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Abstract Biomarkers are deemed to be potential tools in early diagnosis, therapeutic monitoring,

and prognosis evaluation for cancer, with simplicity as well as economic advantages compared with

computed tomography and biopsy. However, most of the current cancer biomarkers present insuf-

ficient sensitivity as well as specificity. Therefore, there is urgent requirement for the discovery of

biomarkers for cancer. As one of the most exciting emerging technologies, protein array provides

a versatile and robust platform in cancer proteomics research because it shows tremendous advan-

tages of miniaturized features, high throughput, and sensitive detections in last decades. Here, we

will present a relatively complete picture on the characteristics and advance of different types of

protein arrays in application for biomarker discovery in cancer, and give the future perspectives

in this area of research.
Introduction

Biological markers (biomarkers) are defined as ‘‘cellular, bio-
chemical or molecular alterations that are measurable in bio-

logical media such as human tissues, cells, or fluids” [1].
Such alterations can be caused by various factors, such as
germline or somatic mutations, transcriptional changes, and
posttranslational modifications (PTMs). To this date, a wide

variety of biomarkers in the forms of proteins (e.g., antigens
or antibodies), nucleic acids (e.g., mutations in genomic

DNA, microRNAs, or other non-coding RNAs), or protein
PTMs, have been identified and routinely used for clinical
diagnoses of different diseases including cancers [2].

In recent years, numerous technologies have been applied
for discovery of biomarkers to improve early diagnosis, thera-
peutic stratification, and prognosis for cancer patients who
have undergone treatments. Protein array/microarray is one

of the most exciting emerging technologies, which is deemed
to serve as a versatile and robust tool in cancer proteomics
research due to its tremendous advantages of miniaturized fea-

tures, high throughput, and sensitive detections [3–5]. When
compared with the DNA array technology in particular, the
protein array-based approaches are capable of analyzing a

wide variety of biochemical properties of the protein entities,
the ultimate driving force in a cell [6]. Fabricated by arraying
nces and
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Figure 1 Classification of three types of protein arrays

A. Analytical protein array is usually composed of well-charac-

terized affinity reagents as immobilized probes, such as antibodies

and lectins, to detect and/or quantify a large number of proteins

present in a complex biological sample. In this class of arrays,

targeted proteins can be detected either by direct labeling or using

a reporter antibody in sandwich assay format. B. Functional

protein arrays have broad applications in studying the biochem-

istry properties of proteins, such as protein binding activities and

enzyme–substrate relationships. C. Reverse-phase protein arrays,

comprised of many lysate samples, offer a platform to analyze

signaling pathways.
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with hundreds to thousands of individually-purified proteins
(or mixtures of proteins) at extremely high density on a solid
surface, the protein array technology allows for simultaneous

investigations of hundreds of thousands of targets in a single
experiment. Moreover, various recent advances in the array
technologies have demonstrated that this platform is suitable

for the discovery of novel biomarkers [6]. Here, we summarize
different protein array platform-based technologies and their
specific applications in the cancer biomarker research, which

is expected to demonstrate the potential and promote the use
of this relatively new technology in the field of translational
medicine.

Overview of the protein array technology

In general, a protein array/microarray, also known as a pro-

tein chip, is formed by immobilizing individually-purified pro-
teins onto a microscopic slide-based surface by using a robotic
system, which can be either a contact [7] or a noncontact print-

ing tool [8]. Alternatively, the proteins to be immobilized on an
array can also be synthesized in situ [9]. On the basis of their
fabrications and applications, protein arrays can be classified
into three major categories: analytical, functional, and

reverse-phase protein arrays (RPPAs) [6] (Figure 1). Analytical
protein arrays, comprised of well-characterized affinity
reagents, such as antibodies, lectins, and aptamers, are gener-

ally used to detect and/or quantify many proteins present in
cultured cells and tissues [10,11]. Thus, a wide variety of bio-
logical samples, such as lysates of cells, tissues, and tumors,

can be readily assayed using this type of protein arrays, as evi-
denced by their wide uses in biomarker identification, protein
expression profiling, clinical diagnosis/prognosis, as well as

environmental and food safety analysis [12]. However, applica-
tions of this type of analytical protein arrays are limited by the
availability and quality of the affinity reagents. Indeed, more
and more researchers start to realize the importance of gener-

ating a large number of renewable antibodies that have been
substantially characterized and validated for their binding
specificity, affinity, and applications [13].

Functional protein arrays, which are usually constructed by
spotting a large number of individually-purified recombinant
proteins encoded by a given organism [6,14,15], represent

another important class of protein arrays. When >60% of full
length proteins encoded by a given organism are presented on
a functional protein array, they can be referred as proteome

arrays. To this date, proteome arrays have been constructed
for several important model organisms, such as Escherichia
coli [16], Saccharomyces cerevisiae [17], and humans [3,18]. In
recent years, proteins over-expressed in tissue culture or

in vitro translated without further purification have also been
used to fabricate functional protein arrays [19,20]. In general,
functional protein array-based approaches are useful to query

various types of binding activities of proteins, such as protein–
protein [7,21], protein�peptide [22], protein–nucleic acids
[23,24], protein�glycan [25], protein–small molecules [26],

and protein�lipid interactions [7]. Furthermore, they can also
be used to investigate protein PTMs, such as protein phospho-
rylation [27,28], ubiquitylation [29], acetylation [30,31], and
S-nitrosylation [32]. Applications of functional protein arrays

have been dramatically expanded to translational research
over the past decade. The most rapidly growing application
of the functional protein arrays is, perhaps, in the field of sero-
logical biomarker identification. Such application has stemmed

from the traditional serological studies, which search for the
diagnostic identification of autoantibodies that are commonly
found in serum samples of cancer patients. Although the exact

molecular mechanisms underlying this phenomenon still
remain unclear, it is generally speculated that a patient’s own
aberrantly-expressed proteins in cancerous tissues could trig-

ger an immune response [33]. Based on a similar principle,
all of the proteins presented on a human proteome array can
be assayed for their immunogenic activity via performing

serum profiling assays, to identify serological biomarkers asso-
ciated with a human disease or cancer [34].

RPPA, also known as a protein lysate array, is a special for-
mat of protein microarray. Instead of capturing analytes of a

biological sample with affinity reagents, the analytes them-
selves, often cell or tissue lysates, as well as body fluids, in
serial dilutions, are immobilized and arrayed on a glass slide

at high density to form a RPPA [35]. Subsequently, antibodies



C
o
n
s

R
ef
s.

R
el
y
in
g
o
n
a
v
a
il
a
b
il
it
y
a
n
d

q
u
a
li
ty

o
f
ex
is
ti
n
g
a
n
ti
b
o
d
ie
s

[6
]

R
el
y
in
g
o
n
a
v
a
il
a
b
il
it
y
a
n
d

q
u
a
li
ty

o
f
ex
is
ti
n
g
le
ct
in
s

[1
1
]

H
ig
h
co
st
,
d
iffi

cu
lt
to

fa
b
ri
ca
te

[1
4
,1
5
]

R
el
y
in
g
o
n
a
v
a
il
a
b
il
it
y
a
n
d

q
u
a
li
ty

o
f
ex
is
ti
n
g
a
n
ti
b
o
d
ie
s

[6
]

Huang Y and Zhu H /Protein Arrays to Discover Cancer Biomarkers 75
with known binding properties are individually incubated onto
the RPPA to examine specific epitopes, protein sequences,
and/or structures. Since many lysate spots can be readily fit

on a single glass slides, this technology offers a high-
throughput platform for rapidly assaying a particular signaling
event across many tissues or cell lines. Therefore, RPPA allows

for examination of key signaling components of an intracellu-
lar pathway (or biomarker patterns) among many samples in a
high-throughput fashion [36]. It has been used for studying

differentially-regulated signaling networks in cell lines and
clinical samples [37]. Therefore, such multifaceted and diverse
spectra of various types of protein arrays have enabled their
applications and potential uses in the cancer biomarker

research (Table 1).
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Applications of analytical protein array for cancer

biomarker discovery

The analytical protein array has been applied to identify
biomarkers for a wide variety of cancers, because it allows

simultaneously monitoring hundreds of thousands of protein
samples in cells or tissues. One early and remarkable study
was reported by Orchekowski et al. [38] in 2005. The authors

used an antibody array, comprised of 92 antibodies, to profile
protein contents in sera collected from 142 individuals with
pancreatic cancer or benign pancreatic diseases, and from

healthy individuals. As a result, they were able to identify pro-
tein signatures that could distinguish cancer patients from nor-
mal controls with a sensitivity and specificity of >90%. This
study demonstrated the development and application of ana-

lytical arrays for identification of potential cancer biomarkers.
In another study, Ingvarsson et al. [39] employed a special
antibody array, comprised of various recombinant single-

chain fragment-variable (scFv) antibodies, and profiled serum
samples collected from pancreatic cancer patients to generate
protein signatures of each sample. As negative controls, they

also profile sera from healthy controls. Interestingly, they iden-
tified a protein signature consisting of 21 proteins that was
potentially associated with cancer patients, who had a life

expectancy of <12 months. In a more recent multicenter trial,
analytical protein microarrays have also been applied for the
biomarker discovery in pancreatic cancer [40]. This study
aimed to identify a diagnostic, serological protein signature

for pancreatic ductal adenocarcinoma (PDAC). Gerdtsson
et al. [40] employed an antibody array, which consisted of
293 recombinant antibodies targeting immunoregulatory and

cancer-associated antigens. They applied this array to a multi-
center trial, comprised of a serum sample cohort of 338
patients with either PDAC or other pancreatic diseases

(OPD) and controls with nonpancreatic conditions (NPC), to
better mimic a real-life scenario. Consequently, they identified
a multiplex biomarker panel of 10 serum proteins that could

distinguish PDAC from controls with high sensitivity and
specificity (91%–100%), demonstrating the potential of utiliz-
ing a multiplex biomarker panel-based immunoassay to
improve PDAC diagnosis. All of the studies above represented

the application of analytical protein arrays in the discovery of
pancreatic cancer biomarkers, which may have the potential to
achieve more accurate diagnosis and screening for high-risk

individuals.
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In addition to pancreatic cancer, breast cancer is another
example that analytical protein arrays have been widely
adopted as an unbiased screening tool for profiling the protein

contents in cell lines, tissues, and patient sera. In an early
attempt, Woodbury et al. [41] employed an antibody array
to detect hepatocyte growth factor (HGF) as a biomarker in

the sera collected from breast cancer patients using tyramide
signal amplification (TSA). Another type of sample, namely
the interstitial fluids collected from breast cancer patients,

was also analyzed in a similar way. Using a variety of different
methods, including an anti-cytokine antibody array, Celis et al.
[42] analyzed the microenvironment of cells derived from
breast cancer in search for potential biomarkers and therapeu-

tic targets. In a follow-up study, the same research group [43]
focused on the adipocytes, which also contribute to the tumor
environment, using multiple methods including an antibody

microarray. They were able to provide a landscape of the
mammary fat proteomes that were relevant to high-risk breast
cancer. Furthermore, Lin et al. [44] employed an anti-cytokine

antibody array to detect the expression levels of different
cytokines in breast cancer, resulting in the identification of
interleukin 8 for its crucial role in breast cancer oncogenesis.

Proteome-wide comparisons between the breast cancer and
normal tissues have also been explored. For instance, Hudelist
et al. [45] used a microarray composed of a commercial panel
of 378 monoclonal antibodies to identify dysregulated protein

expression levels within breast cancer cells as compared with
those in normal tissues. As a result, some potential biomark-
ers, including casein kinase 1 epsilon (CSNK1E), p53

(TP53), cell division cycle 25C (CDC25C), annexin A11
(ANX11), eukaryotic translation initiation factor 4E (EIF4E)
and mitogen-activated protein kinase 7 (MAPK7), were suc-

cessfully identified to have increased expression levels in breast
cancer.

In addition to the understanding of the biological mecha-

nisms, analytical protein arrays have also been applied to pro-
file drug resistance. In one study, Smith et al. [46] employed an
array of 224 antibodies that could recognize various signaling
components of diverse pathways, and determined the changes

in the expression levels of these signaling components relevant
to doxorubicin resistance. This study demonstrated the effec-
tiveness of this tool in understanding the systematic effects

of different therapeutic regimens, allowing for better under-
standing of the cause of drug resistance. Therefore, this study
showed the potential in improving personalized medicine.

Plant and fungal lectins have long been known to specifi-
cally recognize simple or complex glycan structures on proteins
or cell surfaces. Researchers have taken advantages of this spe-
cial protein family as affinity reagents to understand the phys-

iological role of glycosylation in various systems. For example,
Kuno et al. [47] created an antibody-assisted lectin profiling
assay to search for glycol-biomarkers. They used a model gly-

coprotein, podoplanin (hPod), to demonstrate that this pipe-
line could identify glycol-biomarker for metastasized
glioblastoma cells. Because of this special binding property,

lectins have also been employed recently as capture reagents
for construction of analytical protein arrays. Indeed, two
research groups pioneered the development and application

of lectin arrays in profiling glycan structures of cell lysates
and live cells [48,49]. Tao et al. spotted 98 commercial lectins
on nitrocellulose-coated glass slide and profiled accessible gly-
cans of 24 live mammalian cell lines [49]. When they compared
the glycan profiles obtained from a sphere cell population,
which was enriched for cancer stem cells, and its parental cells
(e.g., MCF7 cells), three lectins, namely Lycopersicon esculen-

tum lectin (LEL), Aleuria aurantia lectin (AAL), and wheat
germ agglutinin (WGA), could preferentially capture MCF
cells but not the sphere cells. To confirm whether these lectins

could serve as biomarkers and enrich cancer stem cells, the
authors used a mouse xenograft model and showed that
LEL-depleted MCF cells were much more tumorigenic than

the parental MCF cells. Later on, Huang et al. [50] spotted
37 commercially-available lectins, which could specifically rec-
ognize both N- and O-linked glycans, to form a lectin array,
and applied it to obtain the lectin signatures of gastric cancer

(GC) and gastric ulcer. They observed that glycosylation level
was much higher in the paraffin-embedded GC tissues with a
distinct lectin/glycan signature from that of gastric ulcer tis-

sues. Two lectins,Maclura pomifera lectin (MPL) and Vicia vil-
losa lectin (VVA), were further validated as biomarkers for GC
via a lectin histochemistry assay. In another study, Nakajima

et al. [51] profiled the lectin–glycan interactions via probing
total protein preparations extracted from a large number of
paraffin-embedded colorectal cancer and normal epithelium

samples on a lectin array comprised of 45 lectins. In their val-
idation studies, one lectin, Agaricus bisporus lectin (ABA), was
found to show statistically significant association with recur-
rence of the curatively-resected colorectal cancer.
Applications of functional protein array for cancer

biomarker discovery

When a functional protein array is used for serum profiling,
autoantibodies are usually detected as biomarkers for diagno-

sis of cancer appearance and for monitoring the cancer pro-
gress due to their stability, specificity, and ease of detection,
as compared with other serological components [52]. Although

the first proteome array consisting of 5800 unique yeast pro-
teins spotted on a single glass slide was introduced in 2001
by Zhu et al. [7], functional protein arrays have become a pop-

ular tool for serum profiling only after the human proteome
arrays composed of hundreds of thousands of individually-
purified human proteins were constructed several years later
[53,54]. In general, the following approach is used for discov-

ery and validation of serological biomarkers: first, each patient
serum sample is diluted (e.g., 1000-fold) in TBST and incu-
bated on a pre-blocked human proteome microarray (e.g.,

HuProt), followed by a stringent washing step. Next, captured
human immunoglobulin on the human protein arrays is
detected using fluorescently-labeled anti-human secondary

antibodies (e.g., anti-IgG, anti-IgM, or anti-IgA) for detection.
Binding signals are then acquired with a microarray scanner
and analyzed with GenePix software. Since most scanners have
two laser sources, anti-IgG and anti-IgM can often be multi-

plexed. Unlike the traditional serological techniques, such as
ELISA, agglutination, precipitation, and indirect immunofluo-
rescence, which are all based on known antigens, functional

protein array-based serum profiling offers an unbiased discov-
ery tool for identification of novel biomarkers via surveying
the entire human proteome in a single binding assay. It is also

more sensitive than the traditional methodologies because each
antigen protein on a functional protein array is purified with
known identity. One representative study of such was reported
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in 2007 by Hudson et al. [55]. The authors applied a human
functional protein array, composed of 5005 purified human
proteins, to screen for autoantibody biomarkers in ovarian

cancer. After screening 30 serum samples from cancer patients
and 30 from healthy individuals, the authors identified 94 anti-
gens that were preferentially recognized by sera in cancer

patients. Four antigens, lamin A, lamin C, structure-specific
recognition protein-1 (SSRP1), and Ral binding protein 1
(RALBP1), were further validated using immunoblotting anal-

ysis and tissue arrays.
An important goal of identifying cancer biomarkers is to

define new strategies for early diagnosis that would allow early
intervention with current therapies to improve patient survival

rates. Moreover, since cancer-associated autoantibodies often
target proteins that are mutated, modified, or aberrantly
expressed in tumor cells, they could also be considered

immunologic reporters that could uncover the etiology under-
lying tumorigenesis [56]. There is an urgent need to develop
high-throughput diagnostic techniques for early diagnosis

and treatment of prostate cancer (PCa). Adeola et al. [57] uti-
lized an array of 123 tumor-associated antigens to measure the
autoantibodies in serum samples from patients with PCa. They

also used samples collected from patients with benign prostatic
hyperplasia (BPH) and healthy control group as negative con-
trols in South Africa. They were able to identified 41 potential
markers for the diagnosis and treatment of PCa. The quantita-

tive analysis showed that the antibody titers of G antigen 1
(GAGE1), rhophilin associated tail protein 1 (ROPN1), sperm
protein associated with the nucleus, X-linked, family member

A1 (SPANXA1), and protein kinase C zeta (PRKCZ) in the
serum samples from PCa patients were higher than those from
BPH patients, and melanoma antigen family B1 (MAGEB1)

and PRKCZ were found to be highly expressed. Differential
expression analysis showed that, as compared with BPH
patients and healthy control subjects, expression of 24 different

antigens in PCa patients was significantly up-regulated and
expression of the 11 antigens was down-regulated. This study
provides a valuable demonstration of the power of the func-
tional protein arrays for the identification of autoantibodies,

tumor-associated antigens, and applications for discovery of
novel cancer biomarkers.

While the uniformity and high sensitivity of protein samples

are the obvious advantages of the functional protein arrays,
their applications can be limited by the extent of protein
Table 2 Available high-content functional protein arrays

Types of array (species) No. of proteins Pro

HuProt (human) 20,000 >7

ProtoArray (human) >9000 �4

PrESTs (human protein fragments) >20,000 N/A

Arabidopsis thaliana (plant) 17,400 50%

Saccharomyces cerevisiae (fungus) 5800 �8

Mycobacterium tuberculosis (bacterium) 4262 >9

Escherichia coli (bacterium) 4256 >9

NAPPA (human) �4000 �1

Pathogenic antigens (bacteria) 200–4000 N/A

Herpesvirus (virus) 350 N/A

Influenza (virus) 127 N/A

Note: HuProt, Human Proteome Microarray; NAPPA, Nucleic Acid-Prog
coverage. To this end, many research groups and commercial
entities have begun to expand the availability of proteome-
wide arrays. From a technological point of view, functional

protein arrays of high reliability and quality are becoming
more readily available (Table 2). Indeed, a functional protein
array with the coverage of a given proteome would be the ideal

tool for the discovery of novel cancer autoantibody biomark-
ers. For example, a functional human proteome array (e.g.,
HuProt array vII), comprised of �17,000 full-length proteins

with �75% coverage of the human proteome, was employed
in a study by Yang et al. [3] to discover and validate serum
autoantigens with potential for diagnosis and prognosis of
GC. The authors assembled an impressive large set of serum

samples (N = 1401) collected from 537 GC patients and 314
individuals of GC-related diseases, as well as 550 healthy con-
trols. To ensure the success of this approach by avoiding

potential overfitting problems, they adopted the two-phase
strategy for biomarker identification [54]. In phase I, the
HuProt arrays were surveyed with a smaller cohort of 87

serum samples from GC patients and healthy controls to
screen for candidate autoantigens associated with GC. In
phase II, a focused protein array of low cost was fabricated

by spotting the identified candidate proteins in a 2 � 6 format
on a single slide to allow for simultaneously profiling groups of
12 serum samples per slide. A much larger cohort of 914 sam-
ples were then assayed on these focused arrays in a double-

blind fashion to validate the candidates identified in Phase I.
Finally, the authors tested the performance of those validated
biomarkers in the traditional ELISA assays, aiming at future

clinical applications. As a result, four autoantigens, including
constitutive photomorphogenesis protein (COP9) signalosome
complex subunit 2 (COPS2), cathepsin F (CTSF), 50-
nucleotidase ecto (NT5E), and telomeric repeat binding factor
1 (TERF1), were confirmed as a new panel of biomarkers that
could discriminate GC patients from healthy individuals with

approximately 95% sensitivity and 92% specificity. Finally,
the authors tested combinations of these individual markers
and suggested that they could also serve as independent predic-
tors of the overall survival rates of the GC patients.

In addition to the representative works discussed above,
functional protein arrays have been used for hunting serolog-
ical biomarkers in other cancers, such as lung cancer [58], col-

orectal cancer [59], breast cancer [60], and head and neck
cancer [61], to name a few.
teome coverage Company/lab Refs.

0% CDI Laboratories, Zhu Lab [3,18]

5% Life Technologies [66]

Uhlen Lab [67]

Dinesh-Kumar/Snyder Labs [68]

5% Zhu/Snyder Labs [7,30]

8% BC-Bio, Tao Lab [69]

8% Zhu/Chen Labs [70]

5% Labaer Lab [71]

Antigen Discovery, Felgner Lab [72]

Zhu/Hayward Labs [73]

Carter Lab [74]

rammable Protein Array; PrESTs, protein epitope signature tags.
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Applications ofRPPA for cancer biomarker discovery

The term ‘‘reverse-phase protein array” was proposed by
Paweletz and colleagues in 2001 as opposed to antibody array

[35]. Instead of spotting down affinity reagents to detect
proteins-of-interest in a complex biological sample, lysates of
cells or tissues are immobilized on the array surface to form a

RPPA.While various kinds of antibody arrays have been applied
to investigate breast cancers, RPPAs have also been used for the
same purpose. Although analytical and functional protein arrays
are the preferred tools to determine many different attributes for

one analyte, RPPA offers an interesting platform that allows the
researchers to focus on understanding a specific process among
many different cell types or patient samples in parallel [62].

One obvious advantage of RPPA is to allow evaluation of the
phosphorylation status of important signaling components of a
given signaling pathway. For example, Rapkiewicz et al. [37]

lysed archival cytological aspirate smears and frozen fine-
needle aspirate samples to form a RPPA. Using commercial
antibodies, they showed that proteins of interest could still

be reliably quantitated even at low abundance and in either
phosphorylated or un-phosphorylated forms.

Using RPPA as a tool, large panels of cancer cells have
been studied and some potential biomarkers have been discov-

ered. For example, Mendes et al. [63] fabricated a RPPA with
lysates extracted from 90 different cell lines of 12 different cell
types. Using phosphosite-specific antibodies targeting different

signal transduction pathways, such as the phosphoinositide 3-
kinase (PI3 K), epidermal growth factor receptor (EGFR), and
vascular endothelial growth factor (VEGF) pathways, they

were able to determine that the PI3K signaling pathway was
up-regulated in different tumor types, and that the VEGF-
angiogenesis pathway was down-regulated in hematopoietic
cancers. Interestingly, they also observed that the EGFR sig-

naling was the most heterogeneous pathway across all the cell -
lines tested, which provides important clinical implications for
therapeutic target. In a recent study, Conti et al. [64] applied

the RPPA technology to identify crosstalk between different
signaling pathways using a set of 34 soft tissue sarcoma
(STS) bone metastasis samples by comparing with those in

healthy bone tissues. They identified that proteins associated
with cellular matrix remodeling, cell adhesion, and growth/sur-
vival were elevated in bone metastasis than in normal bones.

Furthermore, they found that linkage between syndecan-1,
pY576/577-focal adhesion kinase (FAK), pY317-SH2 domain
containing transforming protein (SHC) and EGFR,
pY1135/1136-insulin-like growth factor (IGF), PI3K/AKT

was a prominent feature of STS bone metastasis, while ele-
vated linkage between receptor activator of nuclear factor
kappa-B ligand (RANKL) and pT37/46-eukaryotic translation

initiation factor 4E-binding protein 1 (4EBP1), EGFR,
pY1135/1136- IGF-1 receptor (IGF1R), pY41-Src, pY317-
SHC, PI3K p110 gamma (PI3Kp110c) was associated with

short survival. Their study provided clues to understand the
linkage between cellular matrix remodeling and cell adhesion,
suggesting that growth signaling might drive STS metastasis
and examination of the phosphorylation status of these signal-

ing molecules could be used for prognostic strategies.
A more exciting direction, perhaps, is to apply RPPA for

the discovery of potential drug targets. For example,
VanMeter et al. [65] used RPPAs to quantitatively detect EGFR
phosphorylations in samples from patients of non-small-cell lung
cancer (NSCLC) carrying mutant EGFR compared with those

carrying wild type EGFR, and revealed simultaneously-
elevated phosphorylation at Tyr-1148 and Tyr-1068 and reduced
phosphorylation at Tyr-1045 of EGFR. In addition, they also

detected reduced phosphorylation in signaling proteins related
to EGFR including the human epidermal growth factor receptor
2 (HER2) at Tyr-1248, insulin receptor substrate 1 (IRS-1) at

Ser-612, and SMAD at Ser-465/467. To assess which subset of
phosphorylations was associated with ligand induction, they also
evaluated the phosphorylation time course of 115 signaling pro-
teins in NSCLC cell lines with mutant and wild-type EGFR

after EGF ligand stimulation. Interestingly, following EGF
ligand stimulation, EGFR mutant cell line H1975 with L858R
showed phosphorylation at Tyr-1045 of EGFR and at Tyr-

1248 of HER2 with a similar pattern to that found in tumor tis-
sue. Additionally, persistence of phosphorylation for AKT at
Ser-473 was found in EGFR mutant cell line H1975. Their stud-

ies explored multiple site-specific phosphoproteins in vivo in cell
lines containing the EGFR tyrosine kinase domain mutations
and provided the key insights into the potential drug targets

for NSCLC.

Outlook

One of the most important goals for oncologists worldwide is
to achieve early diagnosis and make accurate prognostic pre-
dictions. This would require a panel of biomarkers that, ide-

ally, would be non-invasive and of high sensitivity and
specificity. We believe that protein-based array approaches
are playing and will continue to play a dominant role in cancer

biomarker identification. This is because many cancer-relevant
mutations, as well as aberrant expression, are protein-based
and happen somatically. Therefore, it is no doubt that pro-
teomics will provide the dominant driving force to achieve this

ultimate goal for cancer researchers in this century. Protein
array has been recognized as a robust tool in the field of clin-
ical proteomics. With the tremendous growth in protein array-

based methods and their popular uses that have been witnessed
in recent studies, we believe that the protein array technology
will become a powerful and popular tool for the discovery of

novel biomarkers for cancer early diagnosis and prognosis.
Functional protein arrays, in particular, are well poised to
improve new personalized and novel targeted therapies. Ide-

ally, a human protein array developed for such a purpose
should need new strategies to overcome the current shortages:
(1) the key issue for analytical and reverse phase protein arrays
is getting both high-quality and sustainable antibodies to effec-

tively control the cross-reactivity and (2) the key issue for func-
tional protein array is its ability to cover the entire human
proteome, to enable a comprehensive screen for the autoanti-

gens. Meanwhile, due to the high cost of using high-
throughput protein array, an effective strategy to overcome
this obstacle is recommended, that is, to apply the two-phase

strategy [54] (Figure 2). Indeed, most early studies in biomar-
ker discovery failed to provide validation via testing additional
cohorts and therefore, some of these potential biomarkers
might be overfitting. Our two-phase strategy was designed to

avoid potential overfitting problem by implementing a



Figure 2 Scheme of the two-phase strategy for biomarker

identification using functional protein arrays

In Phase I, a small cohort is used to rapidly identify a group of

candidate biomarkers via serum profiling assays on a HuProt

array of high cost. Because a small number of arrays are needed,

cost of the experiments is relatively low. In Phase II, a focused

protein array of low cost is fabricated by spotting down candidate

proteins identified in Phase I. A much larger cohort is assayed on

the focused arrays in a double-blind fashion to validate the

candidates identified in Phase I. Finally, the validated biomarkers

are transformed into a clinically-friendly assay platform, such as

ELISA. HuProt, Human Proteome Microarray; ELISA, enzyme-

linked immunosorbent assay.
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validation step in phase II [3,54]. Another important issue with
the current biomarker discovery is that translation to clinical

applications has had only limited success, although numerous
candidate biomarkers can be found in the literature. We
believe that other than the overfitting issue as discussed above,
there is a lack of transforming these biomarkers into a

clinically-friendly assay system, such as ELISA-based detec-
tion methodology. Indeed, to remedy this problem, our team
has tried to convert the functional protein array-based assays

into ELISA-based tests [3,54]. With all of these improvements,
we believe that protein array technology will soon become a
dominant tool for biomarker discovery in cancers.
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