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INTRODUCTION

Socioeconomic burden of rare genetic diseases is in-
creasing. There have been numerous attempts to treat 
genetic diseases with various methods. However, they 
were not overly successful till now. Recently, the tech-
nology of clustered regularly interspaced short palin-
dromic repeats (CRISPR) emerges as a promising tool to 
correct genetic abnormalities. This technique is being 
heralded for precision and accuracy in genetic editing. 
In this review, we recapitulate the history and recent 
progress made in the area of CRISPR technology. In the 
first part of the review, we summarize the history and 
action mechanism of CRISPR. In the second part of the 
review, we deliberate upon assorted clinical applications 
of CRISPR, from the standpoint of recent feasibility and 
future possibilities. In the third part, we discuss about 

future perspective of CRISPR technology. Ideal combi-
nation of CRISPR technology and induced pluripotent 
stem cell (iPSC) may bring new CRISPR-based clinical 
applications into clinics in near future.  

PART 1. HISTORY AND MECHANISMS OF ACTION

In light of the heterogeneity of disease manifestations 
among patients, the field of precision medicine has at-
tracted a great deal of interest, especially following a new 
initiative launched in 2015. The Precision Medicine Ini-
tiative (PMI), which involves investment in medical re-
search in the United States on a national scale, envisions 
treatment and prevention of diseases on an individual 
basis, according to differences in genes and environ-
mental and lifestyle factors [1,2]. The short-term goals of 
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the PMI include combating cancers, while the accrual of 
knowledge pertaining to health and diseases represents 
the long-term focus. The aggregation of personalized 
information pertaining to genomics, proteomics, and 
phenotypical parameters is expected not only to provide 
a better understanding of health and disease, but also 
to change our approach to risk assessment, diagnostic 
tests, and therapeutic interventions [3]. However, despite 
major progress in gene sequencing and profiling, based 
on advances in technologies such as high-throughput 
sequencing, precise gene editing remains challenging; 
this difficulty has hindered the translation of informa-
tion into clinical applications. As a consequence, the 
demand for targeted, straightforward, and affordable 
genetic engineering tools continues to grow.

Over the past several decades, scientists have rev-
olutionized genetic engineering techniques to allow 
modulation of their function. Since Watson and Crick 
elucidated the structure of the DNA double helix, many 
researchers have focused on changing the genome ac-
cording to particular scientific needs. To achieve this, a 
platform that can identify the target sequence of inter-
est, specifically cleave that region of the DNA, and alter 
the sequence at the cleavage site is required. Endoge-
nous site-specific DNA-protein complexes and natural 
DNA repair pathways from multiple species have been 
exploited to create various gene engineering toolkits. 
Among these, the most rapidly evolving technology in-
volves CRISPR and CRISPR-associated nuclease 9 (Cas9) 
(CRISPR-Cas9), which was selected as Science’s Break-
through of the Year in 2015.

CRISPR-Cas9 in the bacterial adaptive immune 
system
CRISPR is derived from the prokaryotic adaptive im-
mune system (Fig. 1) [4-36]. The distinctive clustered 
repeats were originally recognized in Escherichia coli by 
Ishino et al. [5] in 1987, and were later found to include 
unique barcode-like sequences of viral or plasmid origin, 
termed spacers (Fig. 2) [6-8]. In 2007, the hypothesized 
role of the repeats in adaptive defense was confirmed by 
experimental demonstration of spacer integration into 
the bacterial genome following phage challenge, as well 
as alteration of sensitivity to subsequent phage infec-
tion dependent upon the spacer content [4]. Subsequent 
studies revealed that CRISPR works in sync with the Cas 

gene, in the vicinity of the CRISPR locus, to cleave DNA 
or RNA sequences [9,10] targeted by a small guide RNA 
[11]. Based on these findings, multiple studies sought to 
identify the components of the CRISPR-Cas system and 
apply this knowledge to sequence-specific gene engi-
neering.

Mechanism underlying CRISPR-Cas9 gene editing
There are six putative CRISPR systems; the three main 
types (types I to III) were discovered first, with three 
additional types (types IV to VI) being identified more 
recently [37,38]. During the processes of immunity, ad-
aptation, expression, and interference, each type acts 
according to distinct mechanisms to ensure DNA rec-
ognition and cleavage [39].

Type I uses a large complex of Cas proteins, encoded by 
the Cas3 gene, which show separate helicase and DNase 
activities. Similarly, type III uses repeat-associated mys-
terious proteins, which constitute a large superfamily of 
Cas proteins. Types I, III, and IV are categorized as class 
1 based on their multi-subunit effector complexes. By 
contrast, class 2 systems (comprising types II, V, and VI) 
each have a single-subunit effector. Type II uses only a 
single protein (Cas9) for its nuclease activity; the same 
is true for types V and VI, but with Cas9-like proteins. 
Owing to their simplicity, class 2 systems have been ad-
opted for genome engineering [40-42], and only the bac-
terial type II CRISPR-Cas9 system has been utilized for 
RNA-guided engineering nucleases [43,44]. 

As noted above, type II CRISPR-Cas9 systems use a 
single endonuclease, Cas9. This enzyme acts in con-
cert with two guide RNAs: CRISPR RNA (crRNA) and 
trans-acting CRISPR RNA (tracrRNA) (Fig. 3) [45]. To sim-
plify the system and improve its utility, scientists em-
ployed a linker loop to engineer a dual tracrRNA:crRNA 
(called single guide RNA [sgRNA]), which participates 
in sequence-specific DNA cleavage with Cas9 [12]. Short 
2 to 5 bp conserved sequences known as proto-spacer 
adjacent motifs, located on the side opposite to that of 
the RNA-DNA hybridization, are required for Cas9-DNA 
recognition [6]. Once recognition occurs, double-strand-
ed DNA cleavage is performed by two Cas9 domains: the 
HNH domain, which cleaves the strand complementary 
to the crRNA-guide sequence, and the RuvC-like do-
main, which cleaves the noncomplementary strand [12]. 
Via this mechanism, programmed nucleases with cus-
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Figure 1. Timeline of technological progression of clustered regularly interspaced short palindromic repeats (CRISPR) and its 
application in model organisms. Key developments are shown and major breakthroughs are highlighted in white boxes. While 
the CRISPR story starts in 1987, the name was coined in 2000, and CRISPR’s role in adaptive immune system was demon-
strated in 2007. A key insight in 2012 that CRISPR-associated nuclease 9 (Cas9) is an RNA-guided DNA endonuclease led to an 
explosion of papers related to CRISPR gene-editing technology. From 2013, CRISPR was successfully applied in modification 
of genes in humans and other various organisms [4-36]. sgRNA, single guide RNA; P. falciparum, Plasmodium falciparum; X. trop-
icalis, Xenopus tropicalis; C. elegans, Caenorhabditis elegans; A. thaliana, Arabidopsis thaliana; D. melanogaster, Drosophila melanogaster; 
tracrRNA, trans-acting CRISPR RNA; crRNA, CRISPR RNA; E. coli, Escherichia coli. 
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tomized sgRNA can cleave genomic DNA at specific loci, 
enabling precise genome editing.

Cas9 protein can be easily re-targeted to new DNA 
sequences by changing a small portion of the sequence 
of the accompanying RNA guide, which base-pairs di-
rectly with target DNA [46]. Another potential advantage 
of Cas9 is its ability to introduce several double-strand 
breaks (DSBs) within the same genome (also referred to 
as multiplexing) via the expression of multiple guide 
RNAs [13,14].

Earlier approaches to gene editing
Prior to the advent of CRISPR technology, biologists 
used several generations of tools, all of which employed 
site-specific DNA DSBs for genome editing. To date, 
four types of DNA-binding nuclease have been devel-
oped: meganucleases, zinc finger nucleases (ZFNs), tran-
scription activator-like effector nucleases (TALENs), and 
the most recently identified nuclease, Cas9. 

Each of the previous tools had unique limitations. 
Meganucleases are like restriction enzymes but are pro-
grammed to target DNA sequences 14 to 40 bp in length. 
Owing to several shortcomings, including their lack 

of specificity in DNA recognition and the need to fuse 
the recognition and cleavage domains, meganucleases 
were used only briefly [47]. ZFNs and TALENs function 
according to similar principles, but differ in that their 
binding domains consist of three- and one-nucleo-
tide recognition modules, respectively. These enzymes 
have separate DNA-binding domains and nonspecific 
cleavage domains, namely, FokI endonucleases, making 
them more efficient than meganucleases [48,49]. 

However, the construction of ZFNs remains a chal-
lenge due to the need to account for context-dependent 
binding preferences [50], notwithstanding previous ef-
forts to circumvent this shortcoming. TALENs, despite 
having the advantage of one-to-one binding between 
the Transcription activator-like effector (TALE) unit and 
each base pair [51], require painstaking molecular biolo-
gy cloning methods to synthesize highly conserved and 
repetitive TALE structures [52]. Consequently, the com-
paratively facile protein engineering of CRISPR makes 
this approach much more affordable and practical com-
pared with precursor technologies (Table 1).

Figure 2. Simplified mechanism of microbial adaptive immune system using clustered regularly interspaced short palin-
dromic repeats (CRISPR). Upon entry of foreign DNA into bacteria, CRISPR-associated (Cas) enzymes acquire new spacers 
from the exogenous sequence and integrate this spacer unit into the leader end of CRISPR locus within bacterial genome. The 
transcript of CRISPR array is further processed, and when another corresponding invasion occurs this mature CRISPR RNA 
(crRNA) act as a guide by Cas complex to degrade matching DNA. The detailed mechanisms of each type of CRISPR systems 
vary slightly. (A) Acquisition. (B) crRNA biogenesis. (C) Interference.

A B C
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PART 2. APPLICATIONS OF CRISPR

Basic application of the CRISPR-Cas9 system
When DSBs are introduced, the lesion may be corrected 
by one of two major repair pathways: homology-direct-
ed repair (HDR) or nonhomologous end joining (NHEJ). 
HDR allows the exchange of genetic information be-
tween DNA molecules with similar sequences, where-
as NHEJ forms short insertions or deletions (indels) 
in the target sequence. NHEJ does not require a repair 
template, but the resultant indels can cause frameshift 
mutations that lead to the production of nonfunctional, 
incomplete proteins, or to micro-RNA degradation by 
nonsense-mediated decay. On the other hand, the HDR 
machinery can repair DNA using exogenous single- or 
double-stranded DNA templates with sequence sim-
ilarity to the DSB site. Thus, exploitation of HDR has 
allowed researchers to insert new genetic information at 
a target site, or to perform direct replacement of a mu-
tated gene [45,46].

Although this approach was revolutionary, the natural 
process of HDR is inefficient because it requires selec-
tion and screening to identify the one-in-a-million cell 
in which homologous recombination has exchanged the 
wild-type gene for the desired modified version. How-
ever, CRISPR-Cas9 technology allows the inducible for-
mation of DSBs, so that scientists can modify gene ex-
pression at the repair sitex; thus, opening a new avenue 
in genome editing [42].

Cell-based and in vivo animal studies
The applications of CRISPR-Cas9 have expanded into 
fields such as agricultural products, livestock, disease 

Figure 3. Overview of clustered regularly interspaced short 
palindromic repeats (CRISPR)-CRISPR-associated nucle-
ase 9 (Cas9) gene editing from target selection and guide 
design to validation. (A) Select gene of interest and design 
guide RNA. (B) Base pairing of sgRNA: genomic DNA. (C) 
Detection of PAM by Cas and cleavage of gene of interest by 
Cas domains HNH and RuvC. (D) Formation of nuclease-in-
duced double strand breaks (DSB). (E) Validation of gene 
editing. sgRNA, single guide RNA; crRNA, CRISPR RNA; 
tracrRNA, trans-acting CRISPR RNA; PAM, proto-spacer 
adjacent motif; NHEJ, nonhomologous end joining; HDR, 
homology-directed repair. 

Table 1. Comparison of different programmable nucleases

Variable ZFN TALEN CRISPR

DNA-binding moiety Protein Protein RNA

Target site size, bp 18–36 30–40 22

Nuclease FokI FokI Cas

Cytotoxicity Variable to high Low Low

Design availability More complex Complex Simple

Ease of multiplexing Low Low High

ZFN, zinc f inger nuclease; TALEN, transcription activa-
tor-like effector nuclease; CRISPR, clustered regularly inter-
spaced short palindromic repeats.
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B
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modeling, and therapeutics. In this section, we focus on 
the therapeutic aspects of gene-based diseases, especial-
ly monogenic disorders (Fig. 4).

In gene therapy, genes in diseased cells and tissues 
can be corrected by two approaches: ex vivo and in vivo 
editing [46]. In ex vivo therapy, the target cell population 
is removed from the body, modified using a program-
mable nuclease, and then transplanted back into the 
original host; thereby, preventing complications due 
to immunological rejection. By contrast, in vivo edit-
ing therapy involves direct transfer of genome-editing 
reagents, such as a programmable nuclease and donor 
templates, into the human body [53]. Each approach has 
advantages and disadvantages, and they are implement-
ed differently to treat particular disorders. There has 
been examples of gene-editing techniques applied in 
disease cell lines (Table 2) [54-77] and in disease mouse 
models (Table 3) [60,63-66,78-88]. Furthermore, scien-
tists have reported series of therapeutic applications 
with genome editing using stem cell (Table 4) [89-111].

Inactivation or correction of deleterious mutations

Duchenne muscular dystrophy
Duchenne muscular dystrophy (DMD) is the most prev-
alent fatal genetic disease passed on through the X chro-
mosome. The gene dystrophin consists of 79 exons, and 
several types of mutation in exon sequences lead to DMD. 
Currently, there is no effective treatment for DMD, but 
genome editing has the potential to restore expression 
of a modified dystrophin gene [53].

Efforts aimed at correction of the dystrophin gene in 
immortalized patient myoblasts with ZFNs and TALENs 
were initiated in 2013 [54,55]. Because 13% of DMD pa-
tients have a mutation in exon 51, the introduction of 
indels into, or complete excision of, exon 51 can restore 
dystrophin expression [56]. In one study, permanent re-
moval of exons 45 to 55 by multiplexed Cas9 was thera-
peutically applicable in 62% of patients [57].

Mouse models can provide data that is relevant to 
in vivo human therapy. For example, the Mdx model 
mouse harbors a mutation in exon 23 of the dystrophin 
gene. Local and systemic delivery of gene correction to 
Mdx mice using adeno-associated virus (AAV) vector and 
the CRISPR-Cas9 system resulted in 2% to 100% correc-
tion, and the therapeutic benefits were predicted to be 

15% to 20% [78-81].
Genome editing has also been effective in DMD gene 

therapy in patients lacking exon 44; in this case, the 
correction was performed ex vivo in induced pluripo-
tent stem cells (iPSCs). Three correction strategies were 
tested: skipping of exon 45, introduction of small indels 
resulting in a frameshift in exon 45, and knock-in of the 
missing exon 44 to restore the full protein coding re-
gion; the last of these strategies was the most effective. 
The corrected iPSCs successfully differentiated into 
muscles and expressed functional protein [89]. 

Insertion of corrective or protective mutation

Hemophilia
Hemophilia is caused by different genetic mutations—
in coagulation factor VIII (F8) for hemophilia A, and in 
coagulation factor XI (F9) for hemophilia B. Gene ther-
apy is an option for treating hemophilia because cor-
rection of the defective gene results in permanent ex-
pression of functional protein, and even 1% wild-type 
expression of coagulation factor VIII or XI is sufficient 
to confer a therapeutic effect [112,113].

The first successful in vivo gene targeting of hemophil-
ia was achieved in a hemophilia B neonate mouse [82]. 
Using a ZFN pair to target the defective human F9 (hF9) 
gene, and AAV as the delivery vector, donor cDNA was 
inserted into the mouse genome. A similar approach in 
adult hF9 mice resulted in stable production of human 
factor IX [83].

Hemophilia A, which is more prevalent than hemo-
philia B, involves a more complex type of mutation, 
making it harder to edit the gene. However, chromo-
somal inversion at the F8 gene is a common cause of 
hemophilia, and TALENs were previously shown to be 
able to correct this rearrangement [90]. Thus, the CRIS-
PR-Cas9 system was used to target each side of the ~600 
kb inversion and correct the mutation in iPSCs derived 
from hemophilia A patients [91].

Sickle-cell anemia and β-thalassemia
Sickle-cell anemia and β-thalassemia are both caused by 
mutations in the HBB gene, resulting in an inappropri-
ate level of the β-globin chain of hemoglobin. Editing 
the β-globin locus by targeted nucleases represents a 
new strategy for permanently curing hemoglobinopa-
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Figure 4. Overview of gene editing and its applications. Genetic defects can be corrected via gene editing with zinc finger 
nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and the clustered regularly interspaced short pal-
indromic repeats (CRISPR) system. When double-strand breaks occur, the lesion can be corrected by either nonhomologous 
end joining (NHEJ) or homology-directed repair (HDR) pathways. Arising from this technique, gene editing can be applied in 
various fields of research and biotechnology. sgRNA, single guide RNA; PAM, proto-spacer adjacent motif; DMD, Duchenne 
muscular dystrophy; HIV, human immunodeficiency virus; HBV, hepatitis B virus; CFTR, cystic fibrosis transmembrane con-
ductance regulator.
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thies. TALENs programmed to target the β-globin locus 
were used for HDR-mediated full-length cDNA knock-
in in K562 cells [58], and ZFNs were used to correct a 
sickle-cell anemia-associated point mutation in CD34+ 
hematopoietic stem progenitor cells [92]. These hemo-
globinopathies are particularly advantageous for gene 
therapy because extracted patient iPSCs can be differen-
tiated into hematopoietic stem cells, which can in turn 
be inserted back into patients by autologous transplan-
tation. This strategy has already been implemented with 
all ZFNs, TALENs, and CRISPR-Cas9 in both sickle-cell 
anemia and β-thalassemia patients [93-97].

Disruption of viral DNA

Human immunodeficiency virus
The most advanced gene-editing strategy is the ex vivo 
modification of T cells to knock out the cinnamoyl-CoA 
reductase 5 (CCR5) gene, resulting in resistance to hu-
man immunodeficiency virus (HIV) infection. This is 
one of the few cases in which a treatment that exploits 
the gene-editing machinery has been used in clinical 
trials (Table 5). This idea was clinically validated when 
an HIV-infected patient received a stem cell transplant 
from a donor with a homozygous deletion in the CCR5 
allele, resulting in undetectable levels of HIV and resto-
ration of normal CD4+ T cell counts [114]. 

One study demonstrated the safety of infusion of 
ZFN-modified autologous CD4+ T cells bearing a de-
letion of the CCR5 gene into HIV-positive human pa-
tients [115]. Building on the results obtained with ZFNs, 
multiple efforts were made using similar gene-editing 
strategies to knock out CCR5 using TALENs or CRIS-
PR-Cas9. Wild-type iPSCs were seamlessly modified by 
NHEJ-mediated deletion of the CCR5 gene, at an average 
rate of 14% with TALENs and 33% with CRISPR [98]. To 
increase resistance to HIV infection, other genes were 
targeted in addition to CCR5, including C-X-C chemo-
kine receptor type 4 (CXCR4), which encodes a corecep-
tor, and PC4 and SFRS1 interacting protein 1 (PSIP1), 
which encodes the lens epithelium-derived growth fac-
tor (LEDGF)/p75 protein required for HIV integration 
[99,116,117]. 

To reduce adverse off-target effects, several studies 
have attempted to eliminate the integrated HIV-1 ge-
nome. In one study, for example, the HIV-1 long ter-

minal repeat (LTR) U3 region was efficiently targeted by 
the CRISPR-Cas9 system, resulting in inactivation of 
viral gene expression and replication in CHME5, HeLa, 
TZM-b1, and U1 cells [59].

Beyond HIV, programmable gene-editing nucleas-
es have also been applied to other viral pathogens. For 
example, in Huh7, HepG2, HepAD38, and HepaRG cells 
transfected with a hepatitis B virus (HBV) expression 
vector, targeted editing of multiple genes was used to re-
duce the production of HBV core and surface proteins. 
HBV-expressing templates were disrupted by CRIS-
PR-Cas9 both in vitro and in vivo [60-66]. Likewise, the 
E6 and E7 genes of human papillomavirus were also tar-
geted by CRISPR-Cas9 [67-70]. 

There are increasing numbers of ongoing and com-
pleted clinical trials adopting gene-editing technology 
(Table 5).

PART 3. FUTURE PERSPECTIVES

Cancer research
All cancers harbor multiple mutations that cause cells to 
grow progressively and express malignant phenotypes. 
These mutations can be categorized into four types: on-
cogenes, tumor suppressors, epigenetic factors and con-
trol loci, and chemoresistance genes. The CRISPR-Cas9 
system represents a powerful, highly specific and adapt-
able tool for correcting such mutations and treating the 
cancers that contain them [118]. While oncogenic chang-
es occur in many cancers and play important roles in 
malignant cell proliferation, oncogenes such as the re-
ceptor tyrosine kinase Erb2 can be targeted directly by 
CRISPR-Cas9 [119]. 

From another perspective, it is possible to utilize CRIS-
PR-Cas9 to introduce cancer-causing mutations in hu-
man cell lines and animal models. In this context, the 
following cell lines have been constructed to date: lung 
cancer [120], acute myeloid leukemia [121], liver cancer 
[122], and pancreatic cancer [123]. 

Animal models
CRISPR-Cas9 technology can be applied to animal mod-
els for the study of both cancers and other inherited dis-
eases. Heritable gene modification can be achieved by 
injecting CRISPR-Cas9, targeting one or multiple alleles, 
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directly into fertilized zygotes [42]. Among transgenic 
animal models, mice are the most widely used in exper-
iments because of the relatively short time required to 
generate mutants; however, non-human primate mod-
els have been created successfully by multiplex gene tar-
geting, potentially generating superior systems for the 
study of complex human diseases, for example, neuro-
degenerative disorders [124]. Nonetheless, mouse mod-
els remain the most cost-effective. Moreover, mice are 
amenable to large-scale in vivo mutagenesis studies, es-
pecially when highly specific targeted editing can avoid 
the confounding effects of off-target mutagenesis [125].

Synthetic biology
The applications of the CRISPR-Cas9 system to synthet-

ic biology include all concepts related to synthetic gene 
circuits in living cells. Because synthetic gene circuits 
consist of sensors, processors, and actuators, synthetic 
biology has the potential not only to advance basic re-
search, but also to enable practical applications in med-
icine, biofuel production, and synthesis of commodity 
chemicals [126]. The most practical applications of the 
CRISPR-Cas9 system have been in plants, especially 
crops such as rice, wheat, sorghum, and tobacco. For ex-
ample, CRISPR-Cas9 was used to target and knock out 
the mildew-resistance locus (MLO) genes, which encode 
proteins that repress the defense against powdery mil-
dew disease in hexaploid bread wheat [127].

Table 3. Examples of therapeutic applications of genome editing in mouse model

Disease Target gene Strategy Delivery Model Nuclease Reference

Hemophilia
 B

hF9 HDR-mediated 
 addition of
 corrective cDNA

AAV Humanized
 neonatal,
 adult mice

ZFN Li et al. (2011) [82] 
Anguela et al. (2013) [83]

Hemophilia 
 A, B

mAlb HDR-mediated 
 insertion of F8 and
 F9 cDNA, respectively

AAV Humanized
 adult mice

Sharma et al. (2015) [84]

Hereditary 
 tyrosinemia I

Fah HDR of point
 mutation

Hydrodynamic 
 injection

Adult mouse
 model

CRISPR Yin et al. (2014) [85]

Cataract Crygc HDR-mediated
 correction

Plasmid Zygote, mouse
 SSC

CRISPR Wu et al. (2015) [81]

DMD Exon 23 of 
dmd gene 

HDR using a ssODN Cas9, sgRNA Zygote CRISPR Long et al. (2014) [86]

NHEJ-mediated
 disruption of exon 23

AAV Adult or
 neonatal

CRISPR Xu et al. (2016) [87], 
Nelson et al. (2016) [78] 
Tabebordbar et al. (2016) [79]
Long et al. (2016) [80]

NHEJ-mediated
 disruption of exon 23

Plasmid Adult CRISPR Xu et al. (2016) [87]

HBV Multiple NHEJ-mediated
 disruption of
 multiple genes

Hydrodynamic
 injection,
 Plasmid

Adult CRISPR Lin et al. (2014) [60]
Zhen et al. (2015) [64] 
Dong et al. (2015) [65] 
Liu et al. (2015) [66] 
Ramanan et al. (2015) [63]

Cardiovascular
 disease

Pcsk9 NHEJ-mediated
 disruption of PCSK9

Cas9, sgRNA Adult CRISPR Ding et al. (2014) [88]

hF9, human F9; HDR, homology-directed repair; AAV, adeno-associated virus; ZFN, zinc finger nuclease; CRISPR, clustered 
regularly interspaced short palindromic repeats; SSC, spermatogonial stem cell; DMD, Duchenne muscular dystrophy; 
ssODN, single-stranded oligonucleotide; Cas9, CRISPR associated protein 9; sgRNA, single guide RNA; NHEJ, nonhomolo-
gous end joining; HBV, hepatitis B virus. 
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sgRNA library
CRISPR-Cas9 can also be applied to the systematic anal-
ysis of gene functions in human cells. A lentiviral sgRNA 
library was developed against genes identified by func-
tional screening and high-throughput sequencing anal-
ysis. This powerful loss-of-function library screening is 
expected to facilitate discovery of genes that participate 
in various biological processes, including drug target-
ing, toxicity, and expression of certain phenotypes [128]. 

Induced pluripotent stem cells
iPSCs, which are very similar to embryonic stem cells, 
are pluripotent cells with a high self-renewal rate that 
can differentiate into almost all cell types; however, 
their utilization is associated with significantly less eth-
ical controversy than that of their embryonic counter-
parts. Recent advances in stem cell technology are likely 
to provide great benefits to the clinical use of iPSCs in 
clinical applications [129].

As mentioned above, iPSCs have a major advantage 
for personalized medicine because they can be derived 
from the patients themselves, and can therefore avoid 
immune rejection when transplanted. Ex vivo therapy 
includes correction of patient-derived iPSCs through 
gene editing, as well as differentiation into nonrenew-
able cell types such as neurons and cardiomyocytes (Fig. 
5) [100].

In addition to this type of precision therapy, human 

iPSC lines with genotypes characteristic of specific dis-
eases could be used to understand pathogenic mecha-
nisms. Disease modeling and drug efficiency/toxicity 
testing with iPSCs not only increase the accuracy of dis-
ease simulation, but are also less expensive than gener-
ating animal models. However, care must be taken when 
interpreting the results of phenotypic comparisons be-
tween patient iPSC-derived cells and healthy control 
cells. Specifically, the results are vulnerable to con-
founding variables that might influence the phenotypes 
of interest, including epigenetic status and unmatched 
age, gender, and ethnicity. In this respect, gene editing 
is the only way to distinguish changes that are specifi-
cally relevant to a given disease [130].

The CRISPR-Cas9 system enables simultaneous knock-
out of multiple genes, as well as knock-in of specific alleles 
in iPSCs, distinguishing it from earlier gene-editing tech-
nologies such as ZFNs and TALENs. An isogenic human 
iPSC cell line precisely corrected by the CRISPR-Cas9 sys-
tem was recently constructed, despite the handling diffi-
culties associated with gene editing of human stem cells 
[131]. In the future, the use of CRISPR-Cas9 with iPSCs 
will lead to novel combinations of gene and cell thera-
pies [132].

Areas of technical improvement: DSB repair, nucle-
ases, delivery
Prior to the clinical application of CRISPR-Cas9 in 

Table 5. Ongoing and completed clinical trials adopting gene-editing technology

Nuclease Disease Status Phase Title

ZFN HIV Completed I Autologous T cells genetically modified at the CCR5 gene by ZFN
 SB-728 for HIV

Dose escalation study of autologous T cells genetically modified
 at the CCR5 gene by ZFN in HIV-infected patients

I/II Study of autologous T cells genetically modified at the CCR5 gene
 by ZFN in HIV-infected subjects

Active I/II Repeat doses of SB-728mR-T after cyclophosphamide
 conditioning in HIV-infected subjects on HAART

Recruiting I Safety study of ZFN CCR5-modified hematopoietic stem/
 progenitor cells in HIV-1 infected patients

I/II Dose escalation study of cyclophosphamide in HIV-infected
 subjects on HAART receiving SB-722-T

Hemophilia B Not yet recruiting I Ascending dose study of genome editing using the ZFP
 therapeutic SB-FIX in subjects with severe hemophilia B

ZFN, zinc finger nuclease; HIV, human immunodeficiency virus; CCR5, cinnamoyl-CoA reductase 5.
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human patients, the safety and efficacy of the system 
must be validated. The specificity and efficiency of ge-
nome-editing tools can be improved by targeting DSB 
repair pathways, modifying nucleases, and changing the 
mode of delivery. We briefly discuss each topic below.

DSB repair
As noted previously, DNA editing rates are currently 
determined by the two major endogenous DSB repair 
pathways. HDR is more suitable for gene correction or 
gene insertion than NHEJ, which creates indels that 
generally induce a loss of function. NHEJ is more effi-

cient because it is active throughout the cell cycle and 
does not require a repair template; by contrast, the rate 
of HDR is inherently low. In addition, some HDR com-
ponents are expressed only during the S/G2 phase, lim-
iting the use of HDR-based editing approaches to divid-
ing cells and preventing their use in post-mitotic cells, 
such as neurons and cardiac myocytes. For this reason, 
controlling the efficiency of HDR has become a major 
focus of efforts aimed at increasing the effectiveness of 
gene correction [46].

One strategy for improving the efficiency of HDR is 
the suppression of NHEJ during DSB repair. Suppres-

Figure 5. Generation of edited induced pluripotent stem cells (iPSCs) and clinical applications thereof. Somatic cells isolated 
from a normal person or patient are reprogrammed into iPSCs. Normal sequence can be disrupted or genetic defects can be 
corrected via gene editing. iPSCs with edited modifications are differentiated into various target cells for disease modeling, 
which can provide a useful channel for precision therapy and drug screening. ZFN, zinc finger nuclease; TALEN, transcription 
activator-like effector nuclease; CRISPR, clustered regularly interspaced short palindromic repeats. 
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sion of a key enzyme in the NHEJ pathway increases 
the efficiency of HDR-mediated genome editing up to 
19-fold [133,134]. Another strategy involves the induction 
of HDR-like corrections in post-mitotic cells via a nov-
el non-HDR-based pathway: microhomology-mediated 
end joining [135,136]. Using microhomologous sequences 
(5 to 25 bp), the so-called PITCH (Precise Integration into 
Target Chromosome) system can produce precise gene 
knock-ins. Meanwhile, the lower success rate of CRIS-
PR-Cas9 relative to TALEN could be overcome by the 
generation of sticky, instead of blunt, ends [137]. 

Nucleases
From a clinical standpoint, highly specific gene engi-
neering technology is essential because specificity is 
correlated with safety. Unexpected off-target mutations 
may cause cells to become carcinogenic or functional-
ly impotent. Because genetic modifications are perma-
nent, multiple ongoing research efforts are devoted to 
the reduction of off-target effects.

One strategy for achieving this goal is to improve the 
targeting specificity of Cas9. Careful design of sgRNA, 
including avoidance of poly-G/poly-C-rich targets, as 
well as tight control of the amount and duration of Cas9 
and sgRNA expression, are both important for high 
specificity [138]. The use of modified Cas9 with two sep-
arate sgRNAs that each generate a single-strand nick on 
opposing DNA strands can potentially reduce off-tar-
get activity by 50- to 1,500-fold in cell lines [139,140]. 
Additionally, truncation of the guide RNA, with a tar-
get-complementary region shorter than 20 nucleotides 
in length, can decrease off-target activity by 5,000-fold 
or more [141]. Moreover, a fusion protein of catalytical-
ly inactive Cas9 and FokI nuclease (fCas9) can recognize 
the target DNA site with 140-fold greater specificity than 
the wild-type protein in human cells [142,143]. 

Delivery
The delivery of gene-editing tools to target cells is an-
other major challenge with respect to efficacy and spec-
ificity. Both viral and nonviral delivery methods are cur-
rently being evaluated for the introduction of Cas9 into 
target cells ex vivo or in vivo. Depending on the mode of 
delivery and the duration of nuclease expression, both 
off-target activities and immune reactions are possible.

Viral vectors, such as AAV or lentivirus, represent the 

most common delivery systems, and these vectors have 
recently been approved for clinical use. In particular, 
AAV, which was recently clinically approved, is an attrac-
tive candidate for in vivo use because of its low degree 
of immune stimulation, well-characterized serotypes, 
and ability to target diverse tissues such as eye, brain 
liver, and muscle [144]. However, one challenge of us-
ing AAV is its relatively small packaging capacity (4.7 kb). 
Consequently, efforts are underway to deliver the Cas9 
and sgRNA coding sequences using two separate AAV 
vectors. Alternatively, these size constraints can be side-
stepped by creating a shorter Cas9 ortholog. In addition 
to size incompatibility, viral vectors have the drawback 
of possible constitutive nuclease expression, resulting 
in cell toxicity and genomic instability [145].

A variety of nonviral methods exist for both in vivo and 
ex vivo delivery of CRISPR-Cas9 in the form of mRNA or 
proteins [146]; these include electroporation, hydrody-
namic delivery, and the use of liposomes [147]. Because 
mRNA and proteins introduced by these methods are 
present in cells only transiently, nonviral delivery sys-
tems are expected to decrease the frequency of off-target 
effects and cell toxicity relative to viral systems. 

Ethics
As promising as CRISPR sounds, a variety of concerns 
have been expressed about this technique. In early 2015, 
a Chinese research group used CRISPR-Cas9 to perform 
editing on nonviable human trinuclear zygotes, stimu-
lating a vigorous discussion of the ethical implications. 
The International Summit on Human Gene Editing in 
Washington was convened in late 2015, providing a fo-
rum in which scientists could achieve a consensus on 
human germline engineering.

The CRISPR-Cas9 toolbox has many advantages and 
it can be used to correct many defects that occur sys-
temically or from birth, including cystic fibrosis and 
Huntington’s disease. However, it remains unclear how 
we should set boundaries regarding which human traits 
are appropriate for editing. In addition, few would ar-
gue that a number of safety and efficacy concerns about 
CRISPR-Cas9 remain to be resolved. Especially in light 
of the possibility that undesirable parties could use this 
technology for eugenics, it would be irresponsible to al-
low modification of human embryos. In this respect, we 
must confront the need for robust regulation, even as 
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arguments rage between the advocates of caution and 
progress.

CONCLUSIONS

Recent advances in genome editing with CRISPR is very 
rapid from basic research to clinical therapy. Develop-
ment of CRISPR may widen the opportunity of iPSC 
application in real clinic. To deeply understand cut-
ting-edge CRISPR technology can promote gene-edit-
ing applications in fields of cancer research, synthetic 
biology, and gene therapy using induced pluripotent 
stem cells. 
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