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Abstract
In evolutionary studies, it is common to use phylogenetic trees to represent the evo-
lutionary history of a set of species. However, in case the transfer of genes or other
genetic information between the species or their ancestors has occurred in the past, a
tree may not provide a complete picture of their history. In such cases, tree-based phy-
logenetic networks can provide a useful, more refined representation of the species’
evolution. Such a network is essentially a phylogenetic tree with some arcs added
between the tree’s edges so as to represent reticulate events such as gene transfer,
hybridization and recombination. Even so, this model does not permit the direct rep-
resentation of evolutionary scenarios where reticulate events have taken place between
different subfamilies or lineages of species. To represent such scenarios, in this paper
we introduce the notion of a forest-based network, that is, a collection of leaf-disjoint
phylogenetic trees on a set of species with arcs added between the edges of distinct
treeswithin the collection. Forest-based networks include the recently introduced class
of overlaid species forests which can be used to model introgression. As we shall see,
even though the definition of forest-based networks is closely related to that of tree-
based networks, they lead to new mathematical theory which complements that of
tree-based networks. As well as studying the relationship of forest-based networks
with other classes of phylogenetic networks, such as tree-child networks and univer-
sal tree-based networks, we present some characterizations of some special classes of
forest-based networks. We expect that our results will be useful for developing new
models and algorithms to understand reticulate evolution, such as introgression and
gene transfer between species.
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1 Introduction

In evolutionary biology, it is common to represent the evolution of a set of present-
day species using a phylogenetic tree, that is a rooted, graph-theoretical tree whose
leaves correspond to the species Steel (2016). In recent years however, it has become
increasingly recognized that phylogenetic trees may not provide an adequate means
to represent the evolution of set of species in case the species or their ancestors have
transferred or shared geneticmaterial between one another in the past. This type of evo-
lution is sometimes called reticulate evolution, and it includes evolutionary processes
such as introgression, gene transfer, hybridization and recombination. Phylogenetic
trees are not able to fully represent this type of evolution since they can only represent
speciation or branching events [see, e.g., Huson et al. (2010), Chapter 4], and reticulate
events require a graph where ancestors come together.

Despite this issue, phylogenetic trees can still be used as a starting point to represent
reticulate evolution by, for example, taking some phylogenetic tree and then adding in
extra edges to represent reticulate events [see, e.g., Makarenkov (2001)]. We illustrate
this in Fig. 1i, where we have started with a base-tree representing the evolution of
a hypothetical collection of bacteria, and added in some dashed arcs between arcs
in the tree so as to represent past events where genes have been laterally transferred
between ancestral species [see, e.g., Kunin et al. (2005) and Makarenkov et al. (2021)
for some real-world examples in bacteria and viruses, respectively]. Mathematically
speaking, the resulting graph-theoretical structure is an example of a phylogenetic
network, that is, a rooted, directed acyclic graph with leaf-set corresponding to the
present-day species [see, e.g., Steel (2016)]. Note that directed cycles are not allowed
in such networks since, for example, a species cannot be an ancestor of itself.

Phylogenetic networks that are created by adding in edges to a phylogenetic tree to
form a network are called tree-based networks Francis and Steel (2015). Since their
formal introduction in Francis and Steel (2015), tree-based networks have created a
lot of interest in the literature. For example, it is known that not every phylogenetic
network is tree-based Iersel (2013), and as a result several elegant characterizations of
tree-based networks have been developed [see, e.g., Francis et al. (2018), Francis and
Steel (2015), Huber and Scholz (2020), Pons et al. (2019), Zhang (2016)]. In addition,
efficient algorithms have been presented for deciding whether or not a phylogenetic
network is tree-based [see, e.g., Francis and Steel (2015) and Jetten and van Iersel
(2018)]. There are also several results concerning the relationship between tree-based
networks and other special classes of phylogenetic networks, as well as structural
results on spaces of tree-based networks [see, e.g., Fischer and Francis (2020), Steel
(2016), Corollary 10.18]. For a brief review of tree-based networks, see (Steel 2016,
Section 10.4.2)

In this paper, we introduce a new class of networks called forest-based networks.
Instead of adding arcs between edges in a phylogenetic tree, these networks are formed
by adding arcs between different trees within a phylogenetic forest, i.e., a collection of
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(i) (ii)

Fig. 1 (i) A tree-based network and (ii) a forest-based network for a collection of bacteria. The dashed
arrows indicate a lateral gene transfer event between bacterial ancestors

leaf-disjoint phylogenetic trees (see, e.g., Fig. 1ii). Note that these networks generalize
the notion of a phylogenetic network by permitting a network to have multiple roots.
Forest-based networks are of interest in evolutionary studies as they can be used to
model introgression Scholz et al. (2019), the evolutionary process in which foreign
genetic material (e.g., a gene or collection of genes) is introduced into a genomeHallet
(2005). Introgression is known to be common in plants and also occurs in animals. For
example, inHeliconius butterflies, butterflies in one lineage can incorporate genes from
butterflies in other lineages giving rise to new wing patterns Wallbank et al. (2016).
To model introgression using forest-based networks, the evolutionary history of a
collection of subfamilies of species (corresponding to lineages or clades) is represented
by a phylogenetic forest; introgression events then correspond to the arcs that are
added between different trees in the forest. The application of forest-based networks
to analyzing introgression is described Scholz et al. (2019), using the special class of
such networks called overlaid species forests.

Another potential application of forest-based networks is to the modeling of lateral
gene transfer in bacteria, a process that is closely related to introgression (Hallet 2005,
p.230). Lateral transfer between bacteria is commonly detected by reconciling gene
trees with species trees [see, e.g., Tofigh and Hallett (2010)] which results in tree-
based networks like the one in depicted in Fig. 1i. Now, suppose that each component
of a phylogenetic forest is a phylogenetic tree representing the evolutionary history
of a collection of bacteria living within a certain environment. Then, the forest-based
network in Fig. 1ii represents how bacteria in different environments have swapped
genes between one another in the past. For example, for human microbiomes, these
environments could be the human mouth or gut, and the arcs between the trees in
the forest would represent so-called inter-niche gene transfers Jeong et al. (2019).
Forest-based networks could provide a useful additional method to standard tree rec-
onciliation for understanding inter-environment transfers, since a phylogenetic forest
can be thought of as a way to incorporate environmental constraints when trying to find
optimal reconciliations. For more details, see Section 2.2 in Huber et al. (2022), where
the relationship between overlaid species forests and species-gene tree reconciliation
is discussed.

Although at first sight, the concept of a forest-based network appears to be a relative
simple modification of the definition of a tree-based network, in this paper we shall see
that its study requires the development of some interesting new theory. We now sum-
marize the contents of the rest of this paper. In Sect. 2, we introduce basic terminology
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and notation. In Sect. 3, we then present the formal definition of forest-based networks
and investigate some of their basic properties, for example, showing that every forest-
based network has a special type of base forest (Theorem 1). In Sect. 4, we consider the
relationship between forest-based phylogenetic networks (i.e., networks with a single
root), and other well-known classes of phylogenetic networks, including tree-based
networks and so-called tree-child networks Cardona et al. (2008). In Sects. 5 and 6,
we consider arboreal networks a special class of forest-based networks whose under-
lying, undirected graph is a tree. In particular, in Theorem 3 we characterize arboreal
networks that are forest-based, and in Theorem 6 we show that two arboreal networks
induce the same set of clusters if and only if they are both forest-based.

In Sect. 7, we consider the problem of characterizing forest-based networks. More
specifically, in Theorem7we characterize proper forest-based networks, that is, forest-
based networks with m ≥ 2 roots which are based on a phylogenetic forest which has
m components. We also show that there is a simple characterization for forest-based
networks in casem = 2 which can be given in terms of the existence of a 2-coloring of
a certain graph that can be associated to any network (Theorem 8). This is somewhat
similar to the characterization of binary tree-based networks given in Jetten and van
Iersel (2018). In Sect. 8, we then turn our attention to the concept of universal forest-
based networks, that is networks that contain all possible phylogenetic forests as a
base forest. These are a natural generalization of universal tree-based networks, which
contain every possible phylogenetic tree as a base tree. Although universal tree-based
networks always exist Hayamizu (2016), Zhang (2016), in Sect. 8 we show there are
no universal forest-based networks with four or more leaves (Theorem 9). In Sect. 9,
we conclude by presenting some potential directions for future work.

2 Preliminaries

Throughout this paper, we assume that X is a non-empty, finite set, which can be
thought of as a collection of species.

We shall use standard terminology from graph theory [see, e.g., Steel (2016), Sec-
tion 1.2]. Unless stated otherwise, we assume that all graphs are directed and that they
have no parallel arcs or loops. Suppose G is a graph. We denote the vertex set of G by
V (G) and its set of arcs by A(G). Suppose u, v ∈ V (G). We denote an arc a from u
to v by a = (u, v), and we refer to u and v as the end vertices of a and v and u as the
head and tail of a, respectively. We say that v lies below u if there exists a directed
path in N from u to v (so, in particular, v is below v). If, in addition, v �= u then we
say that v lies strictly below u. We call u an ancestor of v if v is below u. In that case,
we shall also call v a descendant of u. If u and v are such that (u, v) is an arc of N ,
then we call u a parent of v and v a child of u.

For v ∈ V (G), we refer to the number of arcs with head v as the indegree of v,
denoted by indeg(v), and to the number of arcs with tail v as the outdegree of v,
denoted by outdeg(v). We call v a leaf of G if indeg(v) = 1 and outdeg(v) = 0,
unless V (G) = {v} in which case we also call v a leaf. We denote by L(G) the set
of all leaves of G. In case v is not a leaf of G we call v an internal vertex of G. If
indeg(v) = 1, then we refer to v as a tree vertex of G, and if indeg(v) = 0, then we
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call v a root of G. We call every internal vertex of G that is neither a root nor a tree
vertex a hybrid vertex of G. The set of all roots of G is denoted by R(G) and the set
of all hybrid vertices of G is by H(G). We say that G is semi-binary if G consists
of a single vertex or if every hybrid vertex of G has indegree two and outdegree one,
and we say that G is binary if, in addition to being semi-binary, every root and every
non-leaf tree vertex has outdegree two.

We say that G is acyclic if it contains no directed cycles, and we call G a tree if it
has a single root, all arcs in G are directed away from the root, and the underlying,
undirected graph of G is a tree (note that we regard a vertex as being a tree). We call G
a forest if it has at least two connected components and all of its connected components
are trees. For convenience, we will sometimes also regard a forest as being the set of
trees which make up its components.

A multiply rooted phylogenetic network N (on X ) or network (on X ) is a semi-
binary, connected, acyclic graph with leaf set X and at least one root, in which every
root in R(N ) has outdegree at least 2. In case the number m = |R(N )| of roots in a
network N is of relevance to the discussion, we sometimes also call N an m-network
(on X). If N , N ′ are networks on X , then we say that N and N ′ are equivalent if
there exists a bijective map ψ : V (N ) → V (N ′) that induces a graph isomorphism
between N and N ′ and that is the identity on X1 . If |R(N )| = 1, then N is called
a phylogenetic network (on X). In this case, we denote the root of N by ρ(N ). If N
is such that H(N ) is empty, then we call N a phylogenetic tree (on X). Note that in
the special case where X = {x}, we regard the graph with the single vertex x as a
phylogenetic tree on X with leaf and root vertex x . A phylogenetic forest F (on X) is
a set consisting of at least two phylogenetic trees so that L(T ) ∩ L(T ′) = ∅ for all
T , T ′ ∈ F , and

⋃
T∈F L(T ) = X .

We conclude this section by introducing two operations on a graph. Suppose that G
is a graph and that a = (u, v) is an arc of G. Then, we refer to the process of deleting
a, adding a new vertex w, and adding arcs (u, w) and (w, v) as subdividing a. In this
case, we also refer to w as a subdivision vertex of a. We call a graph G ′ a subdivision
of G if G ′ is isomorphic to a graph that can be obtained from G via a finite sequence
of subdivisions. Furthermore, we refer to the process that reverses subdivision (i.e.,
for a vertex v ∈ V (G) with indegree and outdegree one, delete v and its incoming and
outgoing arcs and add a new arc from the parent of v to the child of v) as suppressing
of v. We also refer to the process that removes a root ρ with outdegree 1 in a graph
and the arc with tail ρ as suppression.

3 Forest-Based Networks

In this section, we formally define forest-based networks and present two basic results
concerning their structure. Note that the concepts that we use to define a forest-based
network are closely related to the ones used to define a tree-based network in Steel
(2016, p.257).

1 Note that two equivalent phylogenetic networks are sometimes also called isomorphic.
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Fig. 2 (i) A forest-based network N on the set X = {1, 2, 3, 4}. For example, it is based on the phylogenetic
forest F consisting of the isolated vertices labeled 1 and 2 and the phylogenetic tree with a single root on
{3, 4}. The network is also proper forest-based since it has the proper base forest consisting of the two
phylogenetic trees on {1, 2} and {3, 4}. (ii) An embedding of the forest F into N , where the contact arcs
are indicated as dashed arcs

We define a network N = (V , A) on X to be forest-based if there exists a subset
A′ ⊆ A such that F ′ = (V , A′) is a forest with the same leaf set as N , and so that every
arc in A− A′ has end vertices contained in different trees of F ′. Note that this implies
|X | ≥ 2. We call F ′ a subdivision forest for N , the arcs in A− A′ contact arcs and the
vertices in F ′ with indegree and outdegree both equal to one subdivision vertices (of
F). We call the phylogenetic forest F on X that we obtain by repeatedly suppressing
all subdivision vertices and outdegree one roots in each component of F ′ until we
obtain a phylogenetic tree a base forest for N . We also say that N is based on F , and
that the forest F ′ provides an embedding of F into N . Note that X = L(F) = L(F ′),
and that in case a component C of F consists of a single element, then the component
of F ′ which gives rise to C is necessarily a path. For m ≥ 2, we call an m-network
N proper forest-based if it contains a proper base forest, that is, a base forest with m
roots. See Fig. 2 for illustrations of these concepts.

Before proceeding, we note that not all forest-based networks are overlaid species
forests, and so the concept of a forest-based network is more general than that consid-
ered in Scholz et al. (2019) (the formal definition of an overlaid species forest is quite
involved and so we shall not present it here). For example, the forest-based network N
in Fig. 2i is not an overlaid species forest. To see this, note that for every embedding
of some base forest into N , one of the arcs with tail v and one of the arcs with tail w
must be a contact arc. However, one of the conditions for a network to be an overlaid
species forest is that all contact arcs must share an ancestor [cf. Huber et al. (2022),
Theorem 5.3], which is not possible for any pair of contact arcs that have tail v and tail
w. In the next section, we shall present some further examples and results which will
elucidate the relationship between forest-based networks and various other classes of
networks.

We now show that a forest-based network can be thought of as a phylogenetic forest
with some arcs added in between different components of the forest (this is analogous
to (Steel 2016, Proposition 10.16) for tree-based networks).

Lemma 1 Suppose N = (V , A) is a network on X, |X | ≥ 2. Then, N is forest-based
if and only if there is a set I ⊆ A such that F ′ = (V , A− I ) is a forest, every arc in I
has its end vertices in different trees of F ′, and for every non-leaf vertex v of N, there
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exists an arc with tail v that is not contained in I . In particular, if N is binary, then
N is forest-based if and only if there is a set I ⊆ A such that F ′ = (V , A − I ) is a
forest, every arc in I has its end vertices in different trees of F ′, and for every pair of
distinct arcs in I with a vertex v in common, v is a root of F ′ that is not a component
of F ′.
Proof Suppose that N is forest-based. Let I = A − A′ for F ′ = (V , A′) some
subdivision forest for N . Then, F ′ is clearly a forest. Suppose v is a non-leaf vertex
of N . Since F ′ is a subdivision forest for N , we have that L(F ′) = L(N ). Hence, v
is not a leaf of F ′. Thus, there is an arc with tail v that belongs to A′.

Conversely, suppose that I is as in the statement of the lemma so that F ′ = (V , A−
I ) is a forest. Then, clearly L(N ) ⊆ L(F ′). Now, suppose that v is a non-leaf vertex
of N . By assumption, there exists an arc with tail v that is not in I . In particular, v is
not a leaf of F ′, and so L(F ′) = L(N ). 
�

Note that, as we have seen in Fig. 2, a forest-based network might have more than
one base forest and different base forests for the network do not necessarily need to
have the same number of components. We conclude this section by showing that every
forest-based network must have a special type of base forest with |X | components. For
X with |X | ≥ 2, we define the trivial (phylogenetic) forest on X to be the phylogenetic
forest in which every component is a vertex (i.e., an element of X ).

Theorem 1 Suppose that N is a network on X. Then, the following are equivalent

(i) N is forest-based.
(ii) N is based on the trivial forest.
(iii) The trivial forest is embedded in N as a union of paths (some possibly of length

0), and there is no arc in N joining two non-consecutive vertices of the same path.

Proof Clearly, (ii) implies (i), and (ii) and (iii) are equivalent.
To show that (i) implies (iii), suppose (i) holds and that N is forest-based with base

forest F . Let F ′ be an embedding of F such that F ′ is not a union of paths. Then,
there exists a component C ′ of F ′ that is not a path. Hence, C ′ contains a vertex v

that has outdegree greater than one, and no ancestor of v in C ′ has outdegree greater
than one. By removing from C ′ all but one arc with tail v, we obtain an embedding
F ′′ of a new base forest, such that the number of vertices of outdegree two or more in
F ′′ is strictly lower than the number of vertices of outdegree two or more in F ′. We
can then repeat this process until we obtain an embedding of a forest F0 such that all
vertices in F0 have outdegree at most one. So F0 is a union of paths such that there is
no arc in N joining two non-consecutive vertices of the same path, and therefore an
embedding of the trivial forest in N . So (iii) holds. 
�
Corollary 1 Suppose that N is an m-network on X. If N is forest-based, then |X | ≥ m.
Moreover, if |X | > m, then N must contain a base forest that is not proper, and if
|X | = m, then N must be proper.

Proof Suppose that N is forest-based. Then, any base forest for N contains at least m
phylogenetic trees (since each root of N must belong to a different tree), and each of
these trees has at least one leaf. So if F is a base forest for N , then |X | ≥ |F | ≥ m.
The last statement now follows immediately by Theorem 1. 
�

123



119 Page 8 of 24 K. T. Huber et al.

4 Relationship of Forest-Based Networks with Other Classes of
Networks

Wenowpresent some results and examples to elucidate the relationship between forest-
based networks and some well-known classes of phylogenetic networks. Throughout
this section, we shall focus on binary networks, as binary phylogenetic networks are
commonly studied in the literature and, for some classes of phylogenetic networks,
the notion of not necessarily binary can be interpreted in different ways (for example,
see the remark at the end of this section concerning tree-based networks).

We begin by noting that there are networks that are neither tree-based nor forest-
based [see, e.g., Steel (2016), Figure 10.10c]. Thus, it is of interest to better understand
the relationship between binary forest-based networks, tree-based networks and other
classes of networks. More specifically, we shall consider so-called tree-child, tree-
sibling and reticulate-visible networks (see below for definitions) since, in case these
have a single root, they are well-understood classes that have interesting interrelation-
ships with tree-based networks (Steel 2016, Figure 10.12).

We begin by showing that binary forest-based phylogenetic networks are always
tree-based.

Proposition 1 Suppose that N is a binary phylogenetic network on X, |X | ≥ 2. If N
is forest-based, then it is tree-based.

Proof Assume that N is forest-based with base forest F , and consider the embedding
F ′ of F into N . For all trees T ′ of F ′ whose root ρT ′ is distinct from the root of N , we
can add to F ′ the incoming arc of ρT ′ in N (choosing one such arc if ρT ′ is a hybrid
vertex of N ). Clearly, the embedding F0 obtained this way is the embedding of a base
tree for N . In particular, this means that N is tree-based. 
�

We now consider tree-child networks. Generalizing the definition for tree-child
phylogenetic networks Cardona et al. (2008), for a network N on X , we define N to
be tree-child if all internal vertices of N have a child that is a tree vertex.

Note that any binary tree-child phylogenetic network is tree-based [see, e.g., Steel
(2016), Corollary 10.18]. We now show that a similar result holds for binary forest-
based networks.

Theorem 2 If N is a binary tree-child network on X, |X | ≥ 2, then it is forest-based.

Proof Let I ⊆ A be the set of arcs (u, v) in N such that v is a hybrid vertex of N . If
I = ∅ then N is a phylogenetic tree. Since a phylogenetic tree on X is based on the
trivial phylogenetic forest, the theorem follows. So assume that I �= ∅. Clearly, the
graph F ′ = (V , A − I ) is a forest. We remark first that a leaf of F ′ is either a leaf
of N , or a vertex of N whose children are all hybrid vertices. The network N being
tree-child, it contains no vertices of the latter type, so L(F ′) = L(N ). Moreover, all
arcs (u, v) of I are such that v is a root of F ′, so in particular u and v belong to distinct
trees of F ′. This means that F ′ is a subdivision forest for N , so N is forest-based. 
�

In particular, it follows from Theorem 2 that all binary tree-child phylogenetic
networks (including phylogenetic trees!) are forest-based.
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Fig. 3 A Venn-diagram for
different classes of binary
phylogenetic networks;
T = tree, TC = tree-child,
FB = forest-based,
T B = tree-based,
T S = tree-sibling, and
RV = reticulate-visible. See
Fig. 4 for the indicated networks
A–J

Fig. 4 The ten phylogenetic networks used in Fig. 3

We now consider two further classes of networks. A network is (1) tree-sibling if for
every v ∈ H(N ) there is a v′ ∈ V (N ) so that v′ is a tree vertex and v′ shares a parent
with v, and (2) reticulation-visible if for every v ∈ H(N ), there is a leaf x ∈ X such
that all directed paths from a root of N to x contain v. These definitions generalize the
ones that were originally given for phylogenetic networks [see Nakhleh (2004) and
Huson and Kloepper (2007), respectively]. Note that it follows immediately from the
definitions that tree-child networks are tree-sibling and reticulation-visible.

In Figs. 3 and 4, we present a diagram and some examples which illustrate the
interrelationship between forest-based phylogenetic networks and the other classes of
phylogenetic networks that we have considered [see also Steel (2016), Figure 10.12].
Note that the network F in Fig. 4 provides an example which shows that we do not
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Fig. 5 An arboreal network N
that is not forest-based. To see
this, note that one of (h1, h3) or
(h2, h3) must be a contact arc,
in which case either h1 or h2
becomes a leaf in the
corresponding forest

necessarily obtain a forest-based network by removing the root from a tree-based
phylogenetic network.

We remark in passing that in Jetten and van Iersel (2018) the authors generalized
the concept of a binary tree-based phylogenetic network to phylogenetic networks
that are not necessarily binary in two different ways. Both versions start by adding
an incoming arc to the root of a phylogenetic tree T and also subdivision vertices
to existing arcs in T or in the newly added incoming arc of the root. In one version
called “strictly tree-based,” arcs are added between subdivision vertices so that at most
one new arc is added to a subdivision vertex. In another version called “tree-based,”
arcs are added that join subdivision vertices or that start at a tree vertex and end in
a subdivision vertex. In either case, subdivision vertices that have not been used are
then suppressed and the root with outdegree one and its outgoing arc suppressed. As is
easy to see, a 1-rooted network can be forest-based but need not be strictly tree-based.
So Proposition 1 does not hold for this generalization of tree-based. Theorem 2 does,
however, also hold for not necessarily binary 1-rooted networks.

5 Arboreal Networks

An arboreal network is a networkwhose underlying (undirected) graph is a tree. These
networks are of interest as, even though an arboreal network with more than one root
has an underlying tree structure, it must still contain some reticulation vertices (since,
as can be easily seen, if N is arboreal, then |H(N )| = |R(N )| − 1).

In this and the next section, we shall consider properties of forest-based arboreal
networks. Note that arboreal networks are not necessarily forest-based (see e. g.Fig. 5).
In this section, we shall prove the following characterization for when an arboreal
network is forest-based.

Theorem 3 Suppose that N is an arboreal network with two or more leaves. Then,
N is forest-based if and only if for all hybrid vertices h of N , there is a sequence
of distinct vertices v1 = h, . . . , vk , k ≥ 1, such that any two consecutive vertices in
the sequence share a child that is a hybrid vertex, and vk has a child that is not a
hybrid vertex. Moreover, in case this holds, then N is proper forest-based if and only
if |R(N )| ≥ 2.

Proof First note that if N has a single root, then |H(N )| = |R(N )|− 1 = 0, and so N
is a phylogenetic tree. Thus, it is forest-based by Theorem 2. Moreover, in this case N
is clearly not proper forest-based. So, we shall assume from now on that |R(N )| ≥ 2.

Suppose first that N is forest-based, with subdivision forest F ′. Let h be a hybrid
vertex of N . We shall associate a sequence of vertices σ(h) to h and show that this
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sequence satisfies the properties stated in the theorem. If the child of h is not a hybrid
vertex, then σ(h) is the sequence that contains h as its sole vertex. Clearly, σ(h)

satisfies the properties stated in the theorem. So assume that the child of h is a hybrid
vertex. Let i ≥ 1 be such that for all 1 ≤ j ≤ i we have that the child of v j is a hybrid
vertex. Then, we define vi+1 from vi as follows. First, we pick a child wi of vi such
that (vi , wi ) is an arc of F ′. Note that such a child must exist since F ′ is a subdivision
forest for N . Then, we choose vi+1 to be a parent of wi that is not vi . Note that the
choice ofwi implies that the arc (vi+1, wi ) is not an arc of F ′. In particular, we cannot
have vi+1 = vi−1 by the choice of i . Since N is arboreal, it follows that a given vertex
of N cannot appear twice in σ(h). As the number of vertices in N is finite, it follows
that σ(h) must end in a vertex vk that has a tree vertex as a child.

Conversely, suppose that for all hybrid vertices h ∈ H(N ), there exists a sequence
σ(h) of vertices that satisfies the stated properties. We next construct a set I of arcs of
N = (V , A) such that each arc of I has a hybrid vertex of N as head, and the graph
F ′ = (V , A− I ) satisfies L(F ′) = L(N ). To do this, we start by constructing a graph
μ(N ) as follows: The vertices of μ(N ) are all vertices of N with at least one child
that is a hybrid vertex, and two vertices of μ(N ) are joined by an edge if they share a
child. We first remark that since N is arboreal, μ(N ) does not contain cycles. We also
remark that there is a trivial bijection χ between the edge set of μ(N ) and H(N ).

We next orient the edges of μ(N ) to obtain a directed graph μ+(N ) that has the
same vertex set as μ(N ). For this it suffices to consider a connected component G
of μ(N ). To this end, note that G is an unrooted tree and that a vertex of G with
overall degree one is either a hybrid vertex of N , or a vertex of N with at least one
child in N that is a tree vertex. We start by successively considering the vertices of
G corresponding to hybrid vertices of N under χ . Let h be such a vertex of N . Then,
by assumption, sequence σ(h) = (v1 = h, v2, . . . , vk), k ≥ 1, satisfies the properties
stated in the theorem. For i ∈ {1, . . . , k − 1} and all j ∈ {1, . . . , i − 1}, assume that
the edges {v j , v j+1} have already been oriented, and that the edge e = {vi , vi+1} has
not yet been assigned an orientation. Then, we direct e from vi to vi+1.

Once all vertices on σ(h) have been processed, we orient all edges of G whose
tail is a vertex v in σ(h) and which have not already been processed away from v.
Repeating this process for all vertices that are heads in the resulting graph and so on
results in an oriented graph μ+(N ). Note that this includes the case where G does
not contain any vertex corresponding to a hybrid vertex of N . By construction, our
assumptions on σ(h) imply that a vertex of G of outdegree 0 has a child in N that is
a tree vertex, as desired. Furthermore, χ induces a natural bijection χ+ between the
arc set of μ+(N ) and H(N ).

Armed withμ+(N ), we construct a set I of arcs of N as follows. First, we initialize
I with the empty set. Next, for each hybrid vertex h of N , we add the arc (v, h) ∈ A
to I , where v is the head of the arc in μ+(N ) corresponding to h under χ+.

Clearly, the graph F ′ = (V , A− I ) is a forest, since it contains exactly one incoming
arc for each hybrid vertex of N . To see that L(F ′) = L(N ), it suffices to remark that
each non-leaf vertex v of N has an outgoing arc in F ′. If v has at least one child that
is not a hybrid vertex, then the set equality holds. Otherwise, v is a vertex of μ(N )

whose indegree in μ+(N ) is at least one. By definition of I , for h a hybrid vertex
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Fig. 6 Two arboreal, 3-rooted
networks N and N ′. Note that
C (N ) = C (N ′), but that N and
N ′ are not equivalent. The bad
arcs are the arcs (h1, h2) and
(h′

2, h
′
1)

corresponding to an outgoing arc of v in μ+(N ) under χ+, the arc (v, h) is an arc of
F ′.

To conclude that F ′ is a subdivision forest for N , it suffices to remark that since N
is arboreal, there exists no arc in I whose both end vertices are in the same tree of F ′.
So N is forest-based. Moreover, we have that |R(N )| = |R(F ′)|. Thus, N is proper
forest-based. 
�

6 Cluster Systems from Arboreal, Forest-Based Networks

In phylogenetics, it is common to work with rooted phylogenetic trees in terms of
clusters that they induce as these can be sometimes easier to handle (e.g., for consensus
methods or for computing distances between phylogenetic trees—cf., e.g., [(Steel
(2016), Section 2.2.2]. We can also associate clusters to networks as follows. Suppose
N is a network on X and u ∈ V (N ). We call the set C(u) = CN (u) of leaves of N
below u the cluster induced by u. If |CN (u)| = 1 then we call CN (u) a trivial cluster
(on X). We refer to the set C (N ) of all clusters induced by the vertices in V (N ) as
the cluster system induced by N and, more generally, we also refer to any collection
of non-empty subsets or clusters in X by the same name.

Interestingly, in contrast to phylogenetic trees, there are non-equivalent arboreal
networks that have the same cluster systems (see e. g.Fig. 6). Even so, in this section
we shall show that if N and N ′ are distinct arboreal networks with C (N ) = C (N ′),
then N is forest-based if and only if N ′ is forest-based (Theorem 6). To do this,
we will first prove two equivalence results for arboreal networks (Theorems 4 and
5) that are analogous to the well-known equivalence theorem between phylogenetic
trees and hierarchies. This latter result states that, given a cluster system C , there is a
phylogenetic tree T on X such that C (T ) = C if and only if C is a hierarchy (on X)
(that is,C contains all trivial clusters and X and, for allC,C ′ ∈ C ,C∩C ′ ∈ {C,C ′,∅})
and that, if such a phylogenetic tree T exists, then up to equivalence, T is uniquely
determined by C (T ) [see e. g. Steel (2016), Proposition 2.1].

To state our first result, we require further definitions. We say that an arboreal
network N is uniquely determined by C (N ) if any arboreal network N ′ for which
C (N ) = C (N ′) holds is equivalent to N . Furthermore, for v ∈ R(N ), we denote
by T (v) the subtree of N spanned by all leaves below v, and we denote by Tv the
phylogenetic tree obtained from T (v) by suppressing all vertices u with indeg(u) =
1 = outdeg(u). Given a cluster system C on X , we denote by I (C ) the graph
whose vertex set is C and whose edge set is the set of pairs {C,C ′} ∈ (C

2

)
such that

C ∩ C ′ �= ∅, and by CM ⊆ C the collection of set-inclusion maximal elements of C .
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Theorem 4 LetC be a cluster system on X. Then, there exists an arboreal |CM |-rooted
network N such that C (N ) = C if and only if:

(P1) For all C ∈ CM, the set {C ′ ∈ C : C ′ ⊆ C} is a hierarchy that contains all
trivial clusters on C.

(P2) The graph I (CM ) is connected.
(P3) For any two C1,C2 ∈ CM, we have C1 ∩ C2 ∈ C ∪ {∅}.

To establish this result, we will use the following lemma:

Lemma 2 Let N be an arboreal network on X. Then, the set inclusion maximal ele-
ments of C (N ) are precisely the clusters C(r) with r ∈ R(N ).

Proof If |X | = 1 then the lemma trivially holds. So assume that |X | ≥ 2. Clearly,
all set-inclusion maximal elements C of C (N ) are such that C = C(r), for some
r ∈ R(N ). Assume for contradiction that there exists a root r ∈ R(N ) such that C(r)
is not set-inclusion maximal in C (N ). Then, there must exists v ∈ V (N ) such that
C(r) � C(v). Hence, for all x ∈ C(r), there exists a directed path from v to x . Since
v cannot be an ancestor of r (as r is a root of N ), it follows that v and r are vertices
in a cycle in the underlying undirected graph of N which contradicts the assumption
that N is arboreal. 
�
Proof of Theorem 4 Since the theorem clearly holds if |X | = 1, we may assume that
|X | ≥ 2. Put m = |CM |. Assume first that there exists an arboreal m-network N such
that C (N ) = C . By Lemma 2, we have CM = {C(r) | r ∈ R(N )}. Let C ∈ CM and
let r be the root of N such that C = C(r).

Then, since N is arboreal, Tr is a phylogenetic tree on some subset Xr of X . Hence,
C (Tr ) is a hierarchy on Xr . Since C (Tr ) = {C ′ ∈ C |C ′ ⊆ C}, it follows that
Property (P1) must hold.

To see that Property (P2) holds,Assumefirst that |CM | = 1. Since a graph consisting
of a single vertex is connected, the theorem holds. So assume that |CM | ≥ 2. Let r
and r ′ be two roots of N . Since N is connected, there exists an undirected path in
N between r and r ′. Let h1, . . . , hk , k ≥ 1, be the hybrid vertices of N successively
crossed by that path. For all 1 ≤ i ≤ k, all sets in CM corresponding to roots that
are ancestors of hi form a clique in I (CM ), since they all contain the cluster C(hi ).
Since r is an ancestor of h1 and r ′ an ancestor of hk , it follows that there exists a path
in I (CM ) joining C(r) and C(r ′). Hence, I (CM ) is connected and Property (P2)
holds.

To see that Property (P3) holds, let C1 and C2 be two elements of CM , and let r1
and r2 be the roots of N , so that C1 = C(r1) and C2 = C(r2). Consider the set H1,2
of all hybrid vertices that are below both r1 and r2. If H1,2 = ∅, then C1 ∩ C2 = ∅.
If |H1,2| ≥ 1, then since N is arboreal, there exists a directed path in N containing
all vertices in H1,2. In particular, there is a vertex h ∈ H1,2 that is an ancestor of all
vertices of H1,2 in N . This vertex h satisfies C(h) = C1 ∩ C2, and so C1 ∩ C2 ∈ C .
Thus, Property (P3) holds.

Conversely, assume that C is a cluster system on X that satisfies Properties (P1)–
(P3). Then, for allC ∈ CM , Property (P1) implies that the setCC = {C ′ ∈ C |C ′ ⊆ C}
is a hierarchy on C that contains all trivial clusters on C . Hence, by the remark
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above, there exists a unique (up to equivalence) phylogenetic tree T (C) on C such
that C (T (C)) = CC . Put F = {T (C) |C ∈ CM }, and note that F need not be a
phylogenetic forest on X since the leaf sets of the trees in F might not be pairwise
disjoint.

We next use the trees in F to recursively construct an arboreal m-rooted network
N such that C (N ) = C . Put F = {T1, . . . , Tm}. First, let N1 be some tree in F
which, without loss of generality, we may assume to be T1. Clearly, T is an arboreal
1-network. Let 1 ≤ i < m and assume that, for all 1 ≤ j ≤ i , we have already
constructed an arboreal j-network N j by processing (subject to potentially having to
relabel the trees in F) the tree Tj ∈ F . We now construct an arboreal (i + 1)-network
Ni+1 from Ni as follows.

First, we choose a tree T ∈ F − {T1, . . . , Ti } such that C (T ) ∩ C (Ni ) �= ∅,
Note that it is always possible to find such a tree T due to the connectivity of

I (CM ) that is guaranteed by Property (P2). Also note that we may assume without
loss of generality that T = Ti+1. Because of Property (P3), there exists exactly one
tree vertex ui in Ni and one vertex vi+1 in T such that CNi (ui ) = CT (vi+1).

If ui were a root of Ni then since, by Lemma 2,CNi (ui ) is amaximal cluster for Ni it
follows that CT (vi+1) is also a maximal cluster of Ni . The definition of F implies that
T (CNi (ui )) = T (CT (vi+1)) = T which is impossible as T has not been processed
yet. So ui cannot be a root of Ni . We then define Ni+1 as the (i + 1)-rooted directed
graph obtained from Ni by subdividing the incoming arc of ui in Ni by a vertex w,
removing all arcs and vertices below vi+1 in T , and identifying vi+1 with w.

By construction, Ni+1 is clearly a (i + 1)-network satisfying C (Ni+1) =⋃
1≤ j≤i+1 C (Tj ). Furthermore, since Ni is arboreal Ni+1 must also be arboreal. In

particular, this implies that N = Nm is a m-rooted network satisfying C (Nm) = C .
This concludes the proof. We now turn to the question of uniqueness. Note that the
construction of a network N from a cluster system C on X satisfying Properties (P1)–
(P3) as described in the proof of Theorem 4 requires choices to be made (e.g., the
order in which the trees in the forest are processed in case there is a tie). As a conse-
quence, the resulting network N satisfying C (N ) = C need not be unique. This issue
is illustrated in Fig. 6. However, defining an arc in a network to be bad if both of its
end vertices are contained in H(N ), we have the following result. To help establish it,
we denote byComp(M) the multiply rooted graph obtained from an arboreal network
M by collapsing all bad arcs of M .


�
Proposition 2 Let N be an arboreal network on X. Then, N is uniquely determined
by C (N ) if and only if N contains no bad arcs.

Proof Clearly, the results hold if |X | = 1. So assume |X | ≥ 2. Suppose first that N
is uniquely determined by C (N ). Assume for contradiction that N contains a bad arc
(u, v) with u, v ∈ V (N ). Let pu be a parent of u, and let pv be the parent of v distinct
from u. Because N is arboreal, there is no directed path either from pu to pv or from
pv to pu . Consider the network N ′ on X obtained from N by replacing the arcs (pu, u)

and (pv, v) with the arcs (pu, v) and (pv, u). Since CN (u) = CN (v) it follows that
C (N ′) = C (N ). However, N and N ′ are not equivalent. This is a contradiction since,
by assumption, N is uniquely determined by C (N ).
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Conversely, suppose that N does not contain a bad arc. Assume for contradiction
that there exists an arboreal network N ′ on X such that C (N ′) = C (N ) but N and
N ′ are not equivalent. Since a hybrid vertex in a network on X induces the same
cluster on X as its child, it follows that there must exist a bijection χ between the set
T (N ) of root and tree vertices of N and the set T (N ′) of root and tree vertices of N ′
such that CN (v) = CN ′(χ(v)), for all v ∈ T (N ). Note that N must be equivalent
to Comp(N ) because N does not contain a bad arc. Then, since N and N ′ are not
equivalent,Comp(N ) andComp(N ′) are also not equivalent.We distinguish the cases
that Comp(N ′) = N ′ and that Comp(N ′) �= N ′.

If Comp(N ′) is N ′, then there must be two tree vertices u and v in N and a vertex
h ∈ H(N ′) such that (u, v) is an arc in N and χ(u), h, χ(v) is a directed path in N ′.
So there must exist some w ∈ T (N ′) − {χ(u)} such that w is a parent of h. Note that
u �= χ−1(w). If u were strictly below χ−1(w) then CN (u) � CN (χ−1(w)). Hence,
CN (v) = CN ′(χ(v)) = CN ′(χ(u))∩CN ′(w) = CN (u)∩CN (χ−1(w)) = CN (u) and
so CN (v) = CN (u), a contradiction as (u, v) is an arc in N and so CN (v) �= CN (u).
Similar arguments also imply that χ−1(w) cannot be strictly below u. Since CN (v) =
CN ′(χ(v)) ⊆ CN ′(w) it follows that CN (v) = CN (u) ∩ CN (χ−1(w)) = ∅, which is
again a contradiction.

IfComp(N ′) is not N ′, then N ′ must contain a bad arc, say (h1, h2),h1, h2 ∈ H(N ).
Without loss of generality, we may assume that h1 and h2 are such that the child
w of h2 in N ′ is a tree vertex. Let r1 and r2 be two distinct roots of N ′ that are
ancestors of h1 and let r3 be a root of N ′ that is an ancestor of h2 but not of h1.
Then, CN ′(r1) ∩ CN ′(r2) = CN ′(r1) ∩ CN ′(r3) = CN ′(w). It follows that there
must exist some tree vertex w1 ∈ V (N ) such that CN (χ−1(r1)) ∩ CN (χ−1(r2)) =
CN (χ−1(r1)) ∩ CN (χ−1(r3)) = CN (w1). Consequently, the parent p of w1 and
the parent of p are both hybrid vertices of N . But then N contains a bad arc, a
contradiction. 
�

Interestingly, the existence of bad arcs in N can be determined by the relations
between the maximal elements of C (N ).

Lemma 3 Let N be an arboreal network on X and let C = C (N ). Then, N contains
a bad arc if and only if there exists C1,C2,C3 ∈ CM distinct such that C1 ∩ C2 =
C1 ∩ C3 = C2 ∩ C3 �= ∅.
Proof Suppose first that N has a bad arc (h1, h2). Let v1, v2 be the parents of h1, and
let r1, r2 be two roots of N that are ancestors of v1 and v2 respectively. Finally, let r3
be a root that is an ancestor of the parent v3 of h2 distinct from h1. Since N is arboreal,
r1, r2 and r3 are all distinct. By Lemma 2, we have that C1 = C(r1),C2 = C(r2) and
C3 = C(r3) all belong to CM . Moreover, using again the fact that N is arboreal, we
have C1 ∩C2 = C(h1) and C1 ∩C3 = C2 ∩C3 = C(h2). Clearly, C(hi ) �= ∅, for all
i = 1, 2, 3.Moreover, since h2 is the unique child of h1 in N , we haveC(h1) = C(h2).
Thus, C1 ∩ C2 = C1 ∩ C3 = C2 ∩ C3 �= ∅.

Conversely, suppose that there existsC1,C2,C3 ∈ CM distinct such thatC1∩C2 =
C1 ∩ C3 = C2 ∩ C3 �= ∅. By Lemma 2, there exists three roots r1, r2, r3 of N such
that C1 = C(r1), C2 = C(r2) and C3 = C(r3). Since N is arboreal, C1 ∩ C2 �= ∅
implies that there exists a hybrid vertex ha of N whose parents are descendants of
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r1 and r2, respectively. For the same reason, there exists a hybrid vertex hb of N
whose ancestors are descendants of r1 and r3, respectively, and a hybrid vertex hc
of N whose ancestors are descendants of r2 and r3, respectively. Note that we have
C(ha) = C1 ∩ C2, C(hb) = C1 ∩ C3 and C(hc) = C2 ∩ C3. Hence, by assumption,
C(ha) = C(hb) = C(hc). Clearly, ha = hb = hc cannot hold. Hence, there exists
two distinct hybrid vertices h1 and h2 of N such that C(h1) = C(h2). Since N is
arboreal, this implies that there exists a path in N from h1 to h2 (or from h2 to h1)
containing only hybrid vertices. In particular, all arcs on such a path are bad arcs. So,
N contains at least one bad arc. 
�

Armed with these results, we obtain the following:

Theorem 5 Let C be a cluster system on X that satisfies Properties (P1)–(P3) and
contains all trivial clusters on X. Then, there exists an arboreal network N on X
that satisfies C (N ) = C . Moreover, if such an aboral network N exists then, up to
equivalence, N is uniquely determined by C if and only there exists no C1,C2,C3 ∈
CM distinct such that C1 ∩C2 = C1 ∩C3 = C2 ∩C3. Moreover, if N and N ′ are two
arboreal networks on X, then C (N ) = C (N ′) if and only if N and N ′ are equivalent
after collapsing all bad arcs.

Proof Let N be an arboreal network on X satisfying C (N ) = C . Note that N exists
by Theorem 4. We have that N is uniquely determined by C if and only if N contains
no bad arc (Proposition 2). By Lemma 3, N contains no bad arc if and only if there
exists no C1,C2,C3 ∈ CM distinct such that C1 ∩C2 = C1 ∩C3 = C2 ∩C3. Hence,
the desired equivalence follows

To see the final part of the theorem, let N be an arboreal network satisfyingC (N ) =
C , and let r1, . . . , rm , m ≥ 1 denote the roots of N . Note that Comp(N ) is uniquely
determined by

⋃m
i=1 C (Ti ) where, for all 1 ≤ i ≤ m, Ti is the subtree of N rooted at

ri . In particular, Comp(N ) does not depend on the choice of N among the arboreal
networks N ′ with C = C (N ′). 
�

We now prove the main result of this section.

Theorem 6 Let N1 and N2 be two distinct arboreal networks on X with C (N1) =
C (N2). Then, N1 is forest-based if and only if N2 is forest-based.

Proof If |X | = 1, then the theorem clearly holds. So assume that |X | ≥ 2. Without
loss of generality, it suffices to show that if N1 = (V1, A1) is forest-based, then
N2 = (V2, A2) must be forest-based too. So assume that N1 is forest-based, with
subdivision forest F ′

1 = (V1, A′
1). Set I1 = A1 − A′

1.
Since, by assumption, C (N1) = C (N2) Theorem 5 implies that N1 and N2 are

equivalent after collapsing all bad arcs. Let N0 be the graph obtained from N1 in this
way. Note that N0 is not a network in our sense, as it need not be semi-binary. Clearly,
no arc in I1 has a hybrid vertex as tail, so all arcs in I1 are arcs of N0. Since N0 can
also be obtained by collapsing all bad arcs of N2, this induces a trivial bijection χ

between I1 and some set I2 of arcs of N2.
It remains to show that the forest F ′

2 = (V2, A2 − I2) is a subdivision forest for N2.
Clearly, we have that L(N2) ⊆ L(F ′

2) and, since N2 is arboreal, no arc of I2 joins two
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Fig. 7 (i) A 3-rooted forest-based network N withO(N ) = ∅ that is not proper forest-based. (ii) The graph
�(N )

vertices from the same tree in F ′
2. To see that L(F ′

2) ⊆ L(N2) holds too, assume for
contradiction that there is a vertex v2 ∈ L(F ′

2) − L(N2). Then, all arcs of N2 with tail
v2 are in I2. Note that I2 has been defined in such a way that no arc in I2 is collapsed
when transforming N2 into N0. Moreover, the property of having a vertex such that all
outgoing arcs belong to a given set is preserved when resolving vertices of a network.
Since χ is the trivial bijection between I1 and I2, it follows that, there must exist a
vertex v1 in N1 such that all arcs of N1 with tail v1 are in I1. This is a contradiction
since F ′

1 = (V1, A′
1) is a subdivision forest for N1 and so L(F ′

1) = L(N1). Hence, N2
is forest-based. 
�

7 Characterizing Proper Forest-Based Networks

In this section, we present two characterizations for proper forest-based networks
(Theorems 7 and 8). Various characterizations have been given for tree-based phy-
logenetic networks [see, e.g., Francis and Steel (2015) and Steel (2016), Theorem
10.17]. Some of these are given in terms of bipartite graphs, one of which from Jetten
and van Iersel (2018) we now recall. Define a vertex in a network N to be an omnian
(vertex) of N if all of the children of v are contained in H(N ), and letO(N ) denote the
set of omnians in N (see e. g. Figs. 7i and 8i). To a network N associate the bipartite
graph (U ∪ H , E), where U contains a vertex uv for each omnian v ∈ O(N ), H
contains a vertex uw for each hybrid vertex w ∈ H(N ), and E consists of the edges
{uv, uw} such that there is a some v ∈ O(N ) and some w ∈ H(N ) with (v,w) an
arc in N . Then, a binary phylogenetic network is tree-based if and only if (U ∪ H , E)

contains a matching M such that |M | = |U | [Jetten and van Iersel 2018, Theorem
2.4]. Interestingly, we found that characterizing forest-based networks is more subtle
although, as we shall now see, we can still characterize proper forest-based networks
using omnians.

To this end, we introduce some further definitions. Suppose that N is a network and
that v ∈ V (N ). We define the vertex γv ∈ RH(N ) = R(N )∪H(N ) to be the (unique)
ancestor of v such that no vertex in RH(N ) − {γv} is contained in the directed path
P from γv to v (e.g., in Fig. 7i.

for leaf 5, γ5 = ρ2, and for leaf 3, γ3 = h1). Note that γv = v if and only if
v ∈ RH(N ). The rationale behind the definition of γv is that, for any base forest F in
a proper forest-based network, the vertices v and γv must belong to the same tree in
F .
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Fig. 8 (i) A 2-rooted forest-based network N withO(N ) = {v, w}. (ii) The graph �(N ). (iii) and (iv) Two
distinct omni-extensions of�(N ), with a minimum number of possible edges. Since one of these extensions
has no cycle of length 3, it follows by Theorem 8 that N is proper forest-based

We next associate an undirected graph �(N ) to N (which may also contain loops).
The vertex set of �(N ) is the set RH(N ), and (not necessarily distinct) vertices
u, v ∈ RH(N ) form an edge {u, v} in �(N ) if there exists a hybrid vertex h ∈ H(N )

with parents u′ and v′ such that u = γu′ and v = γv′ (see, e.g., Fig. 7ii). In addition,
we call any (undirected) supergraph �′(N ) of �(N ) with the same vertex set as �(N )

an omni-extension of �(N ) if, for any omnian v ∈ O(N ), there exists a child h of v

such that {γu, h} is an edge of �′(N ) for u the second parent of h (see, e.g., Fig. 8iii).
Note that there exist networks N on X such that �(N ) has more than one omni-

extension (e.g., Fig. 8), and also that if N does not contain any omnians, then �(N ) is
an omni-extension of itself (this can also hold even if N contains omnians). We will
use the following useful additional observation concerning omni-extensions to obtain
our characterization of proper forest-based networks.

Lemma 4 Let N be a m-rooted network on X, somem ≥ 2. If N is proper forest-based
with proper base forest F, then �(N ) has an omni-extension that does not contain
loops, namely the graph �F (N ) having the same vertex set as �(N ), and with edge
set consisting of those {u, v}, u, v ∈ RH(N ), such that u and v belong to different
trees in F.

Proof We first establish that �(N ) is a subgraph of �F (N ). Suppose e = {u, v} with
u, v ∈ RH(N ) is an edge in �(N ). Then, there is a hybrid vertex in N with parents
u′ and v′ such that u = γu′ and γv′ = v. Since N is based on F , u′ and v′ must belong
to two different trees in F . Since F is a proper base forest for N , the vertices γu′ and
γv′ must belong to two different trees in F . Thus, u �= v. By definition of �F (N ), it
follows that e is an edge of �F (N ).

To show that �F (N ) is an omni-extension of �(N ), consider an omnian v of N .
As N is based on F , v must have at least one child h such that v and h belong to the
same tree Tv of F . Hence, for u the parent of h other than v, u does not belong to Tv .
Thus, γu and h belong to different trees in F because F is a proper base forest for N .
Hence, {γu, h} is an edge of �F (N ). 
�

We now present our characterization for proper forest-based networks. Recall that
if G is a undirected graph (possibly with loops), and Y is a non-empty set of colors,
then amap σ : V (G) → Y satisfying σ(u) �= σ(v) for all edges {u, v} ofG is a proper
vertex coloring of G. Moreover, if there exists such a coloring with |Y | = k ≥ 1, then
G is called k-colorable; if k = 2 then G is bipartite.
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Theorem 7 Let N be a m-rooted network on X, some m ≥ 2, and let {s1, . . . , sm} be
a set of m colors. Then, N is proper forest based if and only if there exists an omni-
extension �′(N ) of �(N ) and a proper vertex coloring σ : RH(N ) → {s1, . . . , sm}
of �′(N ) satisfying:

(C1) The restriction of σ to R(N ) is a bijection.
(C2) For all u ∈ R(N ) and all v ∈ H(N ) such that σ(u) = σ(v) there must exist a

directed path P in N from u to v such that σ(w) = σ(u) holds for all vertices
w ∈ H(N ) that lie on P.

Proof Assume first that N is proper forest-basedwith proper base forest F . Let�F (N )

be the omni-extension of �(N ) given in Lemma 4. Let σF : RH(N ) → R(N ) be the
map that assigns to every vertex v ∈ RH(N ) the unique root ρ of N such that the
directed path from ρ to v does not contain a contact arc of N . Note that such a path
may consist of a single vertex. Since N is based on F , it follows that σF is well-defined
and a proper vertex coloring of �F (N ). By definition, σF satisfies Properties (C1) and
(C2).

Conversely, let �′(N ) be an omni-extension of �(N ), let S = {s1, . . . , sm} denote
a set of m colors, and let σ : RH(N ) → S be a proper vertex coloring of �′(N ) that
satisfies Properties (C1) and (C2). For 1 ≤ i ≤ m, let Ti denote the subgraph of N
induced on the set V ′ of vertices v in N with σ(γv) = si (that is, the graph with vertex
set V ′ and arc set {(u, v) ∈ A(G) : u, v ∈ V ′}).

Suppose i ∈ {1, . . . ,m}. We claim that Ti is a subdivision of a phylogenetic tree
T ′
i on some subset of X . By symmetry, we may assume without loss of generality that

i = 1. Since N hasm roots and since, by Property (C1), no two roots of N are assigned
the same color under σ , it follows that T1 contains exactly one root of N . Moreover,
and as a direct consequence of Property (C2), we have that T1 is connected.

To see that T1 is a tree, it suffices to show that T1 does not contain a hybrid vertex
of N and both its parents. Assume for contradiction that T1 contains a hybrid vertex
h ∈ H(N ) and its parents u and v. By definition of �(N ), {γu, γv} is an edge of �(N ).
Since σ is a proper vertex coloring of �′(N ) it follows that σ(γu) �= σ(γv). This is a
contradiction since u, v ∈ V ′ and, therefore, σ(γu) = s1 = σ(γv). Thus, T1 must be
a tree, as required.

Since,�′(N ) is an omni-extension of�(N ), the definition ofσ ensures that L(T1) ⊆
X . It follows that T1 is a subdivision of a phylogenetic tree T ′

1 on a subset of X , as
claimed.

Now let F = {T1, . . . , Tm}. Then, by construction, we have L(Ti ) �= L(Tj ), for
all 1 ≤ i < j ≤ m. In view of our claim, every tree in F is a subdivision of a
phylogenetic tree in the forest F ′ = {T ′

1, . . . , T
′
m} and ⋃

T∈F ′ L(T ) = X . Moreover,
for all i ∈ {1, . . . ,m}, an arc (u, v) of N with u, v ∈ V (Ti ) is also an arc of Ti . It
follows that N is obtained from F by adding arcs joining vertices from distinct trees
of F . Thus, N is forest-based. That N is proper forest-based is a direct consequence
of the construction of F from N . 
�

Interestingly, Theorem 7 can be strengthened in case m = 2 as follows.

Theorem 8 Let N be a 2-rooted network on X. Then, N is proper forest-based if and
only if �(N ) has a bipartite omni-extension.
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Fig. 9 (i) A directed, acyclic graph N with two roots that is based on the forest indicated in solid edges. The
three contact arcs are again dashed. (ii) The graph�(N ). Note that N is not semi-binary as indegN (h2) = 3

Proof Suppose that N is proper forest-based 2-network with proper base forest F =
{T1, T2}. Then, byTheorem7, there exists an omni-extension�′(N ) that is 2-colorable.

Conversely, suppose that there exists an omni-extension �′(N ) of �(N ) that is 2-
colorable. Then, there exists a proper vertex coloring σ : RH(N ) → {s1, s2}, with
s1 �= s2. In view of Theorem 7, it suffices to show that σ satisfies Properties (C1) and
(C2).

Since N is connected, there must exist some hybrid vertex h ∈ H(N ) with parents
u′, v′ satisfying γu′ = ρ1 and γv′ = ρ2. So {ρ1, ρ2} is an edge in �(N ), and therefore
σ(ρ1) �= σ(ρ2) since σ is a proper vertex coloring of �′(N ). Thus, Property (C1)
holds.

To see that Property (C2) holds, consider the map ψ = ψσ : V (N ) → {ρ1, ρ2}
associated to σ given by putting, for all v ∈ V (N ), ψ(v) = σ(γv). Assume for
contradiction that (C2) does not hold. Then, there must exist some i ∈ {1, 2}, say
i = 1, and some vertex g ∈ H(N ) with σ(ρ1) = σ(g) such that every directed path
from ρ1 to g in N contains a vertex r ′ ∈ H(N ) for which σ(r ′) �= σ(ρ1). Let P
denote a directed path from ρ1 to g. Without loss of generality, we may assume that
r ′ ∈ H(N ) is a vertex on P such that, for every vertex w ∈ V (N ) on P strictly above
r ′, we have ψ(w) = σ(ρ1). Furthermore, we may assume without loss of generality
that g is such that, for every z ∈ V (N ) on P that is strictly above g but below r ′, we
have ψ(z) = σ(ρ2).

Let r ∈ V (N ) denote the parent of g on P and let g′ ∈ V (N ) denote the parent of
r ′ on P . Let q ∈ V (N ) denote the other parent of g. Then, by definition of g, it follows
that {γr , γq} must be an edge in �′(N ). Since, by assumption, �′(N ) does not contain
a cycle of length one (as otherwise �′(N ) would not be 2-colorable), it follows that
γr �= γq . Hence, σ(ρ2) = ψ(r) = σ(γr ) �= σ(γq), and so σ(γq) = σ(ρ1) because
σ is a 2-coloring. If γq is a vertex on P above g′, we obtain a contradiction, since
the definition of g implies that we have found a directed path P ′ from ρ1 to g in N
such that σ(w) = σ(ρ1) for all vertices w ∈ H(N ) contained in P ′. By the choice of
g, it follows that, γq does not lie on P . Similar arguments as in the case of g, r and
q imply that for one of the parents of γq in N , z say, we also have σ(γz) = σ(ρ1).
Repeating this argument, since V (N ) is finite, we eventually obtain a directed path
P∗ from ρ1 to g in N such that σ(ρ1) = σ(h) holds for every hybrid vertex h on P∗,
a contradiction. Thus, Property (C2) must hold. 
�

Note that as Fig. 9i shows, the inclusion of the semi-binary requirement in the
definition of a network is necessary for Theorem 8 to hold (since, extending relevant
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Fig. 10 (i) A universal forest-based network on X = {1, 2, 3}. (ii)–(v) Embeddings of the four phylogenetic
forests on X into the network in (i). In all cases, the dashed arcs represent contact arcs

definitions for semi-binary networks in the obvious way to general networks N in
which not every hybrid vertex must have indegree two, every omni-extension of �(N )

is a supergraph of�(N ), and�(N ) contains a cycle of length three). Also, the network
N depicted in Fig. 7i shows that Theorem 8 need not hold form-rooted networks with
m ≥ 3, since �(N ) is an omni-extension of itself becauseO(N ) = ∅ and �(N ) is not
bipartite.

8 Universal Forest-Based Networks

It has been shown in Hayamizu (2016) and Zhang (2016) that there exist tree-based,
binary phylogenetic networks N on X such every possible binary phylogenetic tree on
X is a base-tree for N . Such binary networks are called universal tree-based networks.
It is thus of interest to understand if there are binary universal forest-based networks
(i.e., binary networks N such that every phylogenetic forest on X is a base forest for
N ). In case |X | ≤ 3, there always exists such a network (see Fig. 10 for |X | = 3).

However, we now prove the following:

Theorem 9 For all X with |X | ≥ 4, there does not exist a universal forest-based
network on X.

To prove this theorem, we begin with a useful observation.

Lemma 5 Suppose that U is a universal forest-based network on X, |X | ≥ 4. Then,
for x, y ∈ X distinct, and all p, q ≥ 0, U does not contain the configuration pictured
in Fig. 11 where v0 = x and q0 = y.

Proof Assume for contradiction that for all x, y ∈ X distinct there exists some p, q ≥
0 such thatU contains the configuration in Fig. 11 where v0 = x and q0 = y. SinceU
is universal forest-based and |X | ≥ 4 there must exists a base forest F for U that has
a component T which has two leaves x, y ∈ X so that x and y are not contained in
two arcs in T that have a common tail. In particular, T has at least 3 leaves. Let F ′ be
some embedding of F in U and let T ′ be the corresponding embedding of T , which
exists as U is universal.

Put x = v0 and y = q0. Let w denote a tree vertex or a root of U and, for all
1 ≤ i ≤ p and all 1 ≤ j ≤ q, let vi and u j denote hybrid vertices of U such that vi
is the parent of vi−1 and u j is the parent of u j−1 and w is the parent of vp and of uq
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Fig. 11 Forbidden configuration
in a universal network. Note that
w can also be a root vertex

(see the configuration depicted in Fig. 11). Then, since all vi , 1 ≤ i ≤ p, and all u j ,
1 ≤ j ≤ q, are hybrid vertices of U it follows that x = v0, . . . , vp, y = u0, . . . , uq
must all be contained in T ′. But then at least one of (w, vp) and (w, uq)must be an arc
in T ′, otherwise w would be a leaf of some component in F ′ and so L(F) �= L(U ).
Since w is a tree vertex or a root of U this implies that w, vp, uq are vertices in T ′.
Thus, both arcs (w, vp) and (w, uq) must be arcs in T ′. But this implies that x and y
are contained in two arcs in T that have a common tail, a contradiction. 
�

Proof of Theorem 9 Assume for contradiction that there exists a universal forest-based
network U on X . Let w be a root or tree vertex of U such that all non-leaf vertices
beloww are contained in H(U ). Note that this configuration must exist since |X | ≥ 4,
and so there are at least two base forests on X . Let u and v be the children of w.
By Lemma 5, there exists a unique leaf x ∈ X of U such that x is a descendant of
w. In particular, x is a descendant of both u and v. Now let F be a forest with two
components, one of which is the tree Tx whose sole vertex is x and the other is the
phylogenetic tree T where T has leaf-set X − {x}. Let F ′ be an embedding of F inU
and T ′

x be the corresponding embedding of Tx intoU (which exists asU is universal).
Note that T ′

x is a directed path ending at x and that u cannot be below v (or vice versa)
since U is forest-based.

Since the directed paths from u to x and from v to x only contain hybrid vertices,
T ′
x must contain both of these paths. But this is a contradiction, since the union of

these paths must contain a hybrid vertex and both its parents.

�

9 Conclusion

In this paper, we have introduced the concept of forest-based networks and investigated
some of their fundamental properties. We conclude by indicating some possible future
directions of research for forest-based networks.

In Sect. 4, we studied the relationship between forest-based networks and other
classes of networks. It could be interesting to investigate these relationships in more
detail. For example, it is known that binary tree-child phylogenetic networks are pre-
cisely the tree-based networks such that every embedded phylogenetic tree is a base
tree Semple (2016)—does a similar result hold for forest-based networks? In addi-
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tion, in this paper we only considered properties of semi-binary networks. Which of
our definitions and results extend to non-binary networks (i.e., networks that are not
necessarily semi-binary)? Note that in Jetten and van Iersel (2018) properties of non-
binary tree-based networks were considered, which might provide some useful leads
to studying this question.

There are also several open algorithmic questions that could be investigated. For
example, there are efficient algorithms for deciding whether a given phylogenetic
network is tree-based or not, and if so to find a base-tree Francis and Steel (2015),
Jetten and van Iersel (2018). Is there an efficient algorithms for deciding whether a
given phylogenetic network is forest-based or not? In this regard, Theorem 7 might
be useful as it could provide a useful link with coloring problems. It is also known to
be NP-complete to decide whether or not a binary phylogenetic network is based on
a given binary phylogenetic tree—does a similar algorithmic complexity result hold
for forest-based networks?

Finally, it could be interesting to study related classes of networks. For example,
pedigrees Steel and Hein (2006) are closely related to multiply rooted networks, and
it is known that the two subgraphs of a pedigree induced by the bipartition of the
pedigree into its male and female individuals are both forests (Semple and Steel 2003,
Lemma 1.4.4). Are there interesting relationships between pedigrees and forest-based
networks? Also, we could consider a generalization of tree-based unrooted phylo-
genetic networks which were first considered in Francis et al. (2018). In particular,
an unrooted forest-based network N is an unrooted phylogenetic network on X (as
defined in Francis et al. (2018)) that contains a spanning forest with leaf-set X such
that no edge in N has both of its vertices in the same tree of the forest. What properties
do such networks enjoy?
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