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Abstract: We study the localization properties of the eigenvectors, characterized by their information
entropy, of tight-binding random networks with balanced losses and gain. The random network model,
which is based on Erdős–Rényi (ER) graphs, is defined by three parameters: the network size N, the
network connectivity α, and the losses-and-gain strength γ. Here, N and α are the standard parameters
of ER graphs, while we introduce losses and gain by including complex self-loops on all vertices
with the imaginary amplitude iγ with random balanced signs, thus breaking the Hermiticity of the
corresponding adjacency matrices and inducing complex spectra. By the use of extensive numerical
simulations, we define a scaling parameter ξ ≡ ξ(N, α, γ) that fixes the localization properties of
the eigenvectors of our random network model; such that, when ξ < 0.1 (10 < ξ), the eigenvectors
are localized (extended), while the localization-to-delocalization transition occurs for 0.1 < ξ < 10.
Moreover, to extend the applicability of our findings, we demonstrate that for fixed ξ, the spectral
properties (characterized by the position of the eigenvalues on the complex plane) of our network
model are also universal; i.e., they do not depend on the specific values of the network parameters.

Keywords: information entropy; Erdős–Rényi graphs; random matrix theory; scaling laws

1. Introduction

Independently of the field, classification, or application, a commonly-accepted mathematical
representation of a network or graph is the adjacency matrix. The adjacency matrix A of a simple
non-directed network (a simple network is a network not having multiple edges or self-edges)
is the matrix with elements Aij defined as [1]:

Aij =

{
1 if there is an edge between vertices i and j,
0 otherwise.

(1)

This prescription produces N × N symmetric sparse matrices with zero diagonal elements,
where N is the number of vertices of the corresponding network. The sparsity of A is quantified
by the parameter α, which is the fraction of non-vanishing off-diagonal adjacency matrix elements.
Vertices are isolated when α = 0, whereas the network is fully connected for α = 1. Once the adjacency
matrix of a network is constructed, it is quite natural to ask about the properties of its eigenvalues
and eigenvectors, which is the main subject of this paper. As commonly used, we refer to the properties
of the eigenvalues and eigenvectors of the adjacency matrix as the properties of the eigenvalues
and eigenvectors of the respective network.
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1.1. Network Model with Losses and Gain

First, we want to recall that there is a one-to-one correspondence between the adjacency matrix A
of Equation (1) and the Hamiltonian matrix H of a ξ-dimensional solid, described by Anderson’s
tight-binding model [2] with zero on-site potentials (Hii = 0) and constant hopping integrals (Hij = 1).
Here, ξ = αN is proportional to the average non-zero off-diagonal adjacency matrix elements per
matrix row and, therefore, may be regarded as the effective dimension of a tight-binding random
network represented by A, as discussed in [3] from a Random Matrix Theory (RMT) point of view.
This correspondence enables the direct application of studies originally motivated by physical systems,
represented by sparse random Hamiltonian matrices, to complex networks. Tight-binding models
are widely used in solid state physics to study the electronic properties of systems composed by atoms
(molecules, potentials, or sites; in more general terms) whose electrons are tightly bound to the atoms
they belong to, so they have limited interaction with neighbor atoms; see, e.g., [4]. Moreover, recently,
tight-binding models have also been studied on random and regular graphs; see some examples in [5–13].

The tight-binding random network model we shall use in our study is defined as follows.
Starting with the standard Erdős–Rényi (ER) network, we add to it self-edges and further consider all
edges to have random strengths. Our main motivation to include weights, particularly random weights,
in the standard ER model is to retrieve well-known random matrices in the appropriate limits in order
to use RMT results as a reference (see below). Moreover, we would like to note that in realistic graphs,
vertices and edges may not be equivalent (i.e., the graph might be composed of different agents,
where different pairs interact with different intensities); therefore, their corresponding adjacency
matrices are not just binary. In this sense, random weights can be considered as a limit case where
all vertices and edges in a graph are different. Indeed, random weights have been used in other
complex network models; see some examples in [14,15]. We have named this model as the ER
fully-random network model [5,16,17]. The sparsity α is defined as the fraction of the N(N − 1)/2
independent non-vanishing off-diagonal adjacency matrix elements. Then, as in the standard ER model,
the ER fully-random network model (whose adjacency matrices come from the ensemble of N × N
sparse real symmetric matrices) is characterized by the parameters N and α. In this study, we add
the imaginary amplitude ±iγ to the self-edge weights of the ER fully-random network model such
that the corresponding adjacency matrices are defined as:

Aij =


εij + (−1)iiγ for i = j,
εij/
√

2 if there is an edge between vertices i and j,
0 otherwise.

(2)

Here, εij = εji are statistically-independent random variables drawn from a normal distribution
with zero mean and variance one. Note that the term ±iγ, with γ 6= 0, makes the adjacency matrix of
the tight-binding random network model non-Hermitian, which, in turn, has complex eigenvalues
and eigenvectors. According to this definition, a diagonal random matrix is obtained for α = 0 and
γ = 0 (Poisson case), whereas the Gaussian Orthogonal Ensemble (GOE) is recovered when α = 1 and
γ = 0. The GOE is a random matrix ensemble formed by real symmetric random matrices A whose
entries are statistically-independent random variables drawn from a normal distribution with zero
mean and variance

〈
|Aij|2

〉
= (1 + δij)/2; see, e.g., [18]. The GOE is commonly used to statistically

represent Hamiltonian matrices corresponding to complex, chaotic, or disordered systems having
time-reversal invariance.

The random network model with the adjacency matrix of Equation (2) is inspired by non-Hermitian
Hamiltonians describing open or scattering systems, systems interacting with an environment, or active
materials. Within the effective non-Hermitian Hamiltonian approach, such opening or interaction
is modeled by adding complex terms to the main diagonal of the Hamiltonian of the system of
interest [19–23]. Indeed, in tight-binding systems, the on-site term ±iγ represents losses (iγ) and
gain (−iγ). Moreover, the term ±iγ allows adding losses and gain to tight-binding systems locally
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by adding this term to selected sites (in regular arrays, the addition of the term iγ to border sites is
commonly used to study scattering and transport properties; see, e.g., [24–26]), globally by adding this
term to all sites in the system (in linear chains, the addition of the term iγ to all sites has been used to
represent a system coupled to a common decay channel; see, e.g., [27,28]), and in a balanced way by
adding iγ to all sites with the same proportion of plus and minus signs (the addition of alternating iγ
and −iγ terms to the sites of one-dimensional non-disordered arrays produces PT-symmetric wires;
see, e.g., [29,30]). In our model, we choose the latter setup, where balanced implies that the network
is formed by an even number of vertices. Our main motivation to choose a balanced loss-and-gain
setup is to limit the number of parameters of the model, since a non-balanced setup would require
including the loss-to-gain ratio as a parameter. Furthermore, since the vertices of our network are
not ordered, the balanced loss and gain is effectively introduced randomly to the network. This is in
contrast to PT-symmetric systems [29], where loss and gain alternate periodically. Thus, in our model,
γ is the loss-and-gain strength.

Therefore, our random network model corresponds to tight-binding random networks with
random on-site potentials, random hopping integrals, and random on-site loss and gain. Our random
network model depends on three parameters: the network size N, the network connectivity α,
and the losses-and-gain strength γ.

1.2. Previous Work

As precedents, we can mention that we have already studied some spectral [16,17],
eigenvector [16], and transport [5] properties of ER-type random networks with a special focus
on universality, from a random matrix theory (RMT) point of view. Moreover, we have also performed
scaling studies on other random networks models, such as multilayer and multiplex networks [15,31]
and random-geometric and random-rectangular graphs [32]. In particular, for ER fully-random
networks, we have shown that [16] the average information entropy 〈S〉 (to be defined below)
is a function of the average degree ξ = αN. Moreover, 〈S〉 describes the delocalization transition
of the network model well: (i) for ξ

<∼ 2, where 〈S〉 ≈ 0, the eigenvectors are practically localized;
hence, the delocalization transition takes place around ξ ≈ 2 (for which 〈S〉 becomes larger than
zero, meaning that the corresponding eigenvectors have more than only one principal component),
which is close to previous theoretical and numerical estimations [33–36]; and (ii) for ξ > 200,
where 〈S〉 ≈ 〈S〉GOE

≡ SGOE ≈ ln(N/2.07), the eigenvectors are practically random and fully
extended. Here, SGOE is the entropy of the eigenvectors of the GOE, i.e., random eigenvectors with
Gaussian-distributed amplitudes. Thus, the study of [16] provides a tool to predict the localization
properties of the eigenvectors of ER-type random networks once the parameter ξ is known.

Thus, in Section 2, we study some eigenvector and eigenvalue properties of the ER tight-binding
random networks with balanced losses and gain, corresponding to the non-Hermitian adjacency
matrices of Equation (2), focusing on scaling and universality from an RMT point of view.

It is fair to say that there are several works in the literature that apply RMT approaches to the study
of spectral and eigenvector properties of non-Hermitian sparse matrices, in some cases already applied
to graphs or network models; see for example [37–46].

2. Results

2.1. Scaling of Information Entropy

In order to characterize quantitatively the complexity, and in specific cases the fractality,
of the normalized eigenvectors Ψ of random matrices (and of Hamiltonians corresponding
to disordered and quantized chaotic systems), the Rényi entropies are widely used:

Rq =
1

1− q
ln

(
N

∑
n=1

(ρn)
q

)
. (3)
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Here, the subindex n refers to the nth eigenvector component, and ρn ≡ |Ψn|2 form the discrete
probability distribution P = (ρ1, . . . , ρN) associated with the eigenvector Ψ (where | · | stands
for the modulus of a complex number); with ρn ≥ 0 and ∑N

n=1 ρn = 1. In our study, we use
the information entropy (given by Equation (3) in the limit q→ 1):

S = −
N

∑
n=1

ρn ln ρn. (4)

Note that the minimal value of S, S = 0, is obtained when only one component in the eigenvector
Ψ concentrates all the probability; while the maximal value of S, S = ln N, is approached when
the probability is evenly distributed over the eigenvector: ρn = 1/N for all n. Any other possible
configuration of probabilities ρn, including the eigenvectors of the GOE, provides 0 < S < ln N.
Therefore, the exponential of S is known to be a good measure of eigenvector localization [47],
since it provides the number of principal components of an eigenvector in a given basis. That is,
when S = 0, the eigenvector has only one principal component, exp(S) = 1, so it is localized;
while it is fully extended, exp(S) = N, when S = ln N. Here, we refer to the principal components
of an eigenvector as the eigenvector components having the largest amplitudes. In fact, S has been
already used to characterize the eigenvectors of adjacency matrices of several random network models
(see some examples in [15,16,48–51]).

With Definition (4), when α = 0 for any γ ≥ 0, since the eigenvectors of the (diagonal) adjacency
matrices of our random network model have only one non-vanishing component with the magnitude
equal to one, then 〈S〉 = 0. On the other hand, for α = 1 and γ = 0, the GOE is reproduced,
and 〈S〉 = SGOE; i.e., the random eigenvectors extend over the N available vertices in the network.
We note that for α = 1 and γ 6= 0, our random network model does not reproduce the GOE and
〈S〉 6= SGOE; however, we observe that 〈S〉 ≈ SGOE, so we use SGOE as the reference information entropy.

Below, we use exact numerical diagonalization to obtain the eigenvectors Ψm and eigenvalues
λm (m = 1 . . . N) of the adjacency matrices of large ensembles of tight-binding random networks
characterized by N, α, and γ. Then, we average over all eigenvectors of an ensemble of adjacency
matrices of size N to compute 〈S〉. We have verified that our conclusions are not modified when we
restrict the averages to a fraction of the eigenvectors around the band center, which is a prescription
commonly used in RMT studies.

In Figures 1 and 2, we show the average information entropy 〈S〉, normalized to SGOE, as a
function of the connectivity α for the adjacency matrices of ER tight-binding random networks with
balanced losses and gain. We observe that the curves of 〈S〉 /SGOE, for any combination of N and γ,
have a very similar functional form as a function of α: the curves 〈S〉 /SGOE show a smooth transition
from approximately zero (localized regime) to approximately one (delocalized regime) when α increases
from α ∼ 0 (mostly isolated vertices) to one (fully-connected graphs).
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Figure 1. Average information entropy 〈S〉 normalized to SGOE ≈ ln(N/2.07) as a function of the connectivity
α of Erdős–Rényi tight-binding random networks (of sizes ranging from N = 250–2000) with balanced losses
and gain with strength γ. (a) γ = 0.01, (b) γ = 1, and (c) γ = 2. Each symbol was computed by averaging
over 106 eigenvectors.
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Figure 2. Average information entropy 〈S〉 normalized to SGOE ≈ ln(N/2.07) as a function of the connectivity
α of Erdős–Rényi tight-binding random networks of size N with different loss-and-gain strengths γ.
(a) N = 250, (b) N = 1000, and (c) N = 4000. Insets: enlargements of the boxes around
the localization-to-delocalization transition point in main panels. Each symbol was computed by averaging
over 106 eigenvectors.

From Figure 1, for fixed γ, we observe that the larger the network size N, the smaller the value
of α needed to approach the delocalized regime. Furthermore, note that the curves of 〈S〉 /SGOE vs. α

are shifted to the left on the α-axis for increasing N. All this panorama is in accordance with the case
γ = 0, as shown in [16]. In contrast, for fixed N, the curves of 〈S〉 /SGOE vs. α are displaced to the right
on the α-axis for increasing γ; clearly seen in the insets of Figure 2. As a reference, we include the
case γ = 0 as black full lines in all panels of Figure 2. Moreover, the fact that these curves, plotted
in semi-log scale, are just shifted on the α-axis when tuning N or γ makes us forecast the existence
of a scaling parameter that depends on both N and γ. In order to look for the scaling parameter,
we first define a quantity to characterize the position of the curves 〈S〉 /SGOE on the α-axis: indeed,
we choose the value of α, which we label as α∗, for which 〈S〉 /SGOE ≈ 0.5. Notice that α∗ characterizes
the localization-to-delocalization transition of the eigenvectors of our network model.

Then, in Figure 3a,b, we present the localization-to-delocalization transition point α∗ as a function
of N and γ, respectively. On the one hand, the linear trend of the data (in log-log scale) in Figure 3a
implies a power-law relation of the form:

α∗ = CNδ . (5)
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Figure 3. Localization-to-delocalization transition point α∗ (defined as the value of α for which
〈 S 〉/SGOE ≈ 0.5) as a function of (a) the network size N (for several values of γ) and (b) the loss-and-gain
strength γ (for several values of N). In (b), we set δ to −0.98. Dashed lines in (a) and (b) proportional to
N−0.98 and γ, respectively, are plotted to guide the eye; see Equations (5) and (6).

In fact, Equation (5) provides very good fittings to the data (the values of the fitting parameters
are reported in Table 1). Note that δ ≈ −0.98 for all γ > 0, a slight difference with the case γ = 0
where δ ≈ −1; see also [16]. On the other hand, in Figure 3b, we plot the ratio α∗/Nδ, with δ = −0.98,
as a function of γ. With this, we already take into account the scaling stated in Equation (5), which,
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at the same time, allows us to examine the dependence of α∗ on γ more easily. Indeed, for γ > 0.4,
we conclude that:

α∗

Nδ
= C ≈ 2 +

γ

4
. (6)

Table 1. Values of C and δ obtained from the fittings of the curves α∗ vs. N of Figure 3a with Equation (5).

γ 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

C 2.18 2.06 2.09 2.11 2.17 2.27 2.28 2.33 2.4 2.46 2.5
δ −0.997 −0.982 −0.979 −0.976 −0.976 −0.976 −0.978 −0.977 −0.979 −0.979 −0.979

Therefore, by plotting again the curves of 〈S〉 /SGOE now as a function of the connectivity divided
by the localization-to-delocalization transition point,

ξ ≡ α

α∗
, (7)

we observe that curves for different parameter combinations (N, γ) collapse on top of a universal
curve; i.e., a curve that depends on the parameter ξ only; see Figure 4. This means that once the ratio
ξ is fixed, no matter the graph size and the loss-and-gain strength, the information entropy of the
eigenvectors is also fixed.
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Figure 4. Average Shannon entropy 〈S〉 normalized to SGOE as a function of the scaling parameter ξ

(see Equation (7)) of Erdős–Rényi tight-binding random networks with losses and gain. (a) N = 250
for different values of loss-and-gain strength γ, (b) γ = 1 for different network sizes N, and (c) different
combinations of N and γ.

2.2. Eigenvalue Properties

Once we have found that ξ (see Equations (6) and (7)) is the parameter that scales the eigenvector
properties (characterized by their information entropy) of our model of random networks with losses
and gain, we believe that other properties (i.e., spectral properties) of the network model may also
be scaled by the same parameter. Thus, in the following, we validate our surmise by analyzing
the corresponding eigenvalues.

Recall that for γ = 0, the adjacency matrices of our random network model are Hermitian
and the corresponding spectra are real. For any γ > 0, the adjacency matrices become non-Hermitian
and their eigenvalues λ are complex numbers.

Now, in Figure 5, we show density plots (in the complex plane) of the eigenvalues λ of
Erdős–Rényi tight-binding random networks with losses and gain for several parameter combinations.
In this figure, we can clearly see the competition of the two main parameters of the model: the sparsity α

and the loss-and-gain strength γ (for fixed N). On the one side, for small α (i.e., mostly isolated vertices),
the main diagonal of the adjacency matrices dominates and the imaginary part of the corresponding
eigenvalues is approximately equal to ±iγ; see Figure 5 (left panels). That is, the eigenvalues form two
thin clouds around ±iγ. On the other side, for large α (i.e., highly-connected graphs), the density of
off-diagonal elements of the adjacency matrices is also large, and the corresponding eigenvalues form
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a cloud with center at the origin of the complex plane that gets wider for increasing γ; see Figure 5
(right panels) with 0.001 < γ < 0.5. Moreover, for γ ≈ 1, this cloud splits into two clouds that
separate further from the real axis for even larger values of γ; see Figure 5 (right panels) with
γ > 0.5. It is remarkable that the cloud splits for γ ≈ 1, since it corresponds to the super-radiance
transition value reported for full random matrices [52], one-dimensional disordered tight-binding
wires [26,27,53–55], and random many-body systems [56].

Figure 5. Density plots of eigenvalues λ in the complex plane for several combinations of sparsity α

and loss-and-gain strengths γ. The network size was set to N = 1000. The sparsity increases from
left to right, while the loss-and-gain strength from top to bottom. To construct each density plot, 106

eigenvalues were used.

The super-radiance transition is a phase transition that occurs, as a function of the coupling
strength, in quantum systems coupled to common decay channels; see, e.g., [20–23,57]. It was originally
predicted by the Dicke model of super-radiance [58]. In very general terms, this transition occurs
at a given coupling strength above which a number of internal states (eigenvalues) acquire decay
widths (imaginary part of the eigenvalues) proportional to the coupling strength. Thus, even though
a more detailed analysis is necessary, we can assume that the splitting of the density plots of eigenvalues
in the complex plane at γ ≈ 1 (as observed in Figure 5) is a signature of the super-radiance transition
in our tight-binding random network model.

Finally, for moderate values of α, as reported in Figure 5 (central panels), the combination
of the two situations described above occurs: for small γ, the eigenvalues form three clouds
in the complex plane, two thin ones close to ±iγ, and a third one with the center at the origin
of the complex plane; for increasing γ, the middle cloud gets wider and splits into two clouds that, for
large enough γ, merge with the thin clouds at ±iγ.

Notice that the panorama shown in Figure 5 (where networks of size N = 1000 were used),
even though it is valid for any N, will be shifted for different network sizes; as can be inferred
from the information entropy of the eigenvectors reported in Figure 1. Moreover, the scaling
analysis made in the previous subsection allowed us to define the scaling parameter ξ that fixes
the eigenvector properties of our random network model, as shown in Figure 4. Therefore, in Figure 6
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we present density plots of eigenvalues for three network sizes and increasing values of ξ (from top to
bottom). It is clear from Figure 6 that once ξ is fixed, the density of eigenvalues in the complex plane
is (statistically) the same for different parameter combinations. Thus, we validate that the eigenvalue
properties of our model are also scaled with the parameter ξ.

Figure 6. Density plots of eigenvalues λ in the complex plane for three network sizes N (500, 1000,
and 2000) and increasing values of ξ (from top to bottom). To construct each density plot, 106

eigenvalues were used.

3. Summary

In this paper, we have numerically studied the eigenvector and eigenvalue properties of the
adjacency matrices of tight-binding random networks with balanced losses and gain. In particular,
we focused on scaling and universality from a random matrix theory point of view. We would like to
stress that even though we already have some previous experience with scaling studies of random
network models (see, e.g., [5,15–17,32]), this is the first time we apply this technique to non-Hermitian
adjacency matrices.

Specifically, we have considered Erdős–Rényi tight-binding random networks with self-loops
(where all non-vanishing adjacency matrix elements are Gaussian random variables) and add
the imaginary term ±iγ to the weights of all vertices to emulate losses (iγ) and gain (−iγ). We assume
balanced losses and gain, so that we include the same number of positive and negative terms iγ.
This implies the number of vertices in the network to be an even number. Thus, our random
network model depends on three parameters: the network size N, the network connectivity α,
and the losses-and-gain strength γ.

First, by the proper scaling analysis of the information entropy of the eigenvectors of the adjacency
matrices of our random network model, we obtain ξ ≈ 4α/(8+γ)Nδ, with δ = −0.98; see Equations (6)
and (7). Here, ξ ≡ ξ(N, α, γ) is the scaling parameter of the model; that is, for fixed ξ, the information
entropy of the eigenvectors is also fixed; see Figure 4. Our analysis provides a way to predict the
localization properties of the random networks with losses and gain: for ξ < 0.1, the eigenvectors
are localized; the localization-to-delocalization transition occurs for 0.1 < ξ < 10; while when
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10 < ξ, the eigenvectors are extended. Moreover, by recalling that in tight-binding systems,
a localization-to-delocalization transition implies an insulator-to-metal transition in the corresponding
scattering setup, our results might be used to design the conduction properties of the tight-binding
network since tuning N, α, and γ could drive the network from a regime of localized eigenvectors
(insulating regime), ξ < 0.1, to a regime of delocalized eigenvectors (metallic regime), ξ > 10.

Therefore, to extend the applicability of our findings, we demonstrate that for fixed ξ, the spectral
properties (characterized by the position of the eigenvalues on the complex plane) of our network
model are also universal; i.e., they do not depend on the specific values of the network parameters;
see Figure 6.

We expect our results may motivate further numerical, as well as analytical efforts towards
the understanding of networks with non-Hermitian adjacency matrices.
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