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Irregular spiking of pyramidal neurons
organizes as scale-invariant neuronal
avalanches in the awake state
Timothy Bellay†, Andreas Klaus†, Saurav Seshadri, Dietmar Plenz*

Section on Critical Brain Dynamics, National Institute of Mental Health, Bethesda,
United States

Abstract Spontaneous fluctuations in neuronal activity emerge at many spatial and temporal

scales in cortex. Population measures found these fluctuations to organize as scale-invariant neuronal

avalanches, suggesting cortical dynamics to be critical. Macroscopic dynamics, though, depend on

physiological states and are ambiguous as to their cellular composition, spatiotemporal origin, and

contributions from synaptic input or action potential (AP) output. Here, we study spontaneous firing

in pyramidal neurons (PNs) from rat superficial cortical layers in vivo and in vitro using 2-photon

imaging. As the animal transitions from the anesthetized to awake state, spontaneous single neuron

firing increases in irregularity and assembles into scale-invariant avalanches at the group level.

In vitro spike avalanches emerged naturally yet required balanced excitation and inhibition.

This demonstrates that neuronal avalanches are linked to the global physiological state of

wakefulness and that cortical resting activity organizes as avalanches from firing of local PN groups

to global population activity.

DOI: 10.7554/eLife.07224.001

Introduction
When the brain is not engaged in any particular sensory, cognitive, or motor task, cortical neurons

nevertheless give rise to coordinated group activity. This so-called resting activity delineates

functional networks (Fox and Raichle, 2007; Haimovici et al., 2013), modulates responses to

sensory input (Arieli et al., 1996; Womelsdorf et al., 2012), predicts cortical responses (Luczak

et al., 2009), and changes in disease or sleep deprived states (Greicius et al., 2004; Meisel et al.,

2013). It is, therefore, crucial to identify and understand the dynamical constraints that determine

coordinated neuronal group activity at rest in the awake (AW) state.

Resting activity, recorded from neuronal populations in vivo using the local field potential (LFP;

Gireesh and Plenz, 2008; Petermann et al., 2009; Yu et al., 2011; Priesemann et al., 2013),

functional magnetic resonance imaging (fMRI; Fraiman and Chialvo, 2012; Haimovici et al., 2013),

the magnetoencephalogram (MEG; Palva et al., 2013; Shriki et al., 2013), or electrocorticogram

(ECoG; Solovey et al., 2012), has been shown in rodents, non-human primates, and humans to be

composed of activity cascades called neuronal avalanches. Neuronal avalanches identify a specific

organization of activity patterns in which avalanche sizes distribute according to a power law with

slope of −1.5, that is, the relative occurrences of avalanche sizes are constant (Beggs and Plenz, 2003).

This scale-invariant organization, which transcends many spatial and temporal scales, is an indication

that cortical dynamics reside at or close to a critical state in which interactions between local

elements give rise to long-range spatial and long-term temporal fluctuations (Plenz and Thiagarajan,

2007; Chialvo, 2010; Beggs and Timme, 2012; Plenz, 2012; Marković and Gros, 2014; Plenz

and Niebur, 2014). Predictions from the theory of criticality (Bertschinger and Natschlager,

2004; Nykter et al., 2008; Chialvo, 2010; Plenz and Niebur, 2014) and neural modeling
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(Beggs and Plenz, 2003; Kinouchi and Copelli, 2006; Rämö et al., 2007; Shew et al., 2009; Tanaka

et al., 2009; de Arcangelis and Herrmann, 2010) suggest that cortical networks that reside in such

a fluctuation-dominated regime can improve various aspects of information processing, as was

demonstrated experimentally in vitro (Shew et al., 2009, 2011; Yang et al., 2012; Shew and

Plenz, 2012). Yet, further exploration of the origin and potential functional advantages of avalanche

dynamics are limited by the ambiguity in the composition of the LFP, ECoG, MEG, and BOLD fMRI

signals, with respect to their spatiotemporal and cellular origin as well as synaptic input and action

potential (AP) output.

It is now well established that neuronal avalanches can emerge within cortex as demonstrated in

vitro (Beggs and Plenz, 2003; Stewart and Plenz, 2006; Pasquale et al., 2008), and sensibly depend

on the balance of fast synaptic excitation/inhibition (E/I) (Beggs and Plenz, 2003; Pasquale et al.,

2008; Shew et al., 2009) and neuromodulators (Stewart and Plenz, 2006; Pasquale et al., 2008).

However, it is currently not known how the scale-invariant, macroscopic organization of avalanches

measured at the population level relates to the output of the principal cells of cortex, that is, AP firing

in pyramidal neurons (PNs) and how this organization relates to the global physiological state of

the animal. AP firing in PNs is commonly reported as spontaneous and irregular (Softky and

Koch, 1993; Shadlen and Newsome, 1998) with low average correlation in firing between

neurons during spontaneous activity and a high variability in evoked AP responses (Gawne and

Richmond, 1993; Kerr et al., 2007; Sato et al., 2007; Poulet and Petersen, 2008; Ecker et al.,

2010; Komiyama et al., 2010; Renart et al., 2010). Here, we show experimentally in vivo that

ongoing fluctuations in AP firing in single cortical neurons amount to scale-invariant AP avalanches

at the neuronal group level. The emergence of spike avalanches marks the AW state and is absent

under anesthesia. Similarly, spike avalanches spontaneously organize in layer 2/3 PN groups from

eLife digest Even when we are not engaged in any specific task, the brain shows coordinated

patterns of spontaneous activity that can be monitored using electrodes placed on the scalp. This

resting activity shapes the way that the brain responds to subsequent stimuli. Changes in resting

activity patterns are seen in various neurological and psychiatric disorders, as well as in healthy

individuals following sleep deprivation.

The brain’s outer layer is known as the cortex. On a large scale, when monitoring many thousands

of neurons, resting activity in the cortex demonstrates propagation in the brain in an organized

manner. Specifically, resting activity was found to organize as so-called neuronal avalanches, in which

large bursts of neuronal activity are grouped with medium-sized and smaller bursts in a very

characteristic order. In fact, the sizes of these bursts—that is, the number of neurons that fire—are

found to be scale-invariant, that is, the ratio of large bursts to medium-sized bursts is the same as

that of medium-sized to small bursts. Such scale-invariance suggests that neuronal bursts are not

independent of one another. However, it is largely unclear how neuronal avalanches arise from

individual neurons, which fire simply in a noisy, irregular manner.

Bellay, Klaus et al. have now provided insights into this process by examining patterns of firing of

a particular type of neuron—known as a pyramidal cell—in the cortex of rats as they recover from

anesthesia. As the animals awaken, the firing of individual pyramidal cells in the cortex becomes even

more irregular than under anesthesia. However, by considering the activity of a group of these

neurons, Bellay, Klaus et al. realized that it is this more irregular firing that gives rise to neuronal

avalanches, and that this occurs only when the animals are awake. Further experiments on individual

pyramidal cells grown in the laboratory confirmed that neuronal avalanches emerge spontaneously

from the irregular firing of individual neurons. These avalanches depend on there being a balance

between two types of activity among the cells: ‘excitatory’ activity that causes other neurons to fire,

and ‘inhibitory’ activity that prevents neuronal firing.

Given that resting activity influences the brain’s responses to the outside world, the origins of

neuronal avalanches are likely to provide clues about the way the brain processes information. Future

experiments should also examine the possibility that the emergence of neuronal avalanches marks

the transition from unconsciousness to wakefulness within the brain.

DOI: 10.7554/eLife.07224.002
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organotypic slice cultures and yet are sensitive to the E/I balance. We propose that critical dynamics

govern the organization of resting activity in the awake animal from AP firing in individual PNs to the

activity in large neuronal groups across cortex.

Results

Highest variability in firing in awake resting
To identify the relationship between AP firing and neuronal avalanches, which are primarily found in

superficial layers of cortex (Stewart and Plenz, 2006; Petermann et al., 2009), we expressed the

genetically encoded calcium indicator (GECI) YC2.60 (Yamada et al., 2011) in layer 2/3 (L2/3) PNs of

rats using in utero electroporation at embryonic day 15.5 ± 0.5 (Saito, 2006). Labeled mature neurons

distributed throughout dorsolateral frontal and sensorimotor cortex. They exhibited PN morphology

(Figure 1A), and their synaptic transmission was blocked by glutamate receptor antagonists (data not

shown). To record ongoing AP activity in local PN groups, we performed 2-photon imaging (2-PI) of

YC2.60-expressing PNs in head-restrained rats (Figure 1A,B; depth = 270 ± 50 μm; cortical area =
0.15 ± 0.05 mm2; 10–15 min per recording). Recordings were done under anesthesia (AN; 1–2%

isoflurane), during wakening (WK; 5–20 min at 0% isoflurane), and in the awake state (AW; after

>20 min at 0% isoflurane). Intracellular calcium transients produced fluorescence changes in visually

identified somatic ROIs (Figure 1B), which were converted into ratiometric time courses (ΔR/R)
and then deconvolved to obtain an instantaneous firing rate estimate, λ, for each neuron

(Vogelstein et al., 2010) (see ‘Materials and methods’; Figure 1C,D). In control experiments, we

showed (1) YC2.60 reliably and linearly reported AP activity at physiological temperature from

single APs to AP bursts up to 28 Hz (Figure 1—figure supplement 1A,B) and (2) λ linearly

recovered spike trains at different temporal resolutions (Figure 1—figure supplement 2). We first

recorded at a temporal resolution of Δt = 250 ms (n = 6 rats; 38 recordings; 15–30 active PNs/

recording; >1 AP/min). Neuronal activity was stationary in λ and in the average crosscorrelation,

R, between ROIs (Figure 1E,F, respectively). Neurons fired on average more during AW

compared to WK and AN (ANOVA, F(2,35) = 23.05, p < 0.001; probability density function (PDF)

shown in Figure 1G). Under all three conditions, though, neurons fired irregular APs interspaced

by relatively long periods of quiescence. This was quantified by three measures. First, λ
distributed exponentially for single neurons [log-likelihood ratio (LLR) comparison between

power law vs exponential, >98% of ROIs in favor of exponential distribution, p < 0.05;

Figure 2A, single distributions and average for one PN group; Figure 2B, averages over all PN

groups]. Second, neurons tended to not fire at all within Δt (Figure 2A,B, left; arrow). The

corresponding probability of quiescence, Pq (λ < minimal λ threshold, λthr, set to 0.5), was highest for

AN and WK (Figure 2B, inset; ANOVA, F(2,35) = 23.05, p = 0.002). Both of these characteristics

remained true for higher temporal resolutions despite the expected increase in λ fluctuations

(Figure 2B, right; additional n = 6 rats; n = 19 recordings; Δt = 167 and 88 ms during AW; LLR in

favor of exponential, p < 0.05) and Pq (ANOVA, F(2,28) = 31.46, p < 0.001). Third, the normalized

duration of quiescent times, IBInorm, between firing (i.e., λ < λthr = 0.5) also distributed exponentially

for all conditions (Figure 2A, right; Figure 2C; LLR: >98% of ROIs with p < 0.05). The corresponding

CV was larger than 1 for all conditions, was significantly higher for AW than WK and AN (Figure 2C,

left; inset, AW: 1.5 ± 0.2; WK: 1.2 ± 0.1; AN: 1.2 ± 0.1; mean ± SD, F(2,35) = 25.66, p < 0.001), and

increased further with temporal resolution (AW, Figure 2C, right; Δt = 167 ms, 1.9 ± 0.4; Δt = 88 ms,

2.1 ± 0.3, mean ± SD; F(2,28) = 15.48, p < 0.001). This irregularity was also robust to minimal AP

activity: increasing λthr smoothly reduced the average firing rate λavg (data not shown), yet

maintained a CV larger than 1 for all conditions and Δt (Figure 2—figure supplement 1). CV values

for single units (n = 26; average firing rate = 1.3 Hz; range: 0.1–6.2 Hz) recorded with chronic

microelectrode arrays from superficial layers in the AW rat (Figure 1—figure supplement 2)

compared favorably with λ results from our imaging analysis and ranged between 1.6 ± 0.4 (Δt =
0.033 ms) and 1.3 ± 0.3 (resampled at Δt = 250 ms), respectively.

To further differentiate the high irregularity encountered in the AW resting state from WK and AN

conditions, we studied the temporal and spatial clustering of PN firing. Previous work on the AW

resting state revealed temporal AP clustering during large intracellular membrane potential

fluctuations (Poulet and Petersen, 2008) and spatial clustering of AP firing for L2/3 PNs (Greenberg

et al., 2008) similar to the correlation profile found during tasks (Komiyama et al., 2010). Indeed, we
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Figure 1. Imaging of ongoing spiking activity in groups of L2/3 PNs in the awake (AW) rat. (A) Z-stack side projection

of YC2.60-expressing PNs in L2/3 in vivo. (B) Single imaging plane (dotted line in A) containing a group of PNs

with significant changes in fluorescent intensity ΔR/R over time (colored ROIs). (C) Time course of ΔR/R for individual

ROIs (from B). (D) Top: Binary raster display of instantaneous spike rate estimate λ (λthr = 0.1). Middle: Expanded

period showing color coded λ amplitude. Bottom: Overplot of λ time course for individual, color-coded ROIs.

(E, F) Stationary firing rate estimate λ and pairwise crosscorrelation Rnorm (normalized by the correlation during the

first 30 s) over the course of acquisition. Firing rate increased from anesthetized to AW conditions but remained

stable throughout the recording, suggesting that our measures were not affected by slow modulations of activity

(Ecker et al., 2010). Shown are averages over all PN groups. (G) Distributions of the average firing rate estimate,

λavg, for the three different states.

DOI: 10.7554/eLife.07224.003

The following figure supplements are available for figure 1:

Figure supplement 1. Single AP detection in YC2.60-expressing neurons at physiological temperature and

performance of the OOPSI deconvolution algorithm.

DOI: 10.7554/eLife.07224.004

Figure supplement 2. Performance of the OOPSI deconvolution algorithm at different temporal resolutions and

noise levels.

DOI: 10.7554/eLife.07224.005

Bellay et al. eLife 2015;4:e07224. DOI: 10.7554/eLife.07224 4 of 25

Research article Neuroscience

http://dx.doi.org/10.7554/eLife.07224.003
http://dx.doi.org/10.7554/eLife.07224.004
http://dx.doi.org/10.7554/eLife.07224.005
http://dx.doi.org/10.7554/eLife.07224


Figure 2. Spatial and temporal clustering in ongoing spiking activity in vivo. (A) Probability distributions of

λnorm = λ/λavg (left) and distribution of normalized quiescent time intervals, IBInorm = IBI/IBIavg, (right) in the

AW state for a single neuronal group of PNs (Δt = 250 ms). Gray: distributions for individual ROIs, black:

average. Dotted lines, λnorm = 1 and IBInorm = 1. The arrow is pointing at the relatively high-probability

Figure 2. continued on next page
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found that λ was more correlated in time during AW compared to WK and AN, as demonstrated by

a significantly steeper decay in the autocorrelation for periods <10 s (Figure 2D, left; ANOVA,

F(2,35) = 14.77, p < 0.001). On the other hand, correlated firing between pairs of neurons was weak,

in line with the notion of an ‘asynchronous state of cortex’ (Poulet and Petersen, 2008; Ecker et al.,

2010; Renart et al., 2010), and the average did not differ between states (AW: 0.06 ± 0.06; WK:

0.05 ± 0.04; AN: 0.06 ± 0.04, mean ± SD; ANOVA, F(2,35) = 0.29, p = 0.75; Figure 2E). While

neighboring neurons tended to be correlated more than distant neurons, in line with previous

reports (Sato et al., 2007; Greenberg et al., 2008), this spatial profile was largely similar across all

three states (Figure 2F).

Avalanches emerge from awake state neuronal firing
In the preceding section, we quantified how irregular spontaneous firing in individual PNs and their

pairwise correlations change as the animal transitions from the AN to the AW state. None of these

measures, though, allows us to identify neuronal avalanches, which reflect a scale-invariant

relationship of neuronal group activities. In fact, we recently demonstrated that event rate and

pairwise correlation R are insufficient to predict neuronal avalanches in cortical activity (Yu et al.,

2011). In a first approach, we therefore identified spatiotemporal activity clusters in the neuronal

population. This was done by concatenating firing events of neurons that co-occurred either within

Δt or within consecutive periods of Δt (Figure 3A; gray areas) and separating clusters by quiescent

periods of at least Δt, the original approach to identify avalanche dynamics (Beggs and Plenz,

2003). For a given neuronal population and 2-PI, this process has two free parameters: (1) the

temporal resolution Δt, which is fixed by the scanning frame rate of 2-PI and (2) the activity

threshold, λthr, of a firing event. In general, if λthr is low, most firing events will be concatenated into

few large clusters. Similarly, if λthr is high, the few remaining firing events will group into few clusters.

Thus, a maximal number of clusters is expected at an intermediate threshold     λmax
thr . We first studied

this relationship in the AW state. Indeed, for a given recording at Δt, the cluster rate increased with

λthr and was maximal at an intermediate threshold     λmax
thr (Figure 3B, arrows). As expected,     λmax

thr

shifted towards smaller λthr values at higher temporal resolutions due to the improved resolution of

fast λ fluctuations. Next, we studied the cluster size s, that is, the sum of all firing events within

a cluster normalized by the predicted cluster size limit Λ, which is determined by the number of ROIs

and their respective average firing rate (see ‘Materials and methods’). If the activity of neurons was

rather independent from each other, as one might assume from the low average pairwise correlation

in λ (Figure 1), the distribution in cluster size should be close to an exponential function. On the other

hand, if interactions between neurons contribute significantly to spontaneous firing, then the cluster

size distribution deviates from an exponential function, and, in the case of avalanche dynamics, should

follow a power law (Plenz and Thiagarajan, 2007). Importantly, we found that cluster sizes distributed

according to a power law over approximately two orders of magnitude (Figure 3C: α = 1.63 ± 0.13,

Figure 2. Continued

function value for λnorm << 1, that is, no spike within Δt = 250 ms. Note that the transition from ‘no spike’ to

spiking is rather abrupt in the distribution, which indicates the high signal-to-noise ratio in our recorded data

(cf. Figure 1—figure supplement 1A,B). (B) Average λnorm distributions over all PN groups for all three

conditions (left; AW; WK, waking; AN, anesthetized) and temporal resolutions (right). Inset: probability of

quiescence Pq (number of recordings is indicated in parentheses). (C) Distribution of IBInorm for all three

conditions (left) and temporal resolutions (right). Inset: Coefficient of variation (CV) for IBI (*p < 0.05).

(D) Average autocorrelation function for λ across PNs for all three conditions (left; Δt = 250 ms) and temporal

resolutions (right). Inset: Power-law exponent β (*p < 0.05). Note steeper power-law decay for AW indicating

increased temporal clustering. (E) Distribution of pairwise crosscorrelation, R, in λ for all PN groups and

different states. Broken lines: Corresponding independent model by shuffling λ for each ROI. (F) AW shows

steeper distance decay in R when compared to AN indicating higher spatial clustering.

DOI: 10.7554/eLife.07224.006

The following figure supplement is available for figure 2:

Figure supplement 1. CV in λ remains larger than one for increasing λthr for all conditions (A) and temporal

resolutions (B).

DOI: 10.7554/eLife.07224.007
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LLR = 25.7–201.4 favors power law over exponential, p < 0.003 for all n = 10 experiments, Δt = 88 ms

at individual λmax
thr ). To determine whether the AP activities in PN groups that resulted in power-law

distributed cluster sizes were indeed a result of spatiotemporal correlations, we performed, as

a control, time-shuffling of the corresponding λ events. As shown in Figure 3D, time-shuffled λ events
did not yield power-law size distributions, and instead, cluster size distributions were better fit by an

Figure 3. Ongoing spiking in local PNs organizes as neuronal avalanches in vivo. (A) Sketch of cluster formation at

given Δt and chosen λthr = 1. Gray boxes delineate clusters of activity (i.e., consecutive time bins with λ > λthr).
(B) Maximal cluster rate at intermediate λthr for different Δt in the AW condition. Vertical arrows indicate the

respective λthr = λmax
thr at which cluster rate is maximal. (C) Individual distributions of normalized cluster sizes, s, in AW

(top; Δt = 88 ms, n = 10 recordings, threshold at   λmax
thr ). Dotted line, predicted cut-off at s = 1; dashed line, power law

with α = −1.5. (D) Corresponding distributions after shuffling λ. Shuffling destroys spatiotemporal correlations in

activity and abolishes the power law in cluster sizes. (E) Relationship between α and branching ratio σ for all three

temporal resolutions, Δt. Note the systematic change for increasing Δt as shown previously for avalanche dynamics

based on the LFP. (F) Distribution of cluster lifetimes, T, for different Δt. Dashed line, slope = −2.
DOI: 10.7554/eLife.07224.008
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exponential (LLR = −66.6 to −6.9, favors exponential over power law, p < 0.05 for 7/10 experiments,

Δt = 88 ms; thresholded at λmax
thr obtained for each distribution individually).

For LFP-based avalanche dynamics, it has consistently been shown that power-law exponent and

branching ratio increase systematically with temporal resolution Δt (Beggs and Plenz, 2003;

Petermann et al., 2009). Importantly, for critical avalanche dynamics and negligible finite-size effects,

the temporal resolution for which the power-law exponent, α, is −1.5 yields a branching ratio, σ, close
to 1. As shown in Figure 3E, a similar relationship between α and σ was also found empirically for AP

avalanches in vivo. Furthermore, the temporal organization of neuronal avalanches, that is, the avalanche

life time, was shown to distribute according to a power law with exponent close to −2 (experimentally:

[Beggs and Plenz, 2003]; simulations and theory: [Harris, 1989; Eurich et al., 2002]). Similarly,

we found that the cluster lifetime, T, distributed according to a power law with slope close to −2
(Figure 3F; Δt = 250 ms, slope γ = 1.7 ± 0.1; Δt = 167 ms, γ = 1.9 ± 0.2; Δt = 88 ms, γ = 2.2 ± 0.2,

LLR = 100.4–344.1; p < 0.001). To study the robustness of the power-law size distributions with

respect to threshold, we systematically varied λthr around   λmax
thr . In Figure 4, we show that the

body of the distributions followed a power law up to the predicted cluster size limit (s = λ/Λ = 1

for the normalized distributions) beyond which a cut-off was observed. This cut-off was more

pronounced at lower temporal resolutions and higher thresholds as shown previously for LFP-based

avalanches (Yu et al., 2014). The threshold robustness and cut-off are in line with previous reports

on avalanche dynamics in vitro (Beggs and Plenz, 2003) and in non-human primates (Petermann

et al., 2009) and humans (Shriki et al., 2013).

Avalanche dynamics were unique to the AW state (Figure 5). During AN, cluster size distributions

at corresponding λmax
thr (Figure 5—figure supplement 1A) were slightly bimodal (Figure 5A, arrow), in

line with a progressively worse fit to a power law for WK and AN compared to AW (Figure 5B;

ANOVA, p < 0.05; cf. Figure 4, Figure 5—figure supplement 1B).

An alternative approach to obtain avalanches, in which periods of integrated population activity

above a population threshold were extracted (Poil et al., 2012), also yielded power-law size distributions

with exponent close to −1.5 and cut-off that were robust to changes in λthr (Figure 6A–D). Similar to what

was found when using the original definition of avalanches, cluster size distributions obtained by

population thresholding deviated from avalanche dynamics under isoflurane anesthesia

(Figure 5B, Figure 6E, p < 0.01; Kruskal–Wallis test on Kolmogorov–Smirnov distances, DKS).

Furthermore, cluster size and lifetime were correlated, and the corresponding exponent scaled

as suggested by the theory of critical systems (Sethna et al., 2001) (Figure 6—figure

supplement 1).

To summarize, ongoing AP firing of local groups of L2/3 PNs in the AW state displayed the five

hallmarks of neuronal avalanche dynamics: first, a power law in size distributions with exponent close

to −1.5; second, a critical branching parameter close to 1; third, threshold robustness; fourth,

a lifetime distribution with exponent close to −2; and fifth, scaling of lifetimes and sizes. These results,

for the first time, demonstrate the emergence of neuronal avalanches in the spiking of PN groups from

superficial cortical layers in the AW animal.

Figure 4. Avalanche dynamics is robust to changes in λthr. (A–C) Cluster size distributions for Δt = 250, 167, and 88

ms (from left to right). The green distributions correspond to the respective thresholds, λthr = λmax
thr , at which the

cluster rate was maximal.

DOI: 10.7554/eLife.07224.009
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AP avalanches in L2/3 PNs in vitro
depend on the E/I balance
LFP recordings in cortex slice cultures (Beggs

and Plenz, 2003; Stewart and Plenz, 2007;

Gireesh and Plenz, 2008) have shown avalanche

dynamics to emerge spontaneously in superficial

layers. Similarly, spike avalanches have been

identified in extracellular unit recordings from

dissociated cultures of hippocampus (Mazzoni

et al., 2007) and cortex (Pasquale et al., 2008;

Tetzlaff et al., 2010; Vincent et al., 2012),

although the mesoscopic organization of the

tissue was not preserved. Yet, these studies

are limited by the unknown composition of the

LFP population signal (see ‘Introduction’) and

cell types recorded from. For extracellular unit

activity, strongly bursting interneurons can

dominate large spike clusters in the neuronal

population, in which case heavy-tailed cluster

size distributions reflect neuronal differences

rather than neuronal interactions. In order to

demonstrate that avalanche dynamics also cap-

ture spatiotemporal activity in L2/3 PNs in vitro,

we conducted studies in GECI-expressing corti-

cal slices, co-cultured with VTA to ensure proper

maturation of superficial cortical layers (Gireesh

and Plenz, 2008) (Figure 7A–D). We recorded

AP activity from local groups of L2/3 PNs in

vitro (n = 15–80 ROIs) monitored with YC2.60

(Δt = 250 ms; n = 129 movies, n = 35 cultures;

Figure 7B–D) and compared the activity to

conditions when GABAA (5 μM PTX, n = 8) or

AMPA and NMDA-receptor mediated (0.5 μM
DNQX, 5 μM AP5, n = 6) synaptic transmission

were slightly reduced. Neuronal activity was

stable throughout the recording for each con-

dition (Figure 7—figure supplement 1A,B). At

the single neuron level, AP firing was irregular,

in line with our in vivo results (Figure 7E,F;

Figure 7—figure supplement 1C,D). Temporal

clustering was present under normal conditions

(ACSF) but was reduced during disinhibition or

disfacilitation (Figure 7G, PTX and DNQX/AP5, respectively). An intermediate level in correlated

AP firing was found under normal conditions (Figure 7H). Correlations between neighboring and

distant neurons were highly similar and as expected increased during disinhibition but decreased

during disfacilitation (Figure 7H). As described in our in vivo results, the mean rate smoothly

declined with increase in λthr (Figure 7—figure supplement 1E), and the number of AP cascades of PN

groups peaked in rate at an intermediate threshold λthr (Figure 7—figure supplement 1F) for all three

conditions. When processed at the corresponding λmax
thr , cascade sizes under normal conditions

distributed according to a power law that was robust to changes in λthr (Figure 7I, left). As expected,

the power law was destroyed when spiking activity was shuffled (Figure 7I, right). As previously shown

for LFP-based analysis (Plenz, 2012), AP-based cluster size distributions became strongly bimodal

during pharmacological disinhibition and slightly bimodal during disfacilitation (Figure 7J, PTX and

DNQX/AP5, respectively; Figure 7—figure supplement 2). YC2.60, while being sensitive to single APs,

tends to saturate for very strong spike bursts (Yamada et al., 2011). In contrast, the GECI GCaMP3

Figure 5. Avalanche dynamics is abolished under

anesthesia. (A) Overplot of size distributions for the

anesthetized state (n = 22 recordings) showing

a slight increase in the probability of large clusters

(arrow). (B) Average KS distance, DKS, between

individual PDFs and best-fit power-law distributions

for all three states (*p < 0.05).

DOI: 10.7554/eLife.07224.010

The following figure supplement is available for figure 5:

Figure supplement 1. (A) Maximum cluster rate is

observed at intermediate threshold levels for all three

conditions.

DOI: 10.7554/eLife.07224.011
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(Tian et al., 2009) naturally has a higher threshold for AP detection (>3 APs) but reports even strong

bursts linearly (Yamada et al., 2011) (Figure 7—figure supplement 3A,B). In line with our expectation

of threshold invariance for LFP-based avalanches in the AW monkey (Petermann et al., 2009) and our

YC2.60 measurements, we found that AP bursts measured with GCaMP3 were irregular at the single

neuron level (Figure 7—figure supplement 3C–H), while AP cascades formed a clear power law

(Figure 7—figure supplement 3I,J; n = 9 cultures). These in vitro results demonstrate neuronal

avalanches to describe the spatiotemporal spike activity in L2/3 PN groups, that is, sensitive to

the balance of excitation and inhibition and can be detected using high-threshold GECIs.

Discussion
Here, we show that AP output from groups of PNs in superficial layers of cortex, while highly irregular

at the single neuron level, assembles into scale-invariant neuronal avalanches at the local group level.

In vivo, the emergence of avalanche organization in local pyramidal groups is linked to the AW state

and is abolished under anesthesia. In vitro, this emergence occurs naturally and yet is sensitive to the

Figure 6. Identifying avalanche dynamics, that is, power law in clustering, using thresholding of the population rate

vector (Poil et al., 2012). (A, B) Cluster size distributions for individual recordings (n = 12) following thresholding of

the population rate vector at λthr = 1 (A) and 2.5 (B). Dashed line: slope = −1.5. (C) Rate-preserved shuffling of λ in

individual ROIs prior to calculation of population rate vector destroys the power law. (D) Power-law exponent, α, is
relatively threshold-invariant. (E) Deviation from power-law dynamics at the population rate vector level increases

with the transition from AW to AN (**p < 0.01).

DOI: 10.7554/eLife.07224.012

The following figure supplement is available for figure 6:

Figure supplement 1. Scaling relationship between lifetime and size of spontaneous AP clusters supports neuronal

avalanche dynamics (Sethna et al., 2001; Friedman et al., 2012).

DOI: 10.7554/eLife.07224.013
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balance of excitation and inhibition. To date, avalanche dynamics have been demonstrated in

numerous population signals, such as the LFP, EEG, MEG, and BOLD fMRI. These population signals,

however, are ambiguous as to their site of origin, their emergence from non-neuronal or neuronal

Figure 7. Spatiotemporal clustering in ongoing spiking activity recorded from groups of L2/3 PNs in vitro. (A) Organotypic cortex (ctx)-ventral

tegmental area (vta) co-culture. YC2.60-expression in PNs from superficial (super) but not deep (deep) cortical layers. wm: white matter border location.

(B) Single imaging plane containing a group of PNs with significant changes in R over time (colored ROIs). (C) Time course of ΔR/R for individual ROIs.

(D) Top: Binary raster display of instantaneous spike rate estimate λ (λthr = 0.1). Middle: Expanded period showing λ amplitudes. Bottom: Overplot of λ
time course for individual (color coded) ROIs. (E) Distributions of λnorm for different pharmacological conditions (ACSF, DNQX/AP5, PTX). Dotted line,

λnorm = 1. (F) Distributions of IBInorm. Dotted line, IBInorm = 1. Inset: Pq (number of recordings is indicated; *p < 0.05). (G) Mean λ autocorrelation function

for individual PNs and different conditions. (H) Distance dependence of pairwise crosscorrelation in λ and different conditions. (I) Left: Power-law

distributions in s for different λthr (color scale) for normal condition (ACSF). Right: λ shuffling destroys power-law organization for normal condition.

(J) Probability distributions in s for different λthr (color scale) under PTX (left) and DNQX/AP5 (right). Dashed lines in I and J: slope = −1.5.
DOI: 10.7554/eLife.07224.014

The following figure supplements are available for figure 7:

Figure supplement 1. (A, B) Mean λ rate and pairwise crosscorrelation are stationary over entire imaging session.

DOI: 10.7554/eLife.07224.015

Figure supplement 2. Cluster size distributions under normal condition, disfacilitation (DNQX/AP5), and disinhibition (PTX) for YC2.60.

DOI: 10.7554/eLife.07224.016

Figure supplement 3. Neuronal avalanche dynamics recorded in vitro using GCaMP3 in organotypic cortex cultures.

DOI: 10.7554/eLife.07224.017
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elements, and their sensitivity to subthreshold and suprathreshold neuronal activities. Such ambiguities

put into question whether computational benefits attributed to avalanche dynamics, or critical state

dynamics in general (Shew and Plenz, 2012), extend to the local cortical microcircuit with computations

taking place between PNs and local interneurons. Our results provide the first essential step in

answering these functional questions at the local microcircuit level by demonstrating that, in the awake

animal, local groups of PNs in layer 2/3 spontaneously exhibit highly variable AP clusters that organize

as neuronal avalanches. By restricting our analysis to PNs, we avoid inflation of spike cluster from

strongly firing interneurons and focus on the local output of a cortical microcircuit. The sensitivity of AP

avalanches to anesthesia and the E/I balance demonstrates that PNs as well as interneurons are required

to establish these dynamics. In light of the methodological and conceptual complexity of the current

work, in what follows, we will first discuss methodological and technical aspects of our experimental

design and avalanche analysis followed by a discussion of the concepts of criticality in the context of

cortical AP activity at the microcircuit level.

Dynamic range and linear estimation of instantaneous firing rates using
the GECI YC2.60
GECIs derived from YC are fluorescence resonance energy transfer sensors, that is, the binding of

calcium ions decreases fluorescence for short wavelengths while it increases fluorescence in the

longer wavelength range (Nagai et al., 2004). The anti-correlated change at two wavelengths,

captured in the ratiometric signal, increases the signal-to-noise ratio and naturally reduces global

signal artifacts, such as those caused by movement of the animal. Our cell-attached recordings

also demonstrate linear reporting of AP bursts, measured for up to 28 Hz (i.e., 7 APs/250 ms;

Figure 1—figure supplement 1B). This observation suggests that the estimation of AP burst

strength in our recordings is only weakly effected by saturation (Lütcke et al., 2010). The lack of

impact of any potential saturation effect for YC2.60 on our main results was also demonstrated by

our GCaMP3 in vitro recordings. GCaMP3 is relatively insensitive to small AP bursts and does not

show saturation for relatively strong bursts, which introduces a natural λthr of ∼3 APs in our data

acquisition (Figure 7—figure supplement 3A). To summarize, our choice of YC2.60 provided us

with a GECI that exhibited an excellent dynamic range, that is, high signal-to-noise ratio,

reasonable temporal resolution, high probability of single AP detection, and linear mapping of

instantaneous firing rates up to ∼20 Hz.

Thresholding of continuous firing rate estimates and estimation of
avalanche measures at various temporal resolutions
The identification of neuronal avalanche dynamics has been found to be robust to a wide range of

thresholds for local event detection. As demonstrated in awake non-human primates, the

amplitude of the negative LFP (nLFP), which identifies local synchronization, monotonically

increases with the number of extracellular spikes recorded at the same microelectrode

(Petermann et al., 2009). Thus, when identifying nLFPs on the microelectrode array using

a threshold, a high threshold includes activity from local neurons that fire strongly, whereas a low

threshold also includes weak local neuronal activity. It was found that for LFP-based avalanches,

the threshold to identify nLFPs can vary over many standard deviations of the ongoing LFP

fluctuations, yet the essential power law in avalanche sizes is maintained, despite a large decline in

the nLFP and cascade rates with increase in threshold (Petermann et al., 2009). A similar

threshold robustness was found for human avalanche dynamics based on the MEG (Shriki et al.,

2013) or BOLD signal in the fMRI signal (Tagliazucchi et al., 2012). This is in line with simulations

demonstrating that thresholding does not affect avalanche size distributions (Lasse et al., 2009).

Threshold independence allows large local events (which are less frequent than small events) to be

properly identified for avalanche analysis even at low temporal resolutions. In the current study, by

increasing the local firing threshold, we isolated strong, local events in time and space, thus allowing

for concatenation of significant local events into avalanches. At higher temporal resolution, the

firing threshold can be lower as even small local firing can be properly separated in time (cf.

Figure 3B). As was shown in the original publication on avalanches, at a fixed spatial resolution,

prolonging/shortening Δt increases/decreases concatenation leading to a systematic change in the

power-law slope of avalanches’ sizes while maintaining the power-law signature (Beggs and Plenz,
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2003). Similarly, the distribution of ROIs within an imaging frame establishes a spatial sampling

matrix and correspondingly, the power-law slope was found to change accordingly with change in

the frame rate (cf. Figure 3E).

Spatial undersampling of cortical neuronal populations and the effect on
avalanche parameters
Both our in vitro and in vivo recordings demonstrate avalanche dynamics to capture the organization

of spontaneous spiking in a coarsely sampled sub-network of L2/3 PNs. The plane of imaging

captured about 25–35 labeled PNs within a cortical area of 0.15 ± 0.05 mm2. At a neuronal density

of ∼100,000/mm3 for L2/3 in the adult rat (Meyer et al., 2010), we therefore expect ∼300 PNs

within a focal plane. Thus, we are recording from ∼10% of PNs within our field of view. Simulations

of spike avalanches using a branching process (Ribeiro et al., 2010, 2014) or models of self-

organized criticality (Priesemann et al., 2009) indicate that coarse spatial subsampling affects proper

sampling of avalanche size distributions. Previous attempts to identify spike avalanches in the awake

monkey found log-normal distributions, despite robust power laws in nLFP-based avalanches

(Petermann et al., 2009). Such log-normal distributions have been suggested to indicate slightly

subcritical dynamics in spike avalanches (Priesemann et al., 2014). However, our results

demonstrate a power law in spike avalanches in the awake, but not anesthetized state, within

our imaging frame. Because both states should be affected similarly from subsampling, we

conclude that subsampling within our cortical field of view is not a major factor in our recordings to

identify the power law in avalanche sizes. This could be because, in the above studies, the sampling

density of spikes achieved by microelectrode arrays was orders of magnitudes lower than in the

current study. On the other hand, because our cranial window only captured a small region of the

cortex, we expect to see a cut-off in the avalanche size distribution, as reported in numerous

experimental findings on avalanches based on the nLFP (Beggs and Plenz, 2003; Petermann et al.,

2009; Yu et al., 2014) or MEG (Shriki et al., 2013) and simulations (Priesemann et al., 2009; Ribeiro

et al., 2010; Priesemann et al., 2013; Ribeiro et al., 2014; Yu et al., 2014). Here, we show for the first

time that this cut-off also holds for AP avalanches.

Irregular firing with CV > 1, ‘noise’, and neuronal avalanche dynamics
Traditionally, irregular AP firing in individual PNs has been viewed as evidence that cortical dynamics

are noisy and thus require averaging in time or across neurons to separate signal from noise (Softky

and Koch, 1993; Shadlen and Newsome, 1998; London et al., 2010). Our results confirm that

indeed single neuron firing is irregular in both the anesthetized and AW state. We found a lower firing

rate, less irregularity, and less temporal clustering under anesthesia compared to the AW state.

Yet, these differences did not specify any particular organization of the AW state, in particular,

given that the average pairwise correlation between PNs did not differ between the two states.

This latter finding suggested at first glance no difference in the average neuronal interactions.

Only when temporally contingent spatial spike clusters in the neuronal population were taken into

account, did the specific scale-invariant avalanche organization of the AW state become evident. Thus,

irregularity of single neuron firing by itself does neither preclude nor determine avalanche dynamics.

Several neuronal network simulations have demonstrated the coexistence of avalanche dynamics

and highly irregular firing at the single neuron level. Using a stochastic model of spiking neurons,

Benayoun et al. show the coexistence of irregularity and avalanche dynamics close to a critical

transition (Benayoun et al., 2010). Recent deterministic network models that incorporate synaptic

plasticity also demonstrate how such irregularity robustly co-exists with avalanche dynamics, even in

the absence of stochasticity (Stepp et al., 2014), yet demonstratively at a phase transition, where the

addition of a single spike led to exponentially deviating network trajectories. Several computational

studies in non-leaky as well as leaky integrate and fire networks have demonstrated the emergence of

spike avalanches at or near a phase transition, where irregular spikes form clusters whose size

distributions follow a power law (Chen et al., 1995; Eurich et al., 2002; Levina et al., 2007, 2009;

Millman et al., 2010). Thus, while irregular firing might be ubiquitous in many systems and during

different brain states, it is in the AW state where irregularity combines with avalanche dynamics

suggestive of a system residing near a phase transition. Our work, by providing detailed parameters

on firing rate distributions, event count, interburst statistics, and correlations, should provide new

experimental guidance to inform more realistic neuronal network models on critical spiking dynamics.
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Computational models of cortical networks typically derive irregular spiking by establishing

a balance in fast E/I (Shadlen and Newsome, 1998; Renart et al., 2010), which allows inhibitory and

excitatory currents to track each other closely in time, resulting in an active de-correlation in spiking

(Renart et al., 2010). However, since independent, stationary Poisson processes are insufficient to

explain the high variability of spiking (CV > 1) observed typically in vivo (Softky and Koch, 1993;

Shadlen and Newsome, 1998), alternative mechanisms beyond external Poisson inputs (Brunel, 2000)

have been proposed to further increase variability, such as intrinsic chaotic dynamics (Van Vreeswijk

and Sompolinsky, 1996; Sussillo and Abbott, 2009; Ostojic, 2014), conductance-based synapses

(Kumar et al., 2008), clustered network architecture (Litwin-Kumar and Doiron, 2012), external

synchronous inputs (Stevens and Zador, 1998), and ‘doubly stochastic’ approaches using non-

stationary Poisson processes (Churchland et al., 2010), among others. Our results confirm the high

variability of single neuron firing in the AW state with CV > 1. We suggest that the significant increase in

CV beyond 1 for the AW state (cf. Figure 2C) is in line with the general notion that critical systems

operate in a fluctuation-dominated regime, that is, high irregularity encountered at the single neuron

level in the AW state might arise from large fluctuations that naturally occur when system dynamics

approach a critical point (Chialvo, 2010; Fraiman and Chialvo, 2012; Meisel et al., 2015).

The AW brain state and avalanche dynamics
Most in vivo studies reporting avalanche dynamics have been conducted in the AW animal for

example, non-human primates (Petermann et al., 2009; Yu et al., 2011) or AW human subjects

(Fraiman and Chialvo, 2012; Palva et al., 2013; Shriki et al., 2013). However, it was not clear

whether avalanches also arise under anesthesia. In fact, avalanche analysis in deeply anesthetized

cats or rodents reveals typical deviations, such as unusually shallow power laws based on the LFP

and log-normal distributions of extracellular unit clusters (Hahn et al., 2007; Ribeiro et al., 2010).

In these latter studies, however, the effect of anesthesia was difficult to separate from technical

aspects, such as subsampling, which can affect spike clusters. In the present study, we (1) increased

the number of neurons typically recorded with microelectrodes within an area of 200 × 200 μm by

1–2 orders of magnitude using 2-PI, (2) extracted spike clusters from a well-defined population of

PNs, (3) used an exceptionally sensitive GECI to identify even single spikes, and (4) transitioned the

animal between the anesthetized and the AW state. This approach provided us with the necessary

precision and sensitivity to demonstrate the increasing deviation from a power law in size distribution

that occurs even under light anesthesia (cf. Figures 5B, 6E). Our results suggest that avalanche

dynamics might provide a precise ‘fingerprint’ to delineate the transition from the anesthetized state to

the fully AW state. This delineation might be helpful in further quantifying different aspects of the

AW state. For example, when studying avalanche dynamics in normal subjects, the degree of sleep

deprivation was found to correlate positively with deviations from avalanche dynamics (Meisel

et al., 2013). Intracranial recordings in human subjects have also shown small changes in ‘vigilance’

with changes in avalanche dynamics (Priesemann et al., 2013).

Critical dynamics and near-critical dynamics
Avalanche dynamics were originally defined by (1) cluster sizes in LFP activity in vitro that follow a

power law with slope close to −1.5, (2) a power law in life time distribution with slope of −2, and (3) a

critical branching parameter of 1 (Beggs and Plenz, 2003). All three aspects have been demonstrated

in spike clusters from layer 2/3 PNs in the present study. Detailed correspondences with avalanche

work include the cut-off in size distributions beyond system size, originally identified in the LFP (Klaus

et al., 2011), and clearly visible in the steep drop in spike cluster distributions beyond system size in

the present study (cf. Figures 3C, 4). We obtained a branching parameter slightly smaller than 1 at the

power law slope of −1.5, which might be due to the small neuronal group size recorded from. We also

confirmed recent demonstrations of scale-invariance based on the collapse of avalanche waveforms

(Sethna et al., 2001; Papanikolaou et al., 2011; Friedman et al., 2012). These measures combined

strongly suggest that AP output of PN groups reflects critical dynamics in the AW state.

Avalanche measures have to be carefully evaluated for potential pitfalls. For example, power laws

that arise from non-critical dynamics have been reported (Touboul and Destexhe, 2010), yet those

power laws exhibit slopes of −10 to −50. In contrast, the slope of power laws for avalanche dynamics

is typically more shallow than −2, that is, these distributions do not have a mean and display
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unbounded variance, that is, non-existing first and second moments. Similarly, the upper cut-off in

avalanche size distributions has sometimes been included into statistical fits. However, this upper

cut-off arises from finite-size effects and needs to be disregarded for fitting (Yu et al., 2014),

otherwise, statistical tests (Langlois et al., 2014) can be misdirected to fit the cut-off only (Clauset

et al., 2009; Dehghani et al., 2012).

While our results clearly demonstrate that cortical dynamics approach a scale-invariant, that is,

power-law organization in the AW state, the precise distance to the critical point is not known.

In simulations, complex–hierarchical modular architectures of cortical networks have been shown to

support critical dynamics (Wang et al., 2011). Such architectures, however, when combined with

near-critical dynamics, can ‘trap’ activity (Rubinov et al., 2011; Friedman and Landsberg, 2013)

inducing heavy-tail size distributions approximating power laws, or in general, extend the region in which

critical-like behavior is observed by establishing so-called Griffiths phases (Moretti and Muñoz, 2013).

Whether the layer 2/3 network can exhibit ‘true’ critical dynamics has also been called into question

on the grounds that this would require a system to be placed exactly at the critical point, which is

only possible for fine-tuned, ‘conservative’ systems (Juan et al., 2010). Cortical networks, while

being critical in the long-term, could show subcritical transients. Subcritical dynamics have been

invoked to explain findings from intracranial recordings in humans (Priesemann et al., 2013). In

network simulations, a transition from subcritical to critical dynamics has been shown to benefit

information processing (Tomen et al., 2014). Our results demonstrate that in the relatively fast

transition from the anesthetized to the AW state, cortical dynamics more closely approaches or

enters a critical regime. Finally, a dimension not employed in the current work is the specific

temporal correlation structure of avalanches, which reveals scale-invariance and differs significantly

from disinhibited or disfacilitated networks (Lombardi et al., 2012, 2014; Plenz, 2012).

In vitro results experimentally establish threshold-invariant avalanche
dynamics in L2/3 PNs regulated by the E/I balance
Our in vitro results for the first time demonstrate that avalanche dynamics also describe the organization

of AP patterns in a well identified neuronal population, local groups of L2/3 PNs in isolated cortex

preparations. This overcomes previous limitations of in vitro studies in which cell identities and signal

composition were largely unknown. The dependency of L2/3 avalanches on a GABAA antagonists and

glutamate antagonists supports theories that indeed the E/I balance is important to establish avalanche

dynamics in cortical networks. Our findings further demonstrate that in isolated cortex, avalanche

dynamics is the natural organization that describes PN spiking in the absence of any inputs. Our in vitro

recordings resulted in the collection of spike activity over longer periods in time compared to in vivo.

This allowed us to demonstrate that GECIs, such as GCaMP3, with a natural threshold for spike burst

imaging and which are less prone to saturation can also be used for avalanche detection

(Figure 7—figure supplement 3), a direct experimental confirmation of simulations that showed

thresholding does not affect avalanche size distributions (Lasse et al., 2009). Our in vitro results also

provide additional benchmarks to which to compare in vivo avalanche dynamics. For example, pairwise

correlations in vitro for avalanche dynamics are significantly higher compared to in vivo. While these

values take an intermediate position compared to those found for the disinhibited or disfacilitated state

(cf. Figure 7H), it is clear that absolute pairwise correlation values do not predict avalanche dynamics.

Our findings transcend previous reports on the spontaneous formation of stable activity patterns in

isolated cortical networks, such as the acute slice (Sanchez-Vives and McCormick, 2000; Beggs and

Plenz, 2003; Cossart et al., 2003) and slice culture (Beggs and Plenz, 2003) or in vivo (Miller et al.,

2014), which suggest the presence of ‘attractor’ states (Beggs and Plenz, 2004; Ikegaya et al., 2004;

Miller et al., 2014). In fact, our work shows that AP patterns of L2/3 PNs form a specific subset of

patterns in which sizes relate to each other in a scale-invariant manner.

Avalanche spike output and potential underlying subthreshold activity
It is expected that a strongly fluctuating yet specific spatiotemporal organization in spikes will translate

into correspondingly precise inputs in nearby PNs. Fast, subthreshold fluctuations in the intracellular

membrane potential have been shown to translate into precisely timed action potentials (Bryant and

Segundo, 1976; Mainen and Sejnowski, 1995) and that such spike precision carries information about

the input (Cecchi et al., 2000). It is, therefore, reasonable to expect that spike avalanches translate into
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fast voltage-fluctuations, which in turn generate precise spike outputs, thereby maintaining avalanche

dynamics in the cortical microcircuit. Recent findings using voltage-sensitive dyes in layer 2/3 PNs

indeed demonstrate neuronal avalanche dynamics to emerge in the AW mouse (Scott et al., 2014).

Signals from voltage-sensitive dyes are proportional to the surface-to-volume ratio of the cellular

compartment in which the dye is localized, and thus they preferentially report subthreshold intracellular

membrane potential fluctuations (Plenz and Aertsen, 1993). This is in contrast to intracellular calcium

reporters, which mainly report suprathreshold activity. Our study thus complements reports of neuronal

avalanche dynamics in the input to PNs by demonstrating neuronal avalanches in the spike output of

PNs in superficial layers in the AW state.

The emergence of neuronal avalanches at the neuronal group level does not exclude a role for

critical dynamics at the cellular and subcellular level. The intermittent bursting behavior of single

isolated neurons in response to stimulation (Gal et al., 2010; Marom and Wallach, 2011; Gal and

Marom, 2013) suggests critical dynamics in the form of a low dimensional phase transition to control

spike generation. Recent experimental demonstrations of critical slowing down as the membrane

potential approaches spike threshold demonstrate critical dynamics to profoundly affect the AP

generation (Meisel et al., 2015). Similarly, long-term fluctuations and power-law relationships have

been reported for sodium channel gating (Toib et al., 1998). Thus, while spike avalanche dynamics

emerge at the neuronal group level, the underlying mechanisms are likely to involve specific dynamical

properties at the single cell and subcellular level.

Final conclusions
The identification of avalanches in the main excitatory cell type that constitutes the mammalian cortex

establishes the strongest proof to date that avalanche dynamics provide the guiding principles for

propagation of cortical activity. This finding should have a number of consequences for a cellular

understanding of cortical network activity. First, optimization principles in information processing

identified for avalanche dynamics at the population level of cortex should be directly applicable to the

interaction of PNs (Beggs and Plenz, 2003; Bertschinger and Natschlager, 2004; Kinouchi and

Copelli, 2006; Rämö et al., 2007; Nykter et al., 2008; Shew et al., 2009; de Arcangelis and

Herrmann, 2010; Shew et al., 2011). Specifically, local layer 2/3 networks should exhibit maximal

dynamic range to process layer 4 inputs and maximize mutual information between patterns elicited in

layer 4 and superficial layers. Second, the nature of spontaneous, irregular firing in PNs profoundly

influences theories on cortical function. For example, when these fluctuations in firing are considered

to reflect noise, spatiotemporal averaging over neuronal populations can be used to enhance response

encoding at the expense of temporal precision and neuronal identity (Shadlen and Newsome, 1998;

London et al., 2010; Renart et al., 2010). On the other hand, we demonstrated that fluctuations in

single neuron firing, amount to a scale-invariant order in active neuronal groups, suggestive of critical

dynamics guiding single neuron firing. Accordingly fluctuations that arise from long-range spatiotem-

poral correlations between neurons should not be averaged (Fraiman and Chialvo, 2012) but instead

need to be taken into account, for example, for theories on cortical population coding (Averbeck et al.,

2006). Finally, it is well known that resting or ongoing activity profoundly influences stimulus responses

(Arieli et al., 1996; Sato et al., 2007; Luczak et al., 2009; Womelsdorf et al., 2012). For example,

evoked visual responses correlate strongly with ongoing activity shortly preceding the stimulus

(Arieli et al., 1996). Long-term temporal correlations have been soundly established at the population

level, such as the EEG (Linkenkaer-Hansen et al., 2001) and ECoG (He et al., 2008). Our findings

suggest that the occurrence of a single ‘spontaneous’ spike or spike burst in the AW state correlates

with activity in other PNs over time and distance in cortex, as quantified by the scale-invariant

correlation structure established by neuronal avalanches. We suggest that this will be of particular

importance in the context of ‘noise correlations’, which capture the non-stimulus induced correlation

structure and tend to affect the decoding capability of a neuronal population (Averbeck et al., 2006;

Insabato et al., 2014).

The emergence of scale-invariant order from the interaction of local elements is a hallmark

of systems at criticality (Plenz and Thiagarajan, 2007; Chialvo, 2010; Plenz and Niebur, 2014).

By demonstrating such scale-invariance to exist at the neuron level, we suggest that neuronal

avalanches provide a unifying framework of cell assembly formation in cortex that ranges from

local groups of neurons to the global scale of the brain.
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Materials and methods
All animal procedures were approved by the National Institute of Mental Health Animal Care and Use

Committee and were carried out in accordance with National Institutes of Health guidelines.

In utero electroporation
Timed-pregnant rats (Sprague Dawley, embryonic day 15.5 ± 0.5, Taconic Farms) underwent

a laparotomy (1.5–4 % isoflurane anesthesia) during which 5–8 μg of purified plasmid DNA (Endofree

Maxiprep kit, Qiagen, Germantown, MD), consisting of Yellow Cameleon 2.60 (YC2.60) (Mikoshiba

Lab, RIKEN, Japan; [Yamada et al., 2011]) or GCaMP3 (Tian et al., 2009) subcloned into a pCAG

backbone, was pressure-injected through the uterine wall into the frontal ventricle of one hemisphere

using a fine point glass capillary. DNA was electroporated into cells of the subventricular zone (Saito

and Nakatsuji, 2001; Saito, 2006) using platinum tweezertrodes (5 mm diameter; 5 square pulses, 45

V amplitude, 50 ms duration; ECM-830, Harvard Apparatus, Holliston, MA), predominantly labeling

PNs in superficial cortical layers 2 and 3 (L2/3; see [Saito, 2006]; Figure 1A).

Organotypic co-cultures
In utero electroporated pups (postnatal day [P] 1–3) were checked for expression of YC2.60 in

dorsolateral cortex and used for the preparation of organotypic co-cultures, consisting of cortex and

ventral tegmental area (VTA), as described previously (Gireesh and Plenz, 2008). In brief, coronal

sections of cortex and midbrain were cut using a vibratome (VT100 S, Leica) under sterile conditions at

350 μm and 500 μm, respectively. Regions of cortex (up to 2 mmwide) containing all layers, and midbrain

tissue containing the VTA, were excised and attached adjacent to each other on a glass coverslip. Co-

cultures were grown under sterile conditions in standard culture medium in a roller tube arrangement

and were used for electrophysiology and 2-photon imaging (2-PI) after 14–20 days in vitro (DIV).

Head bar implantation, habituation, and craniotomy
For 2-PI in the AW animal, in utero electroporated rats were first identified by transcranial YC2.60

fluorescence observation at P1–3. Animals expressing YC2.60 were fitted with a custom-made,

T-shaped stainless steel head bar at ∼P21. To this end, animals were anesthetized (isoflurane: 4%

induction, 1.5–2% maintenance) and mounted in a stereotaxic frame. After a midline incision was

made in the scalp, the skull surface was cleared of membranes; adhesive luting cement (C&B

Metabond, Parkell, Inc., Edgewood, NY) was applied contralaterally to the YC2.60-expressing

hemisphere, followed by attachment of the head bar using Grip cement (Dentsply International Inc.,

Milford, DE). Rats were given an analgesic (Ketoprofen, 5 mg/kg s.c) for up to 2 days post surgery.

Rats were habituated to the recording condition for up to 5 sessions post surgery. In each session, the

rat was briefly anesthetized (<5 min of 2–3% isoflurane) and installed in the head fixation apparatus,

which consisted of a plastic tube which loosely confined the rat’s limbs without restricting breathing,

a platform and a custom-made steel beam, which screwed into the head bar at one end and a fixed

post at the other end, allowing horizontal, vertical, and axial freedom of movement to position the

rat’s head under the 2-PI objective. After awakening, rats were left in the apparatus for 10–20 min per

session. Rats became comfortable with the recording condition after 3–5 habituation sessions. On the

day of imaging, rats were subjected to craniotomy and cranial window implantation. Rats were

anesthetized (isoflurane: 4% induction, 1.5–2% maintenance) and mounted in a stereotaxic frame.

The location of the craniotomy was determined by observation of transcranial YC2.60 fluorescence

and was usually found within sensorimotor and frontal cortex (from bregma: AP 0.5 ± 1.0 mm, ML

3.0 ± 0.5 mm). A section of the skull (∼3–4 mm diameter) was removed using a dental drill and the

underlying dura was resected. Care was taken not to damage any subdural blood vessels. The

exposed brain was continuously irrigated with sterile saline. Finally, a glass coverslip was cut to the

size of the craniotomy using a stylus, mounted on the opening using low melting point agarose

(1–2% in sterile saline), and secured with Grip cement. Rats were given an analgesic (Ketoprofen, 5

mg/kg s.c) and allowed to recover for at least 3–6 hr before undergoing 2-PI.

2-Photon imaging
For in vivo 2-PI, rats (P27–35) that had undergone head bar implantation, habituation, and

craniotomy were anesthetized (isoflurane: 4% induction, 1–2% maintenance), head-fixed, and

Bellay et al. eLife 2015;4:e07224. DOI: 10.7554/eLife.07224 17 of 25

Research article Neuroscience

http://dx.doi.org/10.7554/eLife.07224


placed under a 2-photon microscope (25× objective, 1.05 NA, 1000 MPE, Olympus, Center

Valley, PA). YC2.60 was excited at 840 nm (Chameleon Vision II, Coherent, Santa Clara, CA), and

cpVenus and ECFP fluorescent emission were collected using 460–500 nm and 520–

560 nm bandpass filters, respectively, separated by a 505 nm dichroic mirror. Once an imaging

field containing up to ∼40 neurons was located, 5–15 min long movies were recorded at

a temporal resolution, Δt, of ∼250 ms. Higher temporal resolutions (167 and 88 ms) were

achieved by 2× and 4× line skipping, respectively (Olympus Fluoview software). To obtain movies in

the waking (WK) and AW animal, isoflurane was turned off. Movies recorded >5 min after turning off

isoflurane were classified as WK, and subsequent movies (>20 min after turning off isoflurane) were

classified as AW. During WK and AW conditions, the behavioral state of the animal was monitored with an

infrared (IR) camera (c525, IR filter removed, Logitech, Newark, CA). Periods of animal movement (which

were minimized by habituation) generated an easily identifiable artifact in the ΔR/R calcium signal (see

below) and were manually removed before analysis.

For in vitro 2-PI, cultures were submerged in oxygenated artificial cerebrospinal fluid (ACSF,

bubbled with 95% O2 and 5% C02) containing (in mM) 124 NaCl, 3.5 KCl, 10 D-glucose, 26.2 NaHCO3,

0.3 NaH2PO4, 1 MgSO4, and 2 CaCl2 warmed to 32˚C at a flow rate of 1 ml/min. Intracellular calcium

dynamics of 15–80 spontaneously active PNs were imaged continuously within a 250 μm by

50–100 μm wide region for 5–20 min with a temporal resolution Δt = ∼250 ms.

Choice of GECI
For our experiments, we chose YC2.60 over related GECIs, such as D3cpv and YC3.60, for the

following reasons. In general, single AP detection in vivo is still below 100% for yellow chameleons

and related GECIs (Lütcke et al., 2010; Margolis et al., 2012). We excluded D3cpv, which shows

single AP sensitivity, due to its saturation for small AP bursts (Wallace et al., 2008). YC3.60 is an

interesting alternative to YC2.60 due to its higher KD and shorter decay time constant (0.5 s in vivo at

physiological temperature; 0.8 s in vitro at room temperature [Yamada et al., 2011]). While a short

decay constant allows for higher temporal resolution in imaging, YC3.60 is about 50% less sensitive to

single APs compared to YC2.60. Given the relatively low spontaneous AP rate for neurons in

superficial cortical layers in vivo (for review see [Barth and Poulet, 2012]), we, therefore, opted for

YC2.60 with its somewhat longer decay constant of ∼1–2 s. Our observation of 4–5% ΔR/R for single

APs using YC2.60 in layer 2/3 (L2/3) PNs in vitro at 32˚C is within the range reported for D3cpv in vitro

(8.3% at room temperature) and in vivo (3.5%) (Wallace et al., 2008). It is also in line for YC2.60 single

AP detection at 33˚C in the acute slice, which shows a ΔR/R of ∼4–5% and a decay time constant of ∼2 s

for a 10 AP burst (Yamada et al., 2011). For YC3.60, sensitivity and decay time constant were shown

to be similar in vivo (Lütcke et al., 2010) and in vitro when measured at physiological temperature

(Yamada et al., 2011). The range in similarities for YC GECIs suggests that our YC2.60 in vitro

characterization at physiological temperature similarly predicts its performance in vivo. This is further

supported by the insensitivity of coefficient of variation (CV) in our in vivo data to the changes in λthr < 1

(cf. Figure 2—figure supplement 1), which is in line with the binary detection operation of single APs

for that range (cf. Figure 1—figure supplement 1A).

Calcium imaging analysis
YC2.60-expressing PNs were visually identified either by high-average somatic fluorescence or high-

somatic fluorescence CV, which captures relatively quiescent neurons with intermittent, sparse spiking

activity and whose average somatic fluorescence remained low. Boxcar regions of interest (ROIs) were

manually drawn around the somatic region of labeled neurons for which the nucleus was clearly visible

within the cross-sectional somatic area. The boxcar was aligned with the outer perimeter of the

neuron, and all pixels within the boxcar were taken for analysis. For YC2.60, the ratio, R, of

cpVenus fluorescence to ECFP fluorescence was calculated for each ROI and each frame. The ratio

measurement requires neuronal signals to be anti-correlated in the two wavelength bands, which

allows for easy identification of non-signal artifact, for example, from small animal movements.

A continuous function of fluorescence was calculated as ΔR/R = (RROI − R0)/R0, where RROI denotes

the average fluorescence ratio within the ROI. The baseline fluorescence ratio, R0, was defined as

the median of R. ΔR/R was low-pass filtered (Kampa et al., 2011) (3Δt; symmetrical Gaussian kernel),

and the instantaneous firing rate estimate, λ, in arbitrary units was obtained for each ROI using fast,
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non-negative deconvolution (Vogelstein et al., 2010) (OOPSI package, Matlab, MathWorks Inc.,

Natick, MA). The decay time constant of the non-negative deconvolution for YC2.60 was ∼1–1.5 s, as

estimated from simultaneous cell-attached recording and 2-PI (n = 8 neurons). This value was also

obtained by minimizing the summed square error between R and a reconstructed R′, made by

convolving an exponential decaying kernel with λ over the range of τ = Δt − 15 × Δt for neuronal
populations recorded in vivo and in vitro (Figure 1—figure supplement 1C) and is in line with

previous reports (Yamada et al., 2011). The a priori rate estimate for spiking was set to 1 Hz based

on a meta-study (Barth and Poulet, 2012), and lower rates were examined systematically in the

form of thresholding on λ (λ > λthr). The standard deviation parameter was estimated for each ΔR/R
using calcium amplitudes less than 5% ΔR/R, corresponding to the average amplitude for single

spike detection of YC2.60. Deconvolution parameters were determined, first, from loose-patch

recordings (Figure 1—figure supplement 1A,B) and second, from minimizing the residual error in

reconstructed ΔR/R traces from λ (Figure 1—figure supplement 1C). Both methods yielded an optimal

deconvolution time constant of ∼1.5 s, in line with previous reports (Yamada et al., 2011).

ROIs with λavg < 0.016 (approx. less than 1 AP/min) were removed from the analysis (O’Connor

et al., 2010). The average instantaneous spike rate estimate of λ for each ROI was calculated for a

range of λthr = 0.1 to 8 and included zero estimates for time bins Δt with λ ≤ λthr. The average burst

strength of λ was the mean of all bins with λ > λthr. Interburst intervals (IBIs) were defined as

consecutive bins of length Δt for which λ ≤ λthr. Pairwise crosscorrelations were calculated in

Matlab (Mathworks Inc.) using the function corrcoef. All other analyses, unless stated otherwise,

were performed in Matlab using custom routines.

Relationship between spontaneous AP bursts and intracellular calcium
transients
In order to identify the relationship between the number of spontaneous APs and ΔR/R (YC2.60)

or ΔF/F (GCaMP3), loose-patch, voltage-clamp recordings were performed in GECI-expressing

PNs in organotypic cortex-VTA cultures (Gireesh and Plenz, 2008) at 14 DIV or later. Cultures

were submerged in regular ACSF (flow rate, 1 ml/min) at 32˚C. After forming a loose-patch on

a visually identified YC2.60 (n = 8) or GCaMP3 (n = 8) labeled PN in L2/3, spontaneous, extracellular

AP currents were recorded simultaneously with intracellular calcium transients using 2-PI. For each

imaging frame with duration Δt = 250 ms, the number of spontaneous APs was correlated with ΔR/R
as well as the corresponding peak amplitude and integrated area of the firing rate estimate λ
(Figure 1—figure supplement 1A,B). This relationship was also true for ΔF/F (data not shown).

To obtain comparable λ and IBI distributions for neurons with different average rates, λavg, the
normalized rate λnorm = λ/λavg and normalized IBInorm = IBI/IBIavg were used.

Analysis of calcium transients from surrogate data for different temporal
resolutions
The relationship of λ and the real spike count for different temporal resolutions was evaluated using

spike trains from 26 extracellularly recorded single units in superficial layers of somatosensory cortex

from adult rat during the AW resting state in a separate experiment. For these recordings, we used a

Neuronexus array with 8 short shanks and 4 electrodes per shank separated by 200 μm. The array was

lowered into the cortex under visual control until the last electrode entered layer 1, anchored using dental

cement, and the cranial opening was closed for chronic in vivo recordings. The array configuration and

array insertion targeted unit activity from within the first 600–800 μm of cortical depth, which largely

covers superficial layers in the adult rat. Unit activity was sampled at 30 kHz and sorted offline (Offline

sorter, Plexon, Dallas, TX). Simultaneous LFP recordings from the same electrodes demonstrated nLFP-

based avalanche dynamics in the AW state, further supporting superficial layers as the main recording

sites (see e.g., [Stewart and Plenz, 2006; Gireesh and Plenz, 2008]; data not shown).

To obtain surrogate calcium traces at different temporal resolutions, the following three steps were

performed: (1) spike trains were convolved using an impulse function with instantaneous 5% peak

amplitude and an exponential decay of 1.5 s, parameters obtained from 2-PI (Figure 1—figure

supplement 1). (2) The resulting calcium traces were sampled at 100 Hz, and uniform noise was

added. The noise level for Δt = 250 ms was set to ±8%. Similar results were found for Gaussian noise.

(3) Calcium traces were down-sampled to a final temporal resolution of Δt = 250, 167, or 88 ms.
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In order to simulate the lower signal-to-noise ratios for smaller Δt, which resulted from line skipping

during in vivo imaging, we adjusted noise levels by a factor of √2 and √4 for Δt = 167 and 88 ms,

respectively. From the resulting calcium traces (Figure 1—figure supplement 2A), λ was estimated

using fast, non-negative spike deconvolution (Vogelstein et al., 2010). This analysis showed that

the mapping of λ to number of APs/Δt is linear and has the same slope (Figure 1—figure

supplement 2B; all R2 = 0.99).

Neuronal avalanche analysis
Spatiotemporal clusters of L2/3 PN activity were defined by spiking activity in at least one

ROI above a given threshold (λ > λthr) within the same or consecutive time bins of duration Δt
(Beggs and Plenz, 2003). By definition, a cluster is flanked by empty bins, that is, all ROI have λ ≥ λthr
(Figure 3A). The value of Δt was determined by the temporal resolution of 2-PI. The value of λthr was

chosen such that the number of cascades was maximized for a given recording (Poil et al., 2012)

(Figure 3B). The size, sλ, of a cluster was defined as the sum of λ across all active neurons, i = 1,…,k

within the cluster, that is, sλ =∑k
i=1λ

i. We found that sλ was proportional to the number

of active neurons in a cluster, sk =∑k
i= 11, by a factor given by the average rate across all ROIs,

λpopavg (R2 = 0.98). Therefore, sk and sλ provide similar information about avalanche sizes, as

reported previously for nLFP-based avalanches (Beggs and Plenz, 2003). To compare across

experiments with different number of neurons, N, (i.e., ROIs) cluster sizes sλ were normalized by

the predicted cluster size limit, Λ=Nλpopavg (Klaus et al., 2011; Yu et al., 2014). For visualization,

cluster size distributions were logarithmically binned (30 bins). Neuronal avalanches were defined by

their distribution in cluster size that follows a power law with an exponent close to −1.5, up to the

cluster size limit. The branching parameter σ, the average ratio of the number of descendants to

ancestors within a cascade (Beggs and Plenz, 2003), was estimated using participation counts from

the first (ancestor) and subsequent (descendent) Δt bins within each cascade. Lifetime, T, was

defined as the number of active time bins during the avalanche multiplied by Δt. A population

thresholding approach on the instantaneous integrated population vector on λ, λpop, has recently been
introduced as an alternative method to obtain the distribution of cascade sizes (Poil et al., 2012). For

a given λpop based on a chosen λthr, population thresholds were placed to search for the maximum

number of cascade sizes. By including only those Δt bins whose member events sum above a minimum

threshold, this method avoids issues in cascade concatenation when periods of empty Δt bins may be

rare due to insufficient temporal resolution or when monitoring a high number of units.

Power-law parameter estimation and statistical analyses
If not stated otherwise, power-law exponents were estimated by minimizing the Kolmogorov–Smirnov

distance, DKS, between the cumulative distribution functions (CDFs) of the data, Cdata(s), and the

power-law model, Cα(s) (Klaus et al., 2011):

bα= arg  min
α

DKS ;

and

DKS =maxs|CdataðsÞ−CαðsÞ|:
The power-law model for smin <s <smax is given by PαðsÞ= csα, where c = ðα+1Þ=ðsα+1max − sα+1min Þ is the

normalization constant. The corresponding CDF is then defined by CαðsÞ=
R s
smin

PαðsÞds. smin was set to

the smallest observed avalanche size. The upper bound, smax, was set to the predicted cluster size

limit Λ=Nλpopavg at which cluster size distributions started to deviate from a power law (Figure 3C; see

[Yu et al., 2014]). DKS was also used to compare the goodness of the power law fit across different

conditions (Figure 5B; Figure 6E). For the comparison of the power law vs the exponential

distribution, the log-likelihood ratio (LLR) was calculated and parameter estimates were obtained by

likelihood maximization (Clauset et al., 2009; Klaus et al., 2011):

LLRðxÞ=   lðα|xÞ− lðγ|xÞ;
where lðα|xÞ=∑n

i = 1lnPαðxiÞ is the log-likelihood of observing the sample vector, x = x1,...,xn, assuming

the power-law model Pα(s), and lðγ|xÞ=∑n
i =1lnPγðxiÞ is the log-likelihood of observing x assuming an

exponential model PγðsÞ= ce−γs with c being the corresponding normalization constant. The LLR

obtains positive values if the data are better fit by a power law compared to an exponential
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distribution, and negative values if the exponential distribution yields the better fit. The p-value for

determining statistical significance is given by (Clauset et al., 2009; Klaus et al., 2011):

p= erfc

�
|LLR|ffiffiffiffiffiffiffiffiffiffi
2nσ2

p
�
;

where

σ2 =
1

n
∑
n

i =1

½ðlðα|xiÞ− lðα|xÞ/nÞ− ðlðγ|xiÞ− lðγ|xÞ/nÞ�2:

Statistical analysis
One-way analysis of variance (ANOVA) was used for multiple comparisons with Bonferroni post hoc

test if not stated otherwise. Error bars and shaded areas around averages denote standard error of

the mean.
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