearest neighbors;
LightGBM, light gradient-boosting machine; XGBoost, extreme gradient boosting.

Figure 1. SHAP values of the random forest classifier model. This figure provides other relevant information for model interpre-
tation: (1) the predictors are ordered from top to bottom according to their relevance; (2) the more to the right the points of a vari-
able are, the greater the influence of the variable in predicting the outcome (ie, not reaching the minimum MCID); and (3) the
redder the point, the higher the predictor value; and the bluer the point, the lower the predictor value. ASES, American Shoulder
and Elbow Surgeons; MCID, minimal clinically important difference.

The Orthopaedic Journal of Sports Medicine Machine Learning in Rotator Cuff Repair 5



people to train the algorithm. Additionally, the KNN and
CatBoost classifier algorithms did not outperform logistic
regression.

Therefore, although the development of accurate prog-
nostic models for orthopaedic surgeries using machine
learning algorithms is undoubtedly a natural next step,
given that artificial intelligence has shown promising
results in predicting outcomes in various scientific fields,
including health care, better than classical statistical
methods,21,44,48 the overall performance of the algorithms
developed in this study was moderate.

The mean low recall and precision values as well as the
inability to achieve higher AUC values in our models may
be related to a few limitations of this study that should be
noted. The analyses conducted during this study were not
planned. Therefore, some relevant preoperative predictors
of outcomes after rotator cuff repair surgery may not
have been included in the analysis. While several studies
suggest that the presence of systemic diseases (eg,
diabetes) and the severity of rotator cuff tear or injury
are relevant prognostic factors for rotator cuff repair out-
comes,11,16,18,28,31,43 evidence suggests that socioeconomic
and psychosocial factors might also provide relevant infor-
mation about rotator cuff repair outcomes.50

The use of socioeconomic and psychosocial variables as
predictors of outcomes after surgeries is supported by stud-
ies identifying that these variables are relevant prognostic
factors for failed back surgery syndrome and chronic post-
surgical pain in several conditions.3,8,15,23,29,41 Finally,
although the sample size used in this study is, to our
knowledge, one of the highest analyzing clinical outcomes
of rotator cuff repair literature, it is important to note
that training our machine learning models with a dataset
of only 350 patients might limit their utility. Machine
learning models typically benefit from larger training data-
sets, and their performance would likely improve signifi-
cantly with an increase in training data in the future.
Therefore, future studies should also use higher sample
sizes and preoperative measures of socioeconomic status
and psychosocial factors as potential predictors for this
population to develop better prediction models. Moreover,
the strategy for outcome missing data (ie, using 12 months
assessment when 24 months were not available) might
have impacted the analysis, despite the mean differences
in the ASES score in 12 and 24 months being relatively
close.

It is important to note that the MCID of 15.2 points used
for the ASES scale in our study was based on the mean
found among 3 methods to determine the MCID in a study
by Malavolta et al38 (ie, distribution, anchor, and minimum
detectable change). Those authors observed values ranging
from 6.1 (anchor method) to 26.3 (minimum detectable
change). Therefore, different MCID values can influence
the predictors’ weight in further models. Additionally,
patients with preoperatory ASES scores .84.8 (ie, which
corresponds to 2% of our dataset) may not be able to
achieve the MCID used in this study, which is higher
than their potential improvement. This limitation should
also be considered when interpreting the results.

Furthermore, the structural outcome of the rotator cuff
repair was not evaluated in the present study since it is not
part of our routine to perform postoperative MRIs to assess
tendon healing. Although the integrity of rotator cuff ten-
dons does not seem to be directly associated with func-
tional outcomes,2,10 future studies might also benefit
clinicians during their decision-making with models to pre-
dict retears after surgeries.

Clinical Implications

Supervised machine learning algorithms are primarily
designed to learn from hidden patterns in available data
about maximizing outcome prediction, rather than explain-
ing causal relationships between a prediction and the out-
come. This is because they adjust the weight of each
variable based on the hyperparameters set and treat
each category of categorical variables as a variable by
itself, which makes it difficult to interpret the individual
role of each predictor variable. This is also one of the rea-
sons why machine learning algorithms may outperform
conventional statistical methods and linear thinking. Nev-
ertheless, the results of this study suggest that the use of
machine learning algorithms might be a promising new
tool that can assist clinicians during clinical decision-
making to decide when to prescribe surgical treatment or
continue using nonoperative approaches to treat patients
with rotator cuff tears.

CONCLUSION

We found that machine learning algorithms demonstrated
some ability to predict the nonachievement of the disability
MCID 2 years after a rotator cuff repair surgery. Still,
their performance was lower than that of other machine
learning studies in the literature on orthopaedic surgeries.

Supplemental Material for this article is available at https://journals

.sagepub.com/doi/full/10.1177/23259671231206180#supplementary-

materials
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