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Abstract — Foot-and-mouth disease (FMD) is considered one of the most important infectious diseases of
livestock because of the devastating economic consequences that it inflicts in affected regions. The value of
critical parameters, such as the duration of the latency or the duration of the infectious periods, which affect
the transmission rate of the FMD virus (FMDV), are believed to be influenced by characteristics of the host
and the virus. Disease control and surveillance strategies, as well as FMD simulation models, will benefit
from improved parameter estimation. The objective of this study was to quantify the distributions of
variables associated with the duration of the latency, subclinical, incubation, and infectiousness periods of
FMDV transmission. A double independent, systematic review of 19 retrieved publications reporting results
from experimental trials, using 295 animals in four reference laboratories, was performed to extract
individual values related to FMDYV transmission. Probability density functions were fitted to data and a set
of regression models were used to identify factors associated with the assessed parameters. Latent,
subclinical, incubation, and infectious periods ranged from 3.1 to 4.8, 2 to 2.3, 5.5 to 6.6, and 3.3 to 5.7
days, respectively. Durations were significantly (p < 0.05) associated independently with route of exposure,
type of donor, animal species, strains, characteristics of sampling, and clinical signs. These results will
contribute to the improvement of disease control and surveillance strategies and stochastic models used to
simulate FMD spread and, ultimately, development of cost-effective plans to prevent and control the
potential spread of the disease in FMD-free regions of the world.

foot-and-mouth disease / individual data meta-analysis / frailty model / epidemiologic model / disease stage

1. INTRODUCTION disease that is considered one of the most
highly contagious diseases of domestic and

Foot-and-mouth disease (FMD) is a World ~ wild cloven-hoofed animals [30]. FMD is
Animal Health Organization (OIE)-listed caused by a virus (FMDV) that belongs to the
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Figure 1. Potential stages of FMDV infection in susceptible animals after experimental exposure to an

infected animal.

Picornaviridae family [7], which has been
grouped into seven distinct serotypes, referred
to as A, O, C, Asia 1, and the three groups orig-
inally isolated in the southern African territories
(SAT-1, SAT-2, and SAT-3). There is no cross
immunological reaction between serotypes;
subsequently, infection with a given serotype
does not provide immunity against another.

Direct contact between susceptible and
infectious animals and indirect transmission
via contaminated products are the most com-
mon routes for FMDV transmission [5]. Air-
borne transmission has also been suggested,
particularly when favorable environmental con-
ditions take place [24].

FMDV infection is characterized by an acute
febrile condition, with the development of ves-
icles in mouth, tongue, nose, feet, and udders.
Reviews of the clinical variation of FMDV
infection in livestock are available elsewhere
[33-35]. Although FMD is characterized by a
high morbidity rate, mortality is rare (< 5%)
in adult animals. It has been hypothesized that
disease severity varies with level of immunity,
infectious dose, route of exposure, virus strain,
environmental and animal species, but also
within the same species, e.g. age and breed.

During and immediately after the 2001 UK
FMD epidemic, there was a notable prolifera-
tion of epidemic models aimed to simulate the
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spread, predicting the impact, and identifying
the most cost-effective strategies to control or
prevent the consequences of the introduction
of the FMDV in susceptible animal populations
in FMD-free countries [32]. In general, the
methodological approach used to model FMD
spread is to divide the individuals into compart-
ments using the susceptible-latent-infectious-
resistant (or removed) framework (SLIR,
Fig. 1) [4]. A susceptible animal (S) becomes
infected after effectively contacting, directly or
indirectly, an infectious animal or contaminated
fomite; after a latent (L) period, the infected ani-
mal becomes infectious (I) and subsequently
dies, becomes immune, or is culled as part of
emergency control strategies (R). Additional
compartments may be considered in the model
to, for example, differentiate subclinical from
clinical stages of infection, or to include the
vaccinated status as a transitional stage.
Estimates of parameter values that are used
to model the transition among compartments
are often obtained by fitting the model to epi-
demic or historical data [31], eliciting expert
opinion [6, 51], or using information emerging
from experimental trials. Although these meth-
ods may provide satisfactory estimates for the
models with a single or limited number of
parameters, systematic reviews and meta-
analysis of existing evidence will produce more
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precise estimates than those currently available,
through the quantification of uncertainty and
the identification of sources of variability for
the parameters.

This systematic review of reported experi-
mental trials with donor animals related to
FMDYV focused on the parameterization of sero-
type O FMDV transmission, because it is the
most widely distributed and prevalent FMDV
serotype [38]. Aims of the study were to esti-
mate the most likely values for the FMD stage
duration parameters and to quantify the strength
of their association with epidemiologic factors
hypothesized to influence their distribution.
Results presented here will be useful for the
parameterization of FMD spread models that
will ultimately be used to evaluate control strat-
egies of FMD in endemic and free regions,
which may become infected.

2. MATERIALS AND METHODS
2.1. Literature search

Literature searches were conducted in English,
Spanish, and Portuguese to identify experimental tri-
als in which infection of livestock species with
FMDV donor animals was reported. Two familiar
electronic databases for the authors, ISII, and
PubMed (MEDLINE?), were explored through the
local server of the University of California at Davis
(UCD)? using the multiple keywords and expressions
(pig* OR swine OR porcine OR hog OR sow OR
cattle OR bovine OR cow OR bull OR steer OR
calves OR heifer OR calf OR sheep OR goat
OR domestic) AND (foot-and-mouth OR FMD*
OR aphtho*) AND (infect* OR transm*) AND
(exper* OR excret* OR secret*) AND (incubation
OR latency OR clinical OR carrier). Because
experimental trials often evaluate different FMDV
serotypes, searches were not limited to serotype O;
however, were restricted to include publications
from 1 January 1960 through 31 September 2007.
References cited in retrieved reports were reviewed
to identify additional reports, which, if not available
on line, were requested and scanned through the
UCD library. Titles and abstracts were imported into

! www.isiknowledge.com/
2 www.ncbi.nlm.nih.gov/pubmed/
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a reference manager system (EndNote, version X.02,
Thomson Reuters, Carlsbad, CA, USA).

2.2. Definition of parameters and predictors

Stages of FMDV infection (Fig. 1) assessed here
were the duration of the periods of latent, subclini-
cally infectious, infectious, and incubation. Time-to-
event information (days), where events were
alternatively defined as the beginning and end of a
given stage of FMDV infection (see Fig. 1), were
recorded individually for animals reported on the
assessed publication; for reports in which time-to-
event was reported in hours, the value was divided
by 24 to convert it into days and subsequently used
as continuous values in the regression model, but
rounded to fit a discrete distribution. Results from
euthanized animals were considered censored records.
First detection of FMDV (#;) was computed as time
when virus was first detected, i.e. positive result, from
a sampled tissue in an animal, following exposure to a
donor (#p). Time from exposure () to onset of clinical
signs (%), and last detection of FMDV (#;) were also
computed (Fig. 1). Three stages of FMDYV infection
were fitted to parametric regression models: (1) incu-
bation (zy — %), (2) latent-and-subclinically infec-
tious (fp — #; — &), in which the incubation was
categorized in latent and subclinical infectious using
a dummy variable for each stage (latent, subclinical),
and (3) duration of the infectiousness (1, — #;) that
due to the limitation imposed by the duration of
experiments, could not address the recurrent question
about the carrier stage. Such definition of stages was
necessary because of the different criteria for defini-
tion of parameters and reporting among experiments.
Thus, although some papers reported only the dura-
tion of some of the stages, it was possible to infer
additional parameters following the relationship by
latent + subclinical = incubation. For example, some
experimental trials reported latent and incubation
periods, but omitted the duration of the subclinical
stage, which, following the approach described here,
can be computed as the difference between the incu-
bation and latent periods. Therefore, modeling latent
and subclinical jointly provided more data than if
they were assessed separately.

Seven factors were recorded that were hypothe-
sized to influence the duration of FMDV-infection
stages, namely, species of the susceptible and donor
animals, route of infection, sampled tissue or secre-
tion, clinical signs, virus topotype, and laboratory
where the study was conducted (Tab. I). Experimen-
tal animals were grouped as cattle (bull, calf, steer,
cattle, cow), pig, sheep (lamb, sheep), and goat.
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Table 1. Epidemiological variables hypothesized to influence the duration of the stages of serotype O foot-
and-mouth disease virus (FMDV) infection in an individual data meta-analysis of the peer reviewed

literature.
Variable Description Categories
FMDV stage Stages of FMDV infection Latent
Subclinical
Incubation
Infectious
Experimental animal Type of animal exposed to Cattle
an infective donor via direct Pig

Donor species

FMDV topotypes and
strains

Type of contact

Sample site

Clinical signs

FMD laboratory

or indirect contact

Species of the inoculated donor
compared to the experimental
animals exposed

Topotypes and strains used
for the experiment

Type of contact between donors
and experimental animals

Location in which the exposed
animal was sampled for
identification of the FMDV

Clinical signs reported

FMD reference laboratory
where the study was carried out

Small ruminants (sheep and goat)

Same species
Different species

Pan Asia: UKG 2001,

NET 2001, and Taiwan/97
European strains of the
Euro-SA topotype: BFS 1860,
and Brugge

MESA: Greece/94

South American strains of the
Euro-SA topotype: Canefa,
and Campos

Direct
Indirect

Sera (blood, serum)

Upper respiratory tract

(nasal swabs, oro-pharyngeal
fluids, saliva, pharynx, probang)
Excretion or secretion

(prepuce, urine, rectum,

feces, milk, semen, vagina)

Fever
First vesicles in mouth or feet
Generalized FMD infection

Pirbright
Plum Island
Lelystad
PanAftosa

Because limited experimental evidence was available
for goats, information from sheep and goat were
grouped and analyzed in a single category referred
to as small ruminants, and sensitivity of the results
to this categorization was assessed by repeating the
analyses maintaining the two original categories
(sheep and goat). Categories of donor animals were
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dichotomized, depending on whether susceptible
and donor animals were of the same or different spe-
cies. Infection routes were categorized according to
the source of FMDV. If transmission resulted from
direct contact between an infected donor and suscep-
tible animals that shared a common space or experi-
mental unit (room), it was referred to as direct contact
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(DC); alternatively, if transmission resulted likely
from a common airflow in which DC was not possi-
ble, it was referred as indirect contact (IC).

Tissues sampled were classified as serum, upper
respiratory tract (nasal swabs, oropharyngeal fluids,
saliva, pharynx, and probang), and either excretions
or secretions (prepuce, urine, rectum, feces, milk,
semen, and vagina). Clinical signs were categorized
as unspecific (fever), primary signs of infection (first
vesicles detected), and secondary or generalized
signs of infection (vesicles detected in an organ
other than the one in which primary signs of infec-
tion were detected). Virus strains were recorded and
assessed according to the classification of topotypes
shown in Table I and described elsewhere [37, 38].

FMD reference laboratories in which studies were
carried out were the Institute for Animal Health
(IAH, Pirbright, UK), the Plum Island Animal Dis-
ease Center (PIADC, New York, USA), the Central
Institute for Animal Disease Control (CIDC,
Lelystad, The Netherlands), and the Pan American
Center for Foot-and-Mouth Disease (PanAftosa, Rio
de Janeiro, Brazil).

2.3. Collection and extraction of data

Three randomly selected publications were
reviewed independently by three authors of this paper.
Report of results in those three publications varied
from explicit tables and figures to narrative description
of the values. Each of the three reviewers indepen-
dently created a spreadsheet (Excel, Microsoft Corp.,
Redmond, WA, USA), in which each row represented
an individual animal with a unique identification num-
ber (ID), and columns contained the corresponding
values of duration of the stages of FMDV infection
(in days) and of variables hypothesized to influence
those values. Following such independent assessment,
criteria for inclusion or exclusion of papers and a
template for data collection were discussed and
agreed upon by the authors. Subsequently, a double
independent extraction of data from the publications
was conducted by two of the authors. Extracted data
were reviewed by four of the authors and in case of
disagreement, a second revision of the manuscript
was jointly conducted by the authors in order to reach
consensus on the results interpretation.

2.4. Statistical analyses of data distributions

Fit of the distributions of data extracted for each
FMDV-infection stage to probability density func-
tions (PDF) commonly used in FMD simulation
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models [6, 13] was assessed. Using maximum likeli-
hood estimates (MLE) for a maximum of 999 itera-
tions, fitness of extracted data to 55 common
theoretical distributions, including Pert, triangular,
uniform, exponential, gamma, inverse Gaussian, log
normal, log logistic, Pearson 5 and Weibull (continu-
ous data) and Poisson (discrete data) was evaluated
using two goodness of fit tests, Chi-square (X*) for
discrete data, and Anderson-Darling for continuous
data for a p > 0.05 in either tests, meaning the distri-
bution of the theoretical distribution were not signif-
icantly different from the distribution of the data.
Theoretical distributions were formulated so that the
probability for negative durations was null. Failure
to reject the null hypothesis was assumed evidence
that the data fitted the theoretical distribution.
Descriptive statistics of the observed distributions
of the FMD-infection stages, parameters of the theo-
retical distributions, and p values for the goodness of
fit tests were estimated using commercially available
software, @RISK 5.0 (Palisade Inc., Newfield, NY,
USA).

2.5. Time-to-event models

Three multivariate parametric time-to-event mod-
els were evaluated to identify sources of variation for
the duration of FMD stages and control for potential
confounders through a statistical screening step fol-
lowed by a stepwise algorithm, which indicated con-
founding whenever the inclusion or exclusion of
significant predictors resulted in a change in the final
model coefficients of at least 20%. First, duration of
latent and subclinical periods was formulated in one
model because those periods do not overlap and
because they were clustered within a given animal.
A second model was fitted for the duration of incuba-
tion; that second model included all the animals used
in the previous model, following the relation
latent + subclinical = incubation, but also the data
available from experimental animals in which only
the incubation period was reported, and that for that
reason, could not be included in the first model.
A third model was constructed using infectious per-
iod as the response variable. These parametric regres-
sion models assumed that the baseline hazards
function approximates a Weibull distribution, i.e.
the hazard function for each period is restricted to
be monotonically increasing (parameter p > 1) or
decreasing (p < 1) with time. The main advantage
of the Weibull distribution is that it simultaneously
behaves as proportional hazards (PH) and accelerated
failure time (AFT) regression models, so that relative
event rates (HR) and relative extension of the
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time-to-event (event time ratio, TR) can be estimated,
respectively. AFT models can be used to quantify the
association between epidemiologic factors and the
acceleration (shortening) or deceleration (delay) of
the duration of FMDV-infection stages [14]. Survival
data for the four stages of FMDV infection, i.e.
latent-subclinical, incubation, and infectious were fit-
ted and compared using the Akaike information crite-
ria (AIC) statistic, which was defined as:

AIC = -2 log (model likelihood) + 2(k),

where & is the degrees of freedom of the model
[14].

Explanatory variables were screened uncondition-
ally, and variables for which associations at a signif-
icance level of p <0.2 were estimated, were
considered candidate variables to fit a multivariate
model. All biologically plausible two-way interac-
tions between candidate variables were tested for
the multivariate model and retained if p < 0.1. Fit-
ness of the final model was evaluated in a backward
elimination process using a p > 0.05 to remove vari-
ables that did not contribute significantly to the
model. Two different frailty terms, which specify a
function equivalent to a random effect in regression
modeling, were evaluated in the models as a sub-
ject-parameter function. Frailty may happen because
more than one value may have been computed for
a single parameter in a single animal, e.g. if more
than one tissue were sampled, which may result in
different estimates of the duration of some of the
stages assessed here. In this case, a frailty term was
generated that referred to as multiple observations
within the same subject. A second frailty term was
evaluated to adjust for variability between experi-
ments. These frailty terms were assumed to follow
a gamma distribution [14], and if significant, only
one of them was retained in the model by computing
the AIC for both models that included and that did
not include the frailty term. The likelihood ratio test
for the frailty variance was calculated from the data
using a stepwise elimination process (p to
enter < 0.05 and p to exit > 0.10) [27, 36]. Data
were analyzed using STATA 10.1 (STATA CorpLP,
2008). Goodness-of-fit of the model with the lowest
AIC value was evaluated by visualization of the
quantile-quantile (qq) plot of the times of survival
percentiles. Approximation of the qq plot to a straight
line was assumed to indicate a good fit of the model.
Results were reported as the estimated baseline
survival time (TR), which was computed as the
exponential of the regression coefficient () of signif-
icant variables in the fitted model.
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3. RESULTS
3.1. Literature search and study characteristics

PubMed and ISI queries identified 103 and
145 references, respectively. Removal of dupli-
cate and irrelevant articles resulted in a refer-
ence list of 55 publications retrieved and
downloaded from the electronic searches.
Inspection of the references listed in the
55 publications resulted in the identification of
26 additional references. From the resulting
81 publications, 62 articles were discarded
because they contained information already
reported elsewhere (n = 5), the original article
could not be accessed (n =7), results were
irrelevant to our objective (n = 8), results were
reported as group of animals (pooled results)
(n=17), results were not reported (n = 3),
results presented information for other sero-
types (n = 10), or methods used invasive routes
(e.g., intradermal, intravenous) as source of
FMDV infection (n =22). Thus, 19 studies
reported results of experimental trials for ani-
mals directly or indirectly exposed to animals
infected with serotype O FMDV strains. The
values of the duration of the stages of FMDV
infection and of the epidemiological factors
assessed here were extracted for 64 -cattle,
149 sheep, 72 pigs, and 10 goats distributed
in 20 experimental studies carried out in
Pirbright (n = 13), Lelystad (» =3), Plum
Island (n = 3), and PanAftosa (n = 1) as shown
in Table IL

3.2. Descriptive statistics and fitted
PDF distributions

Descriptive statistics and distributions that
best fit the stages of FMDV infection described
here are presented in Figure 2 and Table III.
Mean latent period ranged from 3.1 in pigs to
4.8 days in small ruminants. Mean subclinically
infectious period ranged from to 2.0 in cattle to
2.3 days in pigs. Mean incubation period ran-
ged from 5.6 to 6.6 days in pigs and small rumi-
nants, respectively. Mean infectious period
ranged from 3.3 in small ruminants to 5.7 days

in pigs.
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Table II. Experimental studies included in the systematic review and individual data meta-analysis of the
duration of infection stages of serotype O FMDV.

Author [ref.] FMD No. of animals No. of Topotype
laboratory Cattle Pigs Small Total observations (strains)
(n=64) (n=72) ruminants (n=295) (*=3%)
(n=159)
Aggarwal et al. [1] Pirbright 3 4 8 15 15 PanAsia (UKG 2001)
Alexandersen et al. [3]  Pirbright 0 8 0 8 8 Euro — SA (BFS 1860)
Bankowski et al.”* Pirbright 7 0 0 7 11 PanAsia (UKG 2001)
Blackwell et al. [8] Plum Island 6 0 0 6 17 Euro — SA (Brugge)
Burrows [10] Pirbright 12 10 9 31 31 Euro — SA (BFS 1860)
Burrows et al. [11] Pirbright 4 0 0 4 16 Euro — SA (BFS 1860)
Burrows et al. [12] Pirbright 2 0 0 2 3 Euro — SA (BFS 1860)
Donaldson and
Kitching [17] Pirbright 11 0 0 11 11 Euro — SA (BFS 1860)
Eble et al. [20] Lelystad 0 25 0 25 25 PanAsia (Taiwan/97)
Garland” Pirbright 3 0 0 3 21 Euro — SA (BFS 1860)
Gibson and
Donaldson [23] Pirbright 0 0 19 19 31 Euro — SA (BFS 1860)
Gomes et al. [25] PanAftosa 4 0 0 4 8 Euro — SA (Campos)
Graves et al. [26] Plum Island 7 0 0 7 14 Euro — SA (Canefa-2)
Hughes et al. [29] Pirbright 0 0 64 64 64 MESA (Greece/94)
Hughes et al. [28] Pirbright 0 0 36 36 36 MESA (Greece/94)
McVicar and
Sutmoller [41] Plum Island 0 0 18 (10 goats) 18 18 Euro — SA (Canefa-2)
Orsel et al. [42] Lelystad 0 0 5 5 5 PanAsia (NET 2001)
Orsel et al. [43] Lelystad 0 25 0 25 25 PanAsia (NET 2001)
Sellers et al. [49] Pirbright 4 0 0 4 24 Euro — SA (BFS 1860)
Zhang et al. [52] Pirbright 1 0 0 1 7 PanAsia (UKG 2001)

# Bankowski B.M., Juleff N., Gibson D., Gloster J., Doel C., Cox S.J., Barnett P.V., Woolhouse M., Charleston B.,
Understanding FMDV transmission between cattle — preliminary data from animal experiments. Session of the
Research Group of the Standing Technical Committee of European Commission for the Control of Foot-and-
Mouth Disease (EUFMD) (2006) 165-175.

® Garland, A.J.M., The inhibitory activity of secretions in cattle against FMDV, Ph.D. thesis, University of

London, 1974, extracted from [2].

3.3. AFT models

Weibull distributions fit data to model the
duration of the latent, subclinically infectious,
incubation, and infectious periods (Tabs. [V—
VI). Inclusion of the shared frailty term for
references and cluster of observations within
subject, were statistically significant (p < 0.01)
for the models of latent-subclinical and incuba-
tion, respectively. The point estimate of the
Weibull shape parameter (p) was > 1 for the
three models, indicating that the hazard func-
tions for the duration of the periods assessed
here increased monotonically with time; the
value of p was particularly large for the models

of the incubation and infectiousness periods
(p > 3.5). An approximation to the ith survival
time for the duration of the FMD stages can be
derived from the regression models using the
following expression:

Duration of the stage (days) = [—In (ith sur-
vival time)]'"” x [exp (Bo + Bax; +...+ Buxy)]:
where By is the intercept, and B,...,B, are the
coefficients for the n predictor variables in the
final model (Tabs. IV-VI). Due to restrictions
of the statistical software used here, estimates
using the equation are reported as a marginal
estimate (unconditional) for animals with frailty
of one, which corresponds to an additive random
effect of zero. Hence, predictions are more
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Figure 2. Frequency distributions and probability density functions fit to continuous (grey boxes) and
discrete (red) data for experimental animals and FMD stage. Non-parametric density estimation using the
kernel standard deviation (dashed line) was estimated for smoothing the distribution. (A color version of this

figure is available at www.vetres.org.)

precise for the duration of the infectiousness, in
which fitted regression model does not incorpo-
rate a frailty term, as it occurs for the latent-sub-
clinical and incubation models. For example, to
predict the median time of the infectious period
in cattle detecting FMDYV at the upper respiratory
tract level would be:

Infectiousness #,, = [— In (0.5)]"/***

x exp (1.45 4+ 0.55)
~ 6.7 days.

3.3.1. Latent-subclinical period

The regression model was fit using data col-
lected from 154 animals in 15 experiments
(Tab. IV). The estimated baseline survival time
for both periods was 3.6 days (95% CI = 3.07,
4.31), from which the subclinically infectious
period was 0.52 days shorter than the duration
of the latent period. Survival time for the latent
and subclinically infectious periods were about
0.53 days shorter in pigs than cattle. Duration of
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those periods was longer when presence of sec-
ondary clinical signs (generalized) other than
nonspecific for FMDV infection was considered
as the criterion to define the beginning of the
clinical stage of infection. Two first order inter-
action terms, FMDV period by sample site and
experimental animal by donor species, were
retained in the multivariate model. The subclin-
ically infectious period was 1.4 days longer
when samples were collected from the upper
respiratory tract, compared with samples col-
lected from blood or any other secretion or
excretion. In addition, the estimated baseline
survival time for both periods was 2.5 days
longer when pigs were exposed to infected
donor of different species, compared to when
they were exposed to donor pigs (same spe-
cies). Inclusion of the FMD laboratory as pre-
dictor did not improve the fitness of the model.

3.3.2. Incubation period

Data of 221 animals from 17 experimental
trials were used to fit a survival model that
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Table III. Descriptive statistics and distributions that best fit the stages of serotype O foot-and-mouth
disease virus (FMDYV) infection in an individual data meta-analysis exercise. Data were fit using equal width
intervals for continuous and discrete data (Poisson) distributions. Bolded letters indicates a p > 0.05 value,
which indicates the theoretical distribution fit the data well.

FMD stage Animal No. Mean, Distribution Poisson (L)
species median (parameters)
(25th, 75th
percentile)
Latent Cattle 136 3.6,3(2,5) Weibull (o0 = 1.782, f = 3.974) 3.59
Pig 72 3.1,2(2,4) Gamma (o = 1.617, f = 1.914) 3.07
Small ruminant 58 4.8, 5 (3, 6) Pert (m =3.963, a =0, b = 13.983) 4.79
Subclinical Cattle 119 2.0,2(1,3) Gamma (o = 1.222, f = 1.672) 2.04
Pig 45 23,2(1,3) Inverse Gaussian (L = 2.3, A = 3.045) 2.27
Small ruminant 62 2.2,2 (1, 3) Gamma (o0 = 2.4, B = 0.898) 2.16
Incubation Cattle 59  59,5(,06) Log logistic (y =0, B = 5.3, o = 4.02) 5.9
Pig 46  5.6,4(3,9 Pearson 5 (a0 = 3.05, B = 11.72) 5.58
Small ruminant 128 6.6, 6 (4, 8) Weibull (o0 = 2.784, f = 7.426) 6.59
Infectious Cattle 71 44,4 (3,06) Gamma (o = 3.969, § = 1.107) 4.39
Pig 53 57,5(5,6) Log logistic (y =0, f=5.39, o = 5.474) 5.69
Small ruminant 59  3.3,3 (2, 4) Pearson 5 (a0 = 6.188, f = 17.192) 3.32

Table IV. Weibull model (shape parameter p = 1.72) fitted for the duration of the latent and subclinical
periods, based on FMDV-transmission experiments from 154 animals in 15 experimental trials conducted

between 1967 and 2007.

Variable Category Time ratio Coefficient (B) 95% CI of B p value
FMDV stage Latent
Subclinical 0.52 —0.65 —0.79, —0.50 <0.01
Experimental Cattle
animal Pig 0.53 —0.63 —1.03, —0.23 <0.01
Clinical signs Fever
Generalized 1.26 0.23 0.02, 0.45 0.03
Interaction terms
FMDV stage x Subclinical sampled 1.41 0.34 0.17, 0.52 < 0.01
sample site from upper
respiratory tract
Experimental Pigs exposed to a 2.53 0.93 0.46, 1.40 <0.01
animal x donor specie different specie
Intercept 1.29 1.12, 1.46 <0.01

assumed a Weibull distribution for the incuba-
tion period (Tab. V). Baseline survival time
for the incubation period was estimated to be
2.9 days (95% CI=2.6, 3.3) and the final
model included a statistically significant

(p <0.01) shared frailty term for the within
subject cluster. The baseline survival time for
the incubation period for small ruminants was
2.3 days longer than for cattle and significantly
(p < 0.01) longer when the experimental design
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Table V. Weibull model (shape parameter p = 5.14) fitted for the duration of the incubation period, based on
FMDV-transmission experiments using 221 animals in 17 trials conducted between 1967 and 2007.

Variable Category Time ratio  Coefficient (B) 95% Cl of B p value
Experimental Cattle
animal Small ruminants 2.32 0.84 0.71, 0.97 <0.01
Type of contact Direct
Indirect 1.62 0.48 0.29, 0.68 <0.01
Donor specie Same specie
Different specie 1.86 0.62 0.45, 0.78 < 0.01
FMDV topotype Pan Asia
Euro-SA (European strains) 2.12 0.75 0.58, 0.91 <0.01
Euro — SA 5.16 1.64 1.25,2.03 <0.01
(South American strains)
Clinical signs Fever
Generalized 1.28 0.25 0.13, 0.37 <0.01
FMD laboratory Pirbright
Plum Island 0.31 —-1.17 —-1.5, -0.85 <0.01
PanAftosa 0.16 —1.83 —-2.36, —1.3 <0.01
Interaction terms
Experimental animal X  Small ruminants exposed 0.35 —1.06 —1.25, —-0.87 < 0.01
species as donor to a different species
Type of contact x Indirect X Euro — SA 0.25 —1.4 -1.62, —1.17 < 0.01
topotype (European strains)
Intercept 1.07 0.96, 1.18 <0.01

included indirect contact, contact with a differ-
ent donor species, and use of Euro-SA topotype
strains, and when signs of generalization of
FMDYV infection were used to define the end
of the period. The incubation period was shorter
for experiments conducted at Plum Island and
PanAftosa, compared with results from experi-
ments conducted at Pirbright. Two interaction
terms improved the model fitness. The incuba-
tion period was approximately 0.35 days
shorter for small ruminants exposed to pigs or
cattle, compared with those exposed to sheep.
In addition, the period was 0.25 days shorter
when the experiment was based on indirect
contact with animals infected with Brugge or
BFS 1860 strains (Euro-SA topotype), com-
pared with results when with animals were
infected via indirect contact with Pan Asia top-
otype strains (Tab. V).
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3.3.3. Infectiousness period

Duration of the infectious period was fit to a
Weibull model using data collected from 138
animals in 10 different trials (Tab. VI). The
baseline duration of the infectious period was
4.3 days (95% CI = 3.9, 4.7). Duration of the
infectious period was approximately 1.5 days
longer in small ruminants compared with cattle,
and 0.58-0.46 days shorter when Greece/94,
Canefa, and Campos strains were used, com-
pared with Pan Asia strains, respectively. Dura-
tion of the infectious period was 1.7 days longer
samples were collected from the upper respira-
tory tract, compared with collection of samples
from blood or from any other secretion or
excretion. The infectious period was shorter
for experiments conducted at Lelystad com-
pared with those carried out at Pirbright.
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Table VI. Weibull model (shape parameter p = 3.54) fitted for the period of infectiousness, based on
FMDV-transmission experiments using 138 animals in 10 trials conducted between 1967 and 2007.

Variable Category

Time ratio Coefficient () 95% CI of B p value

Cattle
Small ruminants

Experimental animal

Pan Asia
MESA

FMDV topotype

Euro — SA (South American strains)

Sera
Upper respiratory tract

Sample site

FMD laboratory Pirbright

Lelystad

Intercept

1.49 0.4 0.25,0.55 <0.01
0.46 -0.77 —0.96, —0.58 < 0.01
0.58 —0.55 —0.68, —0.41 <0.01
1.73 0.55 0.43,0.68 <0.01
0.17 -1.8 —0.31, —0.05 <0.01

1.45 1.35,1.55 <0.01

No interaction or frailty terms improved the
model fitness.

4. DISCUSSION

A systematic review and meta-analysis of
experimental trials conducted at four FMD ref-
erence laboratories from 1960 through 2007
was used here to estimate species-specific prob-
ability functions of the duration of the latency,
incubation, subclinically infectious, and infec-
tiousness periods of FMD infection, and the
association of those functions with epidemio-
logical factors. This information will help to
improve the precision of simulation models
and, ultimately, the ability of countries to pre-
vent and control FMD epidemics.

Although the selection criteria imposed to
conduct the meta-analysis dismissed an impor-
tant number of studies, for example, reporting
pooled results (n = 7), the method used here
offers certain advantages compared to tradi-
tional meta-analysis techniques used elsewhere
[39]. Meta-analyses are conducted using infor-
mation provided by a series of studies to pro-
duce a point estimate of an effect and
measures of the precision of such estimate
[47, 48]. Conversely, in the study here, data
was extracted on an individual basis through a
systematic review process, which provides
and makes use of more information than

traditional meta-analysis techniques that are
typically applied to aggregated data [39]. For
example, when data are identified and collected
on an individual basis, rather than grouped,
quality of data entry is easy to verify and outli-
ers can be identified, and potentially removed.
Moreover, different subgroup of records, such
as type of experiment or FMD laboratory in
which the study was conducted, can be created
and the extent of the influence of such attributes
on the value of the outcome may be assessed.
Also, a large variety of techniques may be used
to report the outcome of the analysis, including
probability distributions or time to occurrence
of the event. In the study here, for example,
parametric regression models were used to
quantify the time to occurrence of specific
events that indicate a change in the stage of
FMD infection, which could not have been esti-
mated if aggregated data were used in the
analyses.

Results reported here were consistent with
previous knowledge about FMD pathogenesis,
and its epidemiology. Mostly, probability distri-
butions were left-skewed (Fig. 2), as observed
in many survival data, and duration of each
stage of FMD-infection varied with the experi-
mental animal species assessed (Tabs. III-VI).

A standard approach in disease modeling is
to fit parametric distributions, such as those
presented here, to capture the variability of spe-
cific parameters of the model. However, fitted
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distributions represent a mixture of all the
experimental conditions included in the dataset.
The regression models fitted here show that
specific experimental conditions heavily influ-
ence the duration of the studied FMDYV stages.
For example, mean duration of the infectious-
ness in small ruminants seemed to be shorter
than in cattle, as suggested by the descriptive
distributions of the experimental data
(Tab. III). However, adjustment of the parame-
ter by the value of significant variables suggests
that, in average, duration of infectiousness is
longer in small ruminants, compared to cattle
(Tab. VI). Consequently, the PDF represent
descriptive approximations of the distribution
of the empirical data but their use to parameter-
ize stochastic models without taking into
account the influence of host or agent factors
may bias the results of an epidemiological
model. Alternatively, we provide an adjusted
approach using parametric regression models
that modelers can use to parameterize, using
the coefficients from significant variables, sim-
ulation models. Fitted models can be used to
approximate the value of specific parameters
adjusted by the value of significant variables
[27, 36], and 6 tables with a mixture of combi-
nations of predictions for the duration of FMD
stages are provided (on line Supplementary data
available at www.vetres.org).

In general, susceptible animals that were
exposed to an FMD-infected animal from a dif-
ferent species showed longer incubation periods
than susceptible animals exposed to infected
animals from the same species. Because incuba-
tion was computed here as the time between
exposure to an infected animal and the onset
of clinical signs there are many factors that
may have influenced such finding. One possible
explanation is that animals from the same spe-
cies are expected to interact with each other
more frequently than animals from a different
species, which may result in largest number of
effective contacts. Another possible explanation
may be the influence of species-specific differ-
ences in the pathogenesis of the disease. For
example, duration of latency and duration of
the subclinical period was longest for pigs
exposed to cattle or small ruminants, resulting
in longest duration of the incubation period,
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which may be explained by lowest susceptibil-
ity of pigs to aerosol infection [2]. Small rumi-
nants showed clinical signs faster after exposure
to pigs compared to exposure to other small
ruminants, which may be due to a combination
of highest susceptibility of sheep to aerosol
infection [18] and large amount of FMDV
excreted by pigs [15, 16, 50]. Another possible
explanation for the observed longer incubation
for susceptible animals exposed to same
species-infected animals compared to those
exposed to different species-infected animals
may be due to differences in the serotype- or
strain-specific susceptibility of species. For
example, certain serotypes and strains may be
more adapted to some animal species than
another as suggested by the high correlation
between strain and experimental animal species
(Tab. 1I).

Duration of latent-subclinical and incubation
periods was longer for small ruminants com-
pared to cattle. Such pattern is consistent with
previous knowledge on the epidemiology
[9, 44], and pathogenesis of the disease in small
ruminants [22, 40], which, under certain condi-
tions, are considered responsible for the spread
of FMDV due to the relatively mild signs of
disease that the virus produces in those species.
Because, compared to field conditions, detec-
tion of clinical signs is easier in controlled
experimental trials, it is possible that the delay
in the appearance of clinical signs reported here
may also be associated with mild signs of dis-
ease and, ultimately, with the misdiagnosis of
FMD infection under field conditions [21], in
which individual animal observation is less fre-
quent and less detailed.

Results of this study also indicate that dura-
tion of the stages of FMDYV infection are heav-
ily dependent on the specific virus strain
associated with the infection, as suggested by
the influence that virus topotypes had as predic-
tors of the final models. For example, infection
with Canefa and Campos strains resulted in
significantly ~ longer  incubation  periods
compared to infection with the Pan Asia strain.
This finding is consistent with field observa-
tions that indicate that some emergent sublin-
eages of Pan Asia strains have increased
virulence for particular species [19] and there
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are genomic changes that contribute to this
adaptation [46], which can explain in part, the
virus replacement observed in certain regions
of the world. Although such finding is biologi-
cally sound and it is consistent with previous
field observations, which indicate that certain
strains are more virulent than others for specific
susceptible populations [38, 45, 46], strain-
dependent factors, are commonly ignored in
FMD-transmission and spread models. There-
fore, results suggest that accuracy of FMD
models would be benefited if strain-dependent
factors, such as fitness to the host, competence,
adaptation, and evolution, were considered for
the parameterization of FMD spread.

Results were also influenced by the type of
sampled tissue, suggesting that sampling from
the upper respiratory tract may increase the
probability of early detection of FMDV. This
result suggests that air samplers and similar
pen-side tests and devices may contribute to
reduce time to detection of FMDYV infection
and become a key component of near real time
surveillance systems.

In conclusion, the study here represents the
first quantitative assessment of the nature and
extent of the association between lengths of
each stage of FMDV infection and strain and
host specific factors. Results presented here
can be used to improve the accuracy of FMD
transmission and spread models, and ultimately,
the ability of countries to prevent and early con-
trol FMDV incursions.
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