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Abstract

Complexity analysis of glucose time series with Detrended Fluctuation Analysis (DFA) has

been proved to be useful for the prediction of type 2 diabetes mellitus (T2DM) development.

We propose a modified DFA algorithm, review some of its characteristics and compare it

with other metrics derived from continuous glucose monitorization in this setting. Several

issues of the DFA algorithm were evaluated: (1) Time windowing: the best predictive value

was obtained including all time-windows from 15 minutes to 24 hours. (2) Influence of circa-

dian rhythms: for 48-hour glucometries, DFA alpha scaling exponent was calculated on 24-

hour sliding segments (1-hour gap, 23-hour overlap), with a median coefficient of variation

of 3.2%, which suggests that analysing time series of at least 24-hour length avoids the influ-

ence of circadian rhythms. (3) Influence of pretreatment of the time series through integra-

tion: DFA without integration was more sensitive to the introduction of white noise and it

showed significant predictive power to forecast the development of T2DM, while the pre-

treated time series did not. (4) Robustness of an interpolation algorithm for missing values:

The modified DFA algorithm evaluates the percentage of missing values in a time series.

Establishing a 2% error threshold, we estimated the number and length of missing segments

that could be admitted to consider a time series as suitable for DFA analysis. For compari-

son with other metrics, a Principal Component Analysis was performed and the results

neatly tease out four different components. The first vector carries information concerned

with variability, the second represents mainly DFA alpha exponent, while the third and fourth

vectors carry essentially information related to the two “pre-diabetic behaviours” (impaired

fasting glucose and impaired glucose tolerance). The scaling exponent obtained with the

modified DFA algorithm proposed has significant predictive power for the development of

T2DM in a high-risk population compared with other variability metrics or with the standard

DFA algorithm.
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Introduction

Many biological systems display a complex behaviour, and often one of the earliest signs of dis-

ease or senescence is the loss of complexity in its output [1–3]. This phenomenon may precede

the first clinical signs and may have important prognostic implications.

The glucoregulatory system is a clear example. Glucose blood levels need to be tightly con-

trolled while the patient operates in very different conditions. In the fasting status, hepatic glu-

cose production is the main source of glucose available. On the other hand, in the postprandial

state, the patient must handle an important glucose overload by using it as metabolic fuel or by

storing it as glycogen. This balance is reached through a complex network of hormones with

both feedback and feed–forward loops, and thus a potentially ideal field to explore complexity

metrics.

During the last decades, T2DM (type 2 diabetes mellitus) has become a growing epidemic

due to the rising prevalence of obesity as a consequence of the Western lifestyle, and is respon-

sible for significant morbi–mortality among high–risk populations [4]. Nevertheless, consider-

ing T2DM as a disease derived only from high plasma glucose levels is an oversimplification:

glucose oscillations may have adverse effects, independently of the raw glycaemic levels, and

indeed glycaemic variability was shown to be a risk factor for glycaemic complications [5, 6].

The route from health to T2DM is a continuum that typically follows one of two possible

paths. Some patients are able to maintain normal glycaemia during fasting but are unable to

handle the glucose overloads induced by eating (impaired glucose tolerance), while other

patients can handle these overloads, but are unable to lower their basal glycaemia to normal

levels during fasting (impaired fasting glucose) [7]. Both mechanisms eventually merge

together and coexist in full–blown T2DM. As the glucoregulatory dysfunction evolves, there is

a progressive loss of the pancreatic beta–cell (responsible for the insulin secretion) and the risk

of developing clinical complications gradually increases [8]. For clinical purposes, glycaemic

thresholds have been established in order to classify patients by stages. Nevertheless, these

thresholds are somehow arbitrary, and by the time a diagnosis of T2DM is made, 50% of beta–

cell function has been lost [9, 10], patients have already developed end–organ damage and are

at increased risk for cardiovascular disease [8, 11].

In the last years, the introduction of Continuous Glucose Monitoring Systems (CGMS) that

allow for prolonged, high–frequency, innocuous assessment of interstitial glucose, has fuelled

the development of new metrics to monitor glucose dynamics [12–16].

There is no general consensus on how to analyse glucose time series. Probably the most

generalized metrics are just a distribution description (range, standard deviation, coefficient of

variation). However, while simple and straightforward, these metrics have several drawbacks,

the most important of them being the assumption of independence of points, and therefore

omitting a crucial aspect of a time series: namely its sequentiality. Other metrics (Mean Ampli-

tude of Glycaemic Excursion (MAGE) [17], Continuous Overall Net Glycaemic Action 2 hour

(CONGA-2) [18], etc.) take into account the sequentiality but depend heavily on some arbi-

trary thresholds.

Complexity analysis seems an excellent tool to analyse glucose time series, and among the

several possible approaches, DFA [19] is arguably the most frequently used. DFA alpha scaling

exponent is higher (lower complexity) in type 1 diabetics than in healthy patients [20], and

also increases as patients walk their path from health, through prediabetes to full–blown

T2DM [2]. Furthermore, this metric may help predicting the risk of development of T2DM in

at-risk populations [21].

The main idea underlying DFA is to analyse how the informational content of a time series

is distributed throughout the different time–windows. A complex time series will have
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proportionally more information encoded in small time–windows. As the system decays, its

ability to detect and react to minor changes is blunted, and thus the informational content of

small time–windows decreases. This is manifested as an increase in DFA scaling exponent,

that is, a decrease in its complexity.

In the present paper we propose a customization of the standard DFA algorithm for diabe-

tes risk forecasting to achieve a significant classification capability. We review some of its char-

acteristics and compare the performance of the simplified DFA algorithm with that of several

other CGMS’ derived metrics [22], including other complexity statistics such as Approximate

Entropy (ApEn) [23], Sample Entropy (SampEn) [24], or Poincaré plots [25]. To evaluate the

performance of the complexity metrics we assessed their power to predict the evolution to

T2DM in a population of patients with essential hypertension, a condition known to be a risk

factor for T2DM development [26].

Materials and methods

Patients data set

The data set has already been published by our group [21]. Essentially, there were 208 patients

selected from the outpatient clinic of hypertension and vascular risk of the University Hospital

of Móstoles, in Madrid, from January 2012 to May 2015. The inclusion criteria were: age

greater than 18 and lower than 85 years, a previous diagnosis of essential hypertension and the

exclusion of a previous diagnosis of diabetes mellitus or treatment with antidiabetic drugs. The

original study was approved by the Hospital’s Ethical Committee and a written informed con-

sent was obtained from each patient before inclusion. A CGMS (iPro, MiniMed, Northridge,

CA, USA) record was obtained at inclusion, for at least 24h with sampling every 5’. Patients

were then followed every 6 months until the diagnosis of T2DM or end of study. A diagnosis

of T2DM was established with either basal glucose tests� 126mg/dl, and/or haemoglobin A1c

test� 6.5%, both confirmed in a second measurement. The median follow–up was 33 months

(range: 6 to 72 months). There were 17 new cases of T2DM, with a median time to diagnosis

of 33.8 months (IQR 24.1). Details may be found in Table 1.

DFA algorithm

The DFA script is based on the description in [19] and is written in R. It is publicly available at

the journal’s site.

The input is a vector with at least 288 values (assuming a glucose measurement every 5’ dur-

ing at least 24 hours), with no missing values at the beginning or the end of the series. Missing

values are allowed along the series, and are handled as described later. If the time series has

more than 288 values, the script goes through the whole time series, analysing every 24h seg-

ment with a 1h step (and 23h overlap) (e.g.: day 1: 08.00 to day 2: 08.00; day 1: 09.00 to day 2:

09.00, etc). Finally, the algorithm returns the sweeping average of DFA alpha exponent. The

essential steps are:

• Missing values are repaired through linear interpolation [27]. In order to handle their

weight, a shadow variable is created, stating which values are real measurements and which

are interpolated. A tolerance threshold is established (by default, 0.2).

• The windowing is set to 3, 4, 6, 8, 9, 12, 16, 18, 24, 32, 36, 48, 72, 96, 144 and 288 points (all

exact divisors of 288), and corresponding to time windows of 15’, 20’, 30’, 40’, 45’, 1h, 1h20’,

1.5h, 2h, 2h40’, 3h, 4h, 6h, 8h, 12h and 24h.

DFA model optimization for type 2 diabetes mellitus prediction
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• For each time frame, the series is divided in segments, and a linear regression is calculated

for each segment. The area between the linear regression and the real time series is evalu-

ated:

FðnÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

k¼1

½yðkÞ � ynðkÞ�
2

s

where F(n) measures the difference between the time series and the regression line, N is the

total number of data points, y(k) is the value of the pre–processed time series y at point k
and yn(k) is the value of the regression line at that point. For each segment, the script evalu-

ates if the number of interpolated values is greater than the tolerance threshold. If this is the

case, that segment’s result is substituted by the mean of the segments of the same window

length.

• This process is repeated for all time–window sizes, obtaining as many F(n) as time–window

sizes.

• A linear regression model is fitted between log(F(n)) and log(window size). If the model fits

correctly (p< 0.001), the alpha scaling exponent is obtained as the slope of the regression

model; otherwise, a warning appears.

Table 1. Baseline characteristics of included patients.

Gender (male/female) 103/105

Variable median IQR

Age(Years) 61 12

Follow up (months) 33.1 19.2

BMI(Kg/m2) 29.3 5.4

Basal glycaemia (mg/dL)� 100.6 11.4

HbA1c(%) 5.8 0.4

Coefficient of variation 0.15 0.08

CONGA-2 19.11 11.8

MAGE(mg/dL) 39.5 21.9

Fluctuation index 12.25 7.4

TU100(%) 0.52 0.42

AO140 9 171.2

ApEn� 0.39 0.09

SampEn� 0.32 0.1

DFA α exponent� 0.9 0.09

Poincaré–SD1 1.52 0.67

Poincaré–SD2 23.4 12.8

Poincaré–E 15.5 5.2

IQR: interquartile range; BMI: body mass index; HbA1c: haemoglobin A1c; CONGA2: Continuous Overall Net

Glycaemic Action 2 hour; MAGE: Mean Amplitude of Glycaemic Excursions; FI: Fluctuation Index; TU100: Time

under the 100 mg/dl glycaemic threshold; AO140: Area over the 140 mg/dl glycaemic threshold; ApEn: Approximate

Entropy; SampEn: Sample Entropy; DFA: Detrended Fluctuation Analysis α exponent; Poincaré–SD1: Standard

deviation of points in the width axis of an ellipse fitted to a Poincare plot; Poincaré–SD2: Standard deviation of

points in the length axis of an ellipse fitted to a Poincaré plot; Poincaré–E: Eccentricity of the ellipse (SD2/SD1).

� Variables with normal distribution are expressed as mean and standard deviation.

https://doi.org/10.1371/journal.pone.0225817.t001
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Windowing. To analyse the influence of the different windowing sets on DFA alpha’s

predictive power, a vector with all the exact divisors of 288 was built. Every possible set of con-

tinuous time windows were tested, with a minimal window ranging from 15 minutes to 90

minutes and a maximal window ranging from 4 hours to 24 hours. With each of these win-

dowing sets we calculated the alpha exponent value of the patients included in the data set, and

evaluated its efficiency in predicting the development of T2DM. This was assessed by means of

a Cox proportional hazard model (survival R package).

Coefficient of variation. In the cases when time series longer than 24h were available, a

test was performed in order to explore the influence of the starting time of the 24 hour record.

From 208 patients, 191 patients had a 48 hour CGMS record. In these patients, the alpha scal-

ing exponent was calculated in sweeping 24h long segments, with 1h steps (and 23h overlap).

A coefficient of variation was obtained for each patient.

Pre–treatment through integration. Most publications using DFA in diabetes treat the

time series through integration before starting the detrending steps. This is usually performed

through:

yðkÞ ¼
Xk

i¼1

ðxi � xmeanÞ

where xi is the value of the original time series x at point i. This ensures a brownian dynamic,

allowing its inclusion in a random walk model, and standardizes the meaning of its results (e.g,

α> 1.5: positive correlation, α< 1.5: negative correlation). Furthermore, this preprocessing

smoothens the time series profile and solves the missing–values problem. However, this may

significantly affect DFA’s sensitivity. In the present work, we propose to skip the pre–process-

ing of the time series and proceed to the DFA calculation on the raw data, that is, y = x.

To provide a better support to our decision of not integrating the time series, we applied a

method to ensure our CGM records could be considered as fractional Brownian motion (fBm)

[28, 29].

To compare both methods (DFA with and without pre–treatment) we calculated both met-

rics in all our patients, and used both results in two different tests:

• Influence of white noise. Each of the first 24h of all the 208 time series included in the patient

database were evaluated. From each time series, 15 replicas were created, with an increasing

addition of random noise (uniform distribution with average 0 and range increasing from

-1:+1 mg/dl to -15:+15 mg/dl). From each of the replicas, an integrated series was obtained

following the above-mentioned algorithm. The two DFA metrics were calculated for each

time series and were plotted against the intensity of the random component. A linear corre-

lation model was fitted between the alpha exponent and range (random component), and

the slope of the changes in both DFAs were compared.

• Predictive power. We compared the predictive power of the integrated time series vs. the

non–integrated series in a Cox proportional hazard model [30] to forecast the development

of full–blown T2DM.

Except for the sections dealing with the influence of pre–treatment through integration, all

other alpha exponent results and figures referred in this manuscript were obtained omitting

the aforementioned pre–treatment. For comparisons, henceforward DFAint and DFAraw are

used to refer to DFA with or without integration, respectively.

Robustness of the interpolation algorithm. As exposed earlier, the DFA algorithm evalu-

ates the percentage of missing (and thus interpolated) values. Although recent technological

DFA model optimization for type 2 diabetes mellitus prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0225817 December 18, 2019 5 / 15

https://doi.org/10.1371/journal.pone.0225817


developments are minimizing missing data, this has been a limitation in the clinical context

where conditions cannot be completely supervised.

DFA requires a time series without missing data. The trivial approach to missing values is

interpolation. However, depending on the length and the number of missing segments, this

may have serious effects on DFA results. Therefore, it seemed mandatory to assess the conse-

quences of the length and number of missing (and interpolated) values, and to establish a

threshold above which the time series can not be trustfully analysed. In order to do this, 30

time series with no missing values were selected. In each time series, 540 replicas were created

and:

• A set of n segments of length l were deleted (and interpolated). The length of the omitted

segments varied between 4 elements (20’) to 30 elements (150’) and the number of segments

varied between 1 and 20 (or half the length of the time series, whatever happened before).

• The precise location of the missing segments was random, and the process was repeated 30

times for each time series.

• The mean absolute difference between the interpolated time series and the original series

was evaluated for each combination of n (number of missing segments) and l (length of the

missing segments).

• This process was repeated for all 30 patients, and a mean absolute error was calculated for

each combination of n and l of the complete set of patients.

Comparison of different metrics

We compared the efficiency (in predicting the risk of T2DM in a Cox proportional hazard

model) of several of the most frequent CGMS variability metrics. An exhaustive discussion of

each metric is out of the scope of this paper, but schematically:

1. Conventional variability metrics: coefficient of variation (standard deviation/mean).

2. Variability metrics considering sequentiality:

• CONGA-2 [18] is the standard deviation (sd) of the range of differences in glycaemia

between points separated by 120 min.

• MAGE [17]. A glycaemic excursion was defined as a excursion greater than 1 SD of the

time series.

• Glycaemic Fluctuation Index [31]. The area between the glycaemic profile and the mean

glycaemia.

3. Metrics related with prediabetic phenotype:

• Time under the 100 mg/dl glycaemic threshold (TU100). Generally, the Impaired Fasting
Glucose (IFG) phenotype is defined as a categorical variable (fasting glycaemia > 100mg/

dl). However, transforming it into a quantitative variable may drastically change its sensi-

tivity [32], so the percentage of time with glycaemia lower than 100 mg/dL has been mea-

sured as an indicator of fine fasting glucose control.

• Area over the 140 mg/dl glycaemic threshold (AO140). Similarly, the Impaired Glucose
Tolerance (IGT) phenotype is usually employed as a qualitative variable (glycaemia� 140

mg/dL and< 200 mg/dL, 2 hours after 75-gr glucose overload). Again, transforming it

DFA model optimization for type 2 diabetes mellitus prediction
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into a quantitative variable (area above 140 mg/dl threshold) greatly increases its predictive

value [32].

4. Entropy-related estimations. In essence, these metrics assess the predictability of the time

series, evaluating to what extent the preceding points determine the following values. This

is performed analysing the frequency of repeated patterns. Higher ApEn or SampEn, there-

fore less predictability, implies higher complexity:

• ApEn [23].

• SampEn [24].

5. Metrics derived from the Poincaré plot [33]. A plot is created with glycaemia at point

(i) in the horizontal axis vs. glycaemia at point (i + 1) (delay map). The resulting cloud of

points is fitted to an ellipse:

• Standard deviation of the points on a delay map with respect to the horizontal axis (width)

of the fitted ellipse (SD1).

• Standard deviation of the points on a delay map with respect to the vertical axis (length) of

the fitted ellipse (SD2).

• Eccentricity of the fitted ellipse (E): SD2/SD1

6. DFAraw, as previously described.

ApEn and SampEn were calculated by means of the pracma R package. All other scripts

were directly written in R. Among the various metrics with statistically significant predictive

power, a Principal Component Analysis (PCA) (psych R package) was performed in order to

assess how these metrics correlated with one another. In PCA, it is conventional to select only

those factors with eigenvalues greater than 1, as an eigenvalue of 1 indicates that a factor can

only explain as much variance as a single item [34]. For this reason, factors were selected if

their eigenvalue was greater than 1.0. A varimax rotation was applied to clarify the structure of

the loading matrix, and the rotated components (RCs) were used instead of the original princi-

pal components (PCs) since they provide a more intuitive interpretation of the results.

Statistics

Variables are expressed as mean and standard deviation (SD) if they have a normal distribu-

tion, and as median and interquartile range (IQR) otherwise. All statistics were performed

with R (https://www.r-project.org). Significance was assumed when 2–tail p< 0.05 (except for

the log(Fn)–log(window) correlation in DFA algorithm, in which, this being a log–log correla-

tion, a p< 0.001 was required).

Results and discussion

In the present work we introduce several variations of the DFA algorithm that could provide

some advantages regarding its applicability in the clinical field. Moreover, we test its accuracy

on a practical scenario by correlating its results with proportional risk of T2DM development

in a high risk population in real–life conditions, followed up for a period of time.

DFA windowing

Among all the windowing sets evaluated, the best predictive value for T2DM development was

obtained with the set that included all time-windows from 15’ to 24h (15’, 20’, 30’, 40’, 45’, 1h,

DFA model optimization for type 2 diabetes mellitus prediction
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1h20’, 1.5h, 2h, 2h40’, 3h, 4h, 6h, 8h, 12h and 24h), with a Cox coefficient of 8.344(p = 0.027).

A 0.1 increase in DFAraw alpha scaling exponent results in 2.3 odds ratio of T2DM. Other sets

of windowing (e.g. from 20 minutes to 24 hours; from 15 minutes to 12 hours) provided

smaller Cox coefficients and therefore they do not seem to offer any advantage. Fig 1 displays

two heatmaps with the Cox coefficient for different windowings and the p-values of the Cox

model.

Coefficient of variation

As explained before, DFA alpha exponent was calculated on sliding 24-hour segments with

1-hour steps for those series longer than 24 hours, and a coefficient of variation was obtained

for the values of each patient. The median coefficient of variation was 3.2%, with an interquar-

tile range of 2.2%. Our data show no significant differences in alpha values between different

segments of 24 hours time series taken at different day-times. It has been well-established that

there is a level of regulation based on circadian rhythms beyond sleeping patterns and meals.

Many researchers have underlined that the plasmatic glucose rhythm may be influenced by

hormones whose secretion is narrowly related to day–night rhythm (such as cortisol, growth-

hormone, etc. [35, 36]). However, our results suggest that analysing time series of at least 24h

avoids the influence of circadian rhythms and thus the results are not significantly interfered

by the day–time in which the CGMS is implanted.

Pretreatment through integration

Although most authors using DFA in diabetes integrate time series before detrending, this is

not universally accepted, and some authors have applied DFA without pre-integration [37].

Despite the extended practice, we feel that this pre–processing may have a great cost in

sensitivity.

The power spectra of all the time series was computed, and a non-linear y = α � xβ power

curve was fitted (p< 0.01 in all cases) to the frequency domain data in order to estimate

the exponent β. Averaging all the results obtained, the exponent value achieved was

β = −8.144719 + / − 0.5175, which is clearly in accordance with the fBm assumption, and

therefore we assumed that integration could be omitted [28].

Fig 1. Predictive power of DFA alpha scaling exponent to forecast the development of T2DM on Cox survival analysis. (A)

Heatmap with Cox proportional hazard coefficient for different windowings. (B) Cox coefficient’s p-value for different windowings.

https://doi.org/10.1371/journal.pone.0225817.g001
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To evaluate the influence of pretreatment through integration before proceeding to

detrending, two tests were performed:

• Influence of a random component (white noise). Considering that white noise has α = 0.5,

we assumed (and empirically confirmed) that introducing white noise in the time series

would reduce its alpha exponent. In order to determine to what extend alpha value is altered

by white noise, each time series was exposed to a random component as explained in the

Material and Methods section, to create several replicas of the series and alpha exponent was

measured in each replica, both with and without pre–treatment through integration. The

rate of decline was significantly steeper in non-integrated than in integrated series (-0.042

(SD: 0.0033) vs. -0.023 (SD 0.0053); p< 0.001). Fig 2 displays the evolution of DFAraw and

DFAint as the intensity of the random component increased.

More formally, a General Linear Model was built with DFA alpha exponent as the dependent

variable and the intensity of the random component and pre–treatment through integration

(qualitative: yes/no) as independent variables. As expected, both variables were statistically

significant (integration: coef. = 0.627, p< 0.01; randomness: coef. = −0.041, p< 0.019) but

notably so was their interaction (coef. = 0.016, p< 0.01). This data show an earlier and

steeper drop of alpha as the random component increases in the non-integrated time series

compared to the pre-treated time series. This suggests a decrease in sensitivity attributable to

the pre–treatment through integration.

• Predictive power. As stated previously, in the non–integrated time–series, several window-

ing sets produced significant predictions, with a maximum Cox coefficient of 8.344

Fig 2. Influence of integration on DFA alpha scaling exponent values. (A) Rate of decline of alpha with the addition of an

increasing component of randomness (white noise) in series pre–treated through integration (DFAint) or not (DFAraw). (B)

Boxplot of the differences of the alpha exponent values between both methods.

https://doi.org/10.1371/journal.pone.0225817.g002
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(p = 0.027). In contradistinction, no set of windowings was able to produce a significant Cox

model with the integrated time–series.

To summarise, our data suggest that omitting integration and thus stepping out of the ran-
dom walk model increases alpha’s sensitivity and may arguably boost its clinical efficiency. Of

course, the standard 1.5 threshold loses its meaning, but DFA remains a useful tool to explore

how the informational content of a time series is distributed throughout its time–windows,

and may be employed to compare different glycaemic profiles.

Robustness of the interpolation algorithm

To explore the influence of missing (and interpolated) values on the scaling exponent

calculations (i.e. to evaluate the robustness of the DFA algorithm in handling lost measure-

ments), we deleted an increasing number of randomly distributed segments of increasing

length and assessed the resulting error (compared with the complete series), as exposed

above.

Fig 3 is a heat–map representing the error (as %) depending on the number and length of

missing segments. We fixed a threshold of 2% error to consider a time series as suitable for

DFA analysis. With this limit, we propose an admission criteria for a time series to be subjected

to DFA: schematically, a time series should be rejected if ever the missing segments surpassed:

twenty times a 20’ segment, or eleven 30’, or six 45’, or four 1h, or one 1.5h, or any longer than

1.5h missing segments. To ensure compliance, we suggest counting the number of missing seg-

ments and establishing the length of the largest missing segment.

Comparison of different metrics

Several CGMS–related metrics (described above) were applied to the first 24h series of all

patients, and their results were included as independent variables in a univariate Cox propor-

tional hazard model to assess the risk of T2DM development. Results of this analyis are dis-

played in Table 2. Only CONGA2, MAGE, TU100, AO140, Poincaré–SD1, Poincaré–SD2 and

DFAraw alpha exponent were significant predictors.

To analyse how these variables related with one another, we performed a PCA with varimax

rotation as referred in Material and Methods. Table 3 presents the resulting model. Four prin-

cipal components were selected, carrying 96% of the variance. The results neatly tease out four

different elements. The first vector (RC1) carries information concerned with variability. The

vector carrying the second largest amount of variance (RC3) represents mainly DFAraw scal-

ing exponent, while the third and fourth vector carry essentially the information related with

the two pre–diabetic behaviours (impaired fasting glucose in the third vector, RC4, and

impaired glucose tolerance in the fourth vector, RC2).

The prompt separation of variability metrics (first vector) and DFA scaling exponent (sec-

ond vector) probably reveals that, although in several studies [2, 21, 32] variability and com-

plexity show a strong inverse correlation, they explore different phenomena. Arguably,

variability metrics deal with short–term fluctuations, and are less sensitive to long–term corre-

lations. Instead, DFA explores this issue analysing the correlation behaviour as the time win-

dow is modified, and thus exploring the informational content all along different time–
grainings. It seems reasonable to expect that physiologic systems based on complex hormonal

loops (sometimes requiring sensing, protein synthesis, transportation and distant action)

should need a wide variety of time–windows to be fully explored.

DFA model optimization for type 2 diabetes mellitus prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0225817 December 18, 2019 10 / 15

https://doi.org/10.1371/journal.pone.0225817


Fig 3. Error depending on the number and length of missing segments. Each unit of missing segment represents 5

minutes. In 30 series originally with no missing values, an increasing number of randomly distributed segments of

increasing length were deleted and interpolated. The process was repeated 30 times for each combination of length and

number of deleted segments and for each patient, and DFA scaling exponent was calculated for each replica. The mean

error (absolute difference with the real alpha value (complete series)) was recorded for each combination of length and

number of missing segments.

https://doi.org/10.1371/journal.pone.0225817.g003

Table 2. Cox proportional hazard model for different metrics.

Metric Cox coefficient p
Coefficient of variation 2.679 0.499

CONGA-2 0.061 0.004

MAGE(mg/dL) 0.019 0.003

Fluctuation index 0.082 0.065

TU100(%) -3.05 0.004

AO140 0.0006 < 0.001

ApEn -2.671 0.341

SampEn -0.767 0.741

DFAraw α exponent 8.344 0.027

Poincaré–SD1 0.781 0.013

Poincaré–SD2 0.05 0.03

Poincaré–E 0.006 0.92

https://doi.org/10.1371/journal.pone.0225817.t002
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Conclusions

We propose and analyse a DFA algorithm that omits pre–treatment through integration and

manages missing (and interpolated) data considering their weight in each time window. This

algorithm has significant predictive power as for the development of T2DM in a high–risk

population. Furthermore, this metric explores dynamical aspects of the time series not dis-

played by other variability metrics.

Omitting pretreatment through integration improved substantially the predictive power of

DFA alpha exponent (best Cox coefficient with optimal windowing: 8.32, p = 0.03), while no

set of time-windows had significant predictive power with pre-treated time series. We describe

the effect of different number and size of missing segments, and we propose an admission crite-
ria to assure an error les than 2%. Several glycaemia-related metrics are able to predict the

development of T2DM in our population. A principal component analysis on these metrics

neatly teases out four vectors: one grouping variability metrics (CONGA–2, MAGE and Poin-

caré plot–derived variables), another displaying complexity (DFA alpha exponent) and two

other displaying the two polar prediabetic phenotypes (impaired glucose tolerance and

impaired fasting glucose).

DFA alpha scaling exponent (omitting pre–treatment through integration) has significant

predictive power on the development of T2DM in patients at risk, independently of other vari-

ability metrics.

The main limitation of our study is the inability of comparison with most DFA studies due

to our decision to omit pre–treatment through integration. Furthermore, the differences in the

measurements between different glucometers are unknown. For that reason, we believe more

research should be done in order to test this algorithm in different populations, with bigger

samples and different glucometer models.

Supporting information

S1 File. Glucose time series and clinical database. This file includes glucose time series from

all patients included in the study and the database with clinical variables.

(ZIP)

Table 3. Principal Components Analysis of the variables selected in the Cox proportional hazard model.

A RC1 RC3 RC4 RC2

SS loadings 3.09 1.47 1.09 1.05

Proportion of variance 0.44 0.21 0.16 0.15

Cumulative variance 0.44 0.65 0.81 0.96

B RC1 RC3 RC4 RC2

CONGA-2 0.84 0.41 0.26 -0.14

MAGE(mg/dL) 0.80 0.42 0.25 -0.08

TU100(%) -0.14 -0.11 -0.17 0.97

AO140 0.34 0.15 0.90 -0.21

DFAraw α exponent 0.22 0.95 0.12 -0.11

Poincaré–SD1 0.95 -0.09 0.15 -0.15

Poincaré–SD2 0.81 0.42 0.29 -0.07

Loadings greater than 0.8 are highlighted. (A) SS loadings for each of the components. (B) Standardized loadings for

each variable. RC 1–4 refers to each of the rotated (Varimax) components obtained by PCA.

https://doi.org/10.1371/journal.pone.0225817.t003
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S2 File. DFA algorithm script. This file includes the modified DFA algorithm script written

in R.
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