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Abstract

Background: Genome-wide expression profiles reflect the transcriptional networks specific to the given cell
context. However, most statistical models try to estimate the average connectivity of the networks from a collection
of gene expression data, and are unable to characterize the context-specific transcriptional regulations. We propose
an approach for mining context-specific transcription networks from a large collection of gene expression fold-change
profiles and composite gene-set information.

Results: Using a composite gene-set analysis method, we combine the information of transcription factor binding
sites, Gene Ontology or pathway gene sets and gene expression fold-change profiles for a variety of cell conditions.
We then collected all the significant patterns and constructed a database of context-specific transcription networks for
human (REGNET). As a result, context-specific roles of transcription factors as well as their functional targets are readily
explored. To validate the approach, nine predicted targets of E2F1 in HeLa cells were tested using chromatin
immunoprecipitation assay. Among them, five (Gadd45b, Dusp6, Mll5, Bmp2 and E2f3) were successfully bound
by E2F1. c-JUN and the EMT transcription networks were also validated from literature.

Conclusions: REGNET is a useful tool for exploring the ternary relationships among the transcription factors, their
functional targets and the corresponding cell conditions. It is able to provide useful clues for novel cell-specific
transcriptional regulations. The REGNET database is available at http://mgrc.kribb.re.kr/regnet.
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Background
Cells alter the process of transcriptional regulation so as
to adjust to or drive changes in the cellular conditions
between different stages of the cell cycle, stem cell differ-
entiation or cancer development. Such changes in the
transcriptional networks between different cell condi-
tions are represented in the transcriptome data that are
obtained using microarrays or high-throughput sequen-
cing. However, elucidating the complex transcription net-
works (TNs) has been a daunting task in spite of the
remarkable advances in both computational modeling and

high-throughput experimental technologies [1-8]. One
main reason for the difficulty is the dynamic nature of the
networks: Transcription factors (TFs) not only regulate
different targets depending on the cell conditions, but
their effects on these targets can also change. Therefore,
statistical models that estimate the average connectivity
of the networks from a large collection of transcriptome
data may confer limited accuracy.
Taking these issues into account, we have developed an

approach for identifying the context-specific TNs from a
large collection of gene expression fold-change profiles.
Toward this end, we collected 2,482 paired (test/control)
human microarray datasets encompassing a variety of cell
conditions. Using a composite gene-set analysis method
(ADGO) [9,10], we combined the information of TF
binding site (TFBS), Gene Ontology or KEGG pathway
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gene sets, and the gene expression fold-change profiles,
and thereby tried to address the fundamental but largely
open question of which TFs regulate which functions or
pathways under differing cell conditions?
Since the majority of TFBSs are potentially false posi-

tives, we applied the following filtering criteria to iden-
tify reliable TNs as follows. (A) A TFBS gene set (genes
that share a common TFBS in their promoters) is re-
quired to have a significant overlap with a functional
gene set (genes that share a common annotation in GO
or KEGG). (B) The genes that overlap, as a whole,
should exhibit significant expression changes. (C) Such
changes should be observed across many microarray
conditions (e.g. ten or more). If the above three criteria
are satisfied between a TFBS gene set and a functional
gene set, we say the corresponding TF is associated
with the functional gene set (Figure 1a), and the asso-
ciated pairs as well as the corresponding conditions are
output as context-specific TNs.
We collected all of the 12,149,291 significant triples

(TF, functional gene set, condition; q-values for the
two conditions (A) and (B) <0.05) in order to construct a
context-specific TN database, dubbed REGNET. It is
used for exploring the ternary relationships among the
TFs, their functional targets and the corresponding cell
conditions (Figure 1b). Each TF or function (or path-
way) name can be used as a query, and REGNET pro-
vides corresponding context-specific TNs. Using this
database, we analyzed TNs for two TFs, E2F1 and c-
JUN. Many known target genes as well as correspond-
ing microarray conditions were identified. REGNET
also included many predictions for novel targets. For
example, we selected nine candidate targets of E2F1
predicted for HeLa cells and tested them using a ChIP
assay. Among them, five (Gadd45b, Dusp6, Mll5,
Bmp2 and E2f3) were successfully bound by E2F1. We
also validated the TNs for c-JUN and the ‘epithelial to
mesenchymal transition (EMT)’ gene set from the lit-
erature. REGNET is available at http://mgrc.kribb.re.
kr/regnet.

Methods
Collection of data
Human gene expression microarray datasets of the same
platform ‘HG-U133 Plus 2’ were downloaded from 839
Gene Expression Omnibus [11] series. In each series
dataset, we manually identified the test/control sample
groups to collect log fold-change profiles. Many datasets
contained multiple test groups, and hence 2,482 fold-
change profiles were collected in total. Probe values that
correspond to the same gene were averaged to yield
gene-based fold-change profiles (20,361 genes). human
TFBS gene sets were obtained from MSigDB [12]. For func-
tional gene sets, the three categories of GO and KEGG
pathways were used. GO gene sets were obtained from a
gene product association file downloaded from a ftp site
(http://www.geneontology.org/gene-associations/). Both the
electronic and non-electronic annotations were used to
maximize the coverage. KEGG gene sets were downloaded
from MSigDB. All the offspring terms are again included in
their parent terms. All the gene-sets with not less than 10
and not more than 500 genes are included in the analysis
and the system.

Identification of context-specific transcription networks
We applied the following three filtering criteria to iden-
tify reliable TNs:

(A)Overlap significance: the significance of overlap for
every pair of a TFBS gene set and functional gene set
is assessed using the hypergeometric distribution. The
genes that overlap, if significant (default: FDR q-value
< =0.02), are regarded as candidate targets of the TF,
and may be interpreted as the channel through which
the TF regulates the function (or pathway). Such over-
lapping sets constitute the candidate TNs to be further
examined throughout gene expression datasets.

(B) Expression significance: For each pair of TFBS-
functional gene sets that overlap significantly,
another filtering criterion using a fold-change ex-
pression dataset is applied: The Z-statistic on the

a b

Figure 1 Overview of REGNET. (a) Association of a TF and functional gene set. (b) Ternary relationships explored by REGNET.

Chi et al. BMC Genomics 2014, 15:450 Page 2 of 10
http://www.biomedcentral.com/1471-2164/15/450

http://mgrc.kribb.re.kr/regnet
http://mgrc.kribb.re.kr/regnet
http://www.geneontology.org/gene-associations/


gene expression fold-change values is computed for
each of the TFBS set, functional set and their over-
lapping set, respectively. If the FDR q-value of the
overlapping set is less than or equal to 0.02 (default
value) and the q-values for the two individual sets
are larger than 0.05 (default value), we assume the
corresponding TN is activated on the given micro-
array condition. In other words, expression changes
in the overlapping genes should be pronounced
compared to the two individual sets [9].

(C) Number of conditions: Only TNs that satisfy the
above two criteria (A) and (B) across k (default
number =10) or more microarray conditions are
regarded as reliable transcription patterns.

If all these criteria are satisfied between a TFBS gene set
and functional gene set, the TF, candidate targets as well as
the corresponding conditions are output as context-specific
TN. Among the overlap set identified through (A) ~ (C), we
can further select individual candidate targets that show
some high fold expression changes (e.g. ±1.5 of higher)
across a number of conditions (e.g., more than 0.3 ×k con-
ditions). All the threshold values including q-values and k
can be changed by the user for more thorough exploration
of the transcriptional regulations. Figure 2 summarizes the
context-specific TNs queried by TF and functional gene
set, respectively.

Chromatin Immunoprecipitation (ChIP) assay for E2F1
ChIP assays for E2F1 in HeLa cells were performed follow-
ing the protocol represented at http://genomics.ucdavis.
edu/farnham. HeLa cells were crosslinked for 10 min by
adding formaldehyde to a final concentration of 1% with
mild agitation. Crosslinking was stopped by the addition of
glycine to a final concentration of 125 mM, and cells

were washed three times with ice-cold PBS prior to har-
vesting by scraping of the plates. Chromatid were frag-
mented for 20 min (10 sec on pulse and 20 sec off
pulse) to produce fragments ~500 nt in size using the
Bioruptor sonicator (Diagenode). Antibody (SC251X;
Santa Cruz Biotech) to E2F1 was used to pull down tar-
get chromatid from 1 × 108 cells. Genomic DNAs were
isolated from proteinase K-treated (45°C for 1 h) sam-
ples and purified. ChIP samples were tested by PCR
using positive and negative control primer sets shown
in Additional file 1: Table S1. The quantitative real-time
PCR for ChIP is described in Supplementary Material.

Results
REGNET database
REGNET is an intuitive and easy to use database devel-
oped for exploring context-specific TNs (http://mgrc.
kribb.re.kr/regnet). REGNET accepts two kinds of queries,
i.e. TF and function (or pathway, localization) names,
respectively. It provides a webpage presenting all the
TF names analyzed, so that investigators can simply
choose the TF of their interest. Each TF name indicates
a TFBS gene set to which the TF can bind. Because a
TF can have different TFBSs, many of the TF names
are represented multiple times. Among them, ‘(TF
name)_all’ is linked to the TNs that can be captured
only by taking the union of all the TFBS sets of their
common TF. For example, AHR_all links to the TNs
that can be captured only by using the union of the four
different TFBS sets (V$AHRARNT_01, V$AHRARNT_02,
V$AHR_01 and V$AHR_Q5).
Each TF name is linked to a list of functional gene sets

associated with the TF. Each line on the list is then
linked to the corresponding target genes, descriptions for
the TFBS and functional gene sets and the microarray

a b

Figure 2 Context-specific transcription networks for the query of a TF or functional gene set. (a) For the query of a TF, multiple functional
gene sets are associated. Cl, C2, …, Ck represent the microarray conditions of the fold-change profiles for which the genes in the overlap parts
significantly altered their expressions. The collection of the genes in the overlap parts are used for a global assessment. (b) For the query of a
functional gene set, multiple TF’s are associated.
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conditions under which the target genes exhibit significant
changes in expression. The ‘number of conditions’ leads
to a table of the corresponding test/control microarray
conditions. At the bottom of the table, a heat map of the
log fold-change values of the target genes is displayed,
summarizing the information for the associated pair of the
TF and functional gene set (Figure 3). From this heat map,
investigators can easily identify candidate targets that ex-
hibit large expression changes across a number of condi-
tions. The fold-change values of the TF itself are also
provided on the right-end column of the heat map, for the
activity of certain TFs can be usefully inferred from their
transcript levels.
When querying for a functional gene set, a keyword is

required for searching. For example, if the investigators
want to identify TNs related to the ‘epithelial to mesenchy-
mal transition’ process, entering ‘mesen’ is sufficient. Then,
the names of functional gene sets that contain ‘mesen’
are all displayed. From among them, investigators can
choose the exact gene set of their interest, and then all
the TFs associated with that functional gene set are listed.

As in the case of the TF query, each line is linked to de-
tailed information on the target genes, TFBS sets and the
queried gene set as well as the corresponding microarray
conditions. More detailed information on the REGNET
database may be seen from our web site.

Analysis results for E2F1
We used the human TFBS gene sets from the Molecular
Signatures Database (MSigDB) [12]. The MSigDB pro-
vides five E2F1 TFBS sets. The predicted results for E2F1
are accessible by choosing ‘E’ in the ‘TF-based browsing’
webpage. As expected, many cell-cycle related func-
tional gene sets were found to be related to most of the
TFBS gene sets. For example, the ‘DNA replication
(GO:0006260)’ and ‘G1/S transition of mitotic cell
cycle (GO:0000082)’ are associated with four of the five
TFBS sets while the ‘cell cycle (KEGG)’ and ‘cell cycle
checkpoint (GO:0000075)’ are associated with three.
For each gene set, many conditions likely to activate cell
cycle progression were observed, e.g. iPS or diverse cancer
cell conditions.

a b

Figure 3 Condition table and heat maps for transcription networks of E2F1. (a) The condition table and heat map for the association
between E2F1 and the gene set ‘transcription activator activity (GO:0016563)’. Several targets exhibit clear activations across a number of virus
treated HeLa cells. Seven genes, Bmp2, E2f3, Epc1, Fosl1, Mll5, Myc and Nr4a3 are chosen for validation using a ChIP assay. (b) The heat map for
the association between E2F1 and the gene set ‘negative regulation of protein kinase activity (GO:0006469)’. A part of the 55 conditions that
associate E2F1 and the GO gene set are shown. Among the targets, Gadd45b and Dusp6 exhibit clear expression changes across a variety of
microarray conditions. Both genes are tested using a ChIP assay.
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For the union of all the E2F1 TFBS gene sets (E2F1_all),
the ‘transcription activator activity (GO:0016563)’ set is
captured and several of the putative targets exhibit high
expression fold-changes for a number of the HeLa cell
conditions treated with vaccinia virus (GSE 11238): Bmp2,
E2f3, Epc1, Fosl1, Mll5, Myc and Nr4a3 (Figure 3a). An-
other target set, ‘negative regulation of protein kinase
activity (GO:0006469)’ is found to be associated with
the E2F1_all set through 55 conditions. Among the targets,
in particular, Dusp6 and Gadd45b exhibit high expression
fold-changes across dozens of heterogeneous conditions
(Figure 3b). Although these 55 conditions do not include
the HeLa cells, it was found that both genes display more
than two-fold increases in their expression levels in most of
the virus-treated HeLa conditions (GSE 11238).
To validate the regulatory relationships, therefore, we

performed a ChIP assay on HeLa cells, as described in
Methods, for the nine candidate targets selected from
the two associated sets ‘transcription activator activity’
and ‘negative regulation of protein kinase activity’. To
this end, we activated E2F1 via the CDK4-Rb-E2F1 path-
way [13] as described in Additional file 1: Figure S1. We
used Gapdh as a control. The ChIP results are shown in
Figure 4. Among the targets tested, five exhibited posi-
tive results: The binding of E2F1 to Gadd45b, Dusp6
and Mll5 was pronounced with six or higher fold-
changes compared to a control IgG, and the binding to
Bmp2 and E2f3 exhibited approximate five and three-
fold increases, respectively.

Analysis results for c-JUN
The MSigDB provides eleven c-JUN TFBS sets. The pre-
dicted results for c-JUN are accessible by choosing ‘J’ in
the TF-based browsing webpage. The first TFBS set
named ‘TGANTCA_V$AP1_C’ contains 866 genes, and
129 GO or KEGG gene sets are associated with this TFBS
set as the result of satisfying the three filtering criteria

(A) ~ (C). Among them, we identified two cell condi-
tions for which c-JUN targets are most clearly activated.
For example, the ‘response to steroid hormone stimulus
(GO:0048545)’ gene set is associated with the c-JUN
TFBS set for 56 microarray conditions. Among them,
the HeLa cells treated with vaccinia virus (GSE 11238)
clearly exhibits activation in five targets: Adm, F3, Fosl1,
Il6 and Thbs1 (Additional file 1: Figure S2a). The latter
four genes are known targets of c-JUN [14,15]. Thbs1 is
known to be repressed by c-JUN in rat embryo fibroblasts
[16], but it is also known to be activated by c-JUN in hu-
man hepatocarcinoma cell lines [15]. ADM is reported to
induce the phosphorylation of c-JUN in glioblastoma cells
[17], but is also a candidate target of c-JUN in our predic-
tion. Because the known targets of c-JUN as well as Jun it-
self display high expression fold changes, we infer that
viral infection to HeLa cells strongly increases the activity
of c-JUN. In the ‘pathways in cancer (KEGG)’ gene set,
we found another group of known c-JUN targets, i.e. Il6,
Lamb3, Lamc2, Mmp1 and Mmp9 [14], that are strongly ac-
tivated for the conditions of ‘engineered human skin’ (GSE
17539) [18] and ‘low dose treatment of 5-aza-2-deoxycyti-
dine on an non-small cell lung cancer cell line’ (GSE 6695)
[19] (Additional file 1: Figure S2b). If another TFBS set
V$AP1FJ_Q2 is chosen, the well-known c-JUN interact-
ing partner Fos as well as Il6 are captured in the ‘path-
ways in cancer (KEGG)’ gene set, and Fos exhibits a very
strong co-expression pattern with Jun in many of the
virus-treated HeLa cell conditions (Additional file 1:
Figure S2c).
Summarizing the results for all the c-JUN TFBS gene

sets, in total 156 functional gene sets are associated with
at least one of the eleven TFBS gene sets. Of them, 52
functional gene sets (approximately 33%) are associated
with two or more. This suggests that c-JUN binds to a
variety of different TFBSs in order to ensure the regula-
tion of its target pathways. For example, ‘pathways in

Figure 4 Chromatin IP experimental results for E2F1. The nine candidate targets of E2F1 were chosen for validation by gene-specific ChIP.
The fold change (FC) is the fold increase of the signal from E2F1 antibody (black)–enriched chromatin relative to a control IgG (open). The negative
control Gapdh exhibited no enrichment.
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cancer (KEGG)’ is associated with eight different c-JUN
TFBS gene sets, highlighting the role of c-JUN as a key
factor of cancer progression. The representative gene
sets associated with three or more c-JUN TFBS sets are
shown in Table 1.

Analysis results for the EMT gene set
We now illustrate how to analyze a functional gene set
using REGNET. Entering the keyword ‘mesen’ from the
‘Keyword Search’ page, nine similar functional gene sets
were presented. Among them, we chose the first one, i.e.
the ‘epithelial to mesenchymal transition (GO:0001837)’.
This set is associated with eight TFs (MAZ, FOXO4,
PITX2, SP1, NFAT, PAX4, ZEB1 and LEF1). Except for
MAZ and PAX4, each TF is reported to regulate EMT
process. We then investigated the conditions under which
each TF might regulate the EMT process. Many putative
conditions that are likely to trigger EMT were observed.
For example, PCDH24-expressing HCT116 cells shown to
abolish tumor formation in vivo have ~2000 differentially
expressed genes. These expression changes have been
confirmed to be quite similar to EMT via further prote-
omics analysis using 2-DE/MS (GSE10650). Our pre-
dictions on EMT suggest MAZ as a candidate TF to
regulate EMT in the HCT116 cells. Among the candi-
date targets of MAZ in the EMT gene set, Bmp7,
Col1a1, Sfrp2, Wnt2 and Wnt5a exhibit two or higher
expression fold-changes. Interestingly, four of the tar-
gets except for Sfrp2 were also captured among the
PAX4 results for the same cell condition. This indicates
PAX4 and MAZ possibly cooperate on their four com-
mon targets to regulate EMT in the HCT cells. For an-
other example, the embroid body cells (GSE9196) the
differentiation of which is known to accompany EMT

[20] also exhibit clear activation in many of the MAZ
targets (Additional file 1: Figure S3a).
Among the conditions, HUVECs treated with TNF-

alpha are captured by five of the eight TF results
(Additional file 1: Figure S3b-e). By mapping each TF to
the targets that exhibit two or higher fold-changes, the
EMT transcription networks in HUVECs treated with
TNF-alpha were constructed that comprised five TFs
and six target genes (Figure 5). TNF-alpha is a key cyto-
kine involved in inflammation and cancer, and is known
to induce EMT [21]. Because HUVECs do not contain
epithelial cells, such EMT signals may indicate ‘endothe-
lial’ to mesenchymal transitions.
Although each regulatory relationship in the networks

needs to be validated, it is noteworthy that the predicted
edges of the networks were evenly distributed among
the five TFs. This implies that the EMT in HUVECs is
processed by a tight cooperation of these regulators.
Some of the reports for the predicted regulatory rela-
tionships are provided in Additional file 1: Table S2.

A global assessment of REGNET
Because the predicted TNs in REGNET are context-
specific (the targets or effects of a TF can change de-
pending on the cell conditions), reliable gold-standard
TNs for a global assessment are rarely available. For ex-
ample, each ChIP-seq or ChIP-chip dataset is also ob-
tained under a specific cell condition and may not serve
as a general gold-standard set. Therefore, instead of con-
sidering individual cell conditions, we merged all the
context-specific targets of a TF for our prediction set
(the union of the intersection parts in Figure 2a), and
merged multiple ChIP-seq or ChIP-chip data for gold-
standard targets of a TF. Among the prediction set, we

Table 1 Functional gene sets associated with c-JUN

Functional gene set codes Functional gene set names #TFBS sets*

KEGG PATHWAYS IN CANCER (KEGG) Pathways in cancer 8

GO:0000165 (GOBP) MAPKKK cascade 6

GO:0043086 (GOBP) Negative regulation of catalytic activity 5

GO:0031012 (GOCC) Extracellular matrix 4

GO:0045859 (GOBP) Regulation of protein kinase activity 4

KEGG MAPK SIGNALING PATHWAY (KEGG) MAPK signaling pathway 4

GO:0001501 (GOBP) Skeletal system development 3

GO:0001525 (GOBP) Angiogenesis 3

GO:0007409 (GOBP) Axonogenesis 3

GO:0018193 (GOBP) Peptidyl-amino acid modification 3

GO:0030334 (GOBP) Regulation of cell migration 3

GO:0032270 (GOBP) Positive regulation of cellular protein metabolic process 3

GO:0043066 (GOBP) Negative regulation of apoptosis 3

GO:0048812 (GOBP) Neuron projection morphogenesis 3

*The number of c-JUN TFBS gene sets associated with each functional gene set.
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further selected candidate targets that exhibited ±1.5 or
higher fold expression changes across 0.3 ×k conditions.
We validated the predicted targets of E2F1, JUN and
TP53. Because these TFs have multiple known binding
sites in MSigDB, we merged all the corresponding targets
for each TF. The targets reported from ChIP data are
downloaded from ChEA curated database [22]. Three, one
and six ChIP datasets were available for E2F1, JUN and
TP53, respectively and corresponding targets were merged
for each TF. These targets with known TFBS were further
selected for true positive gold standard sets.
Among the 564 genes with an E2F1 binding site, 65

were the predicted as context-specific targets. Among the
270 true positive set, 39 were included in the 65 predicted
set. This corresponds to specificity 0.9116 and sensitivity
0.1444 with a significant p-value 0.0256 against a random
prediction (hypergeometric distribution). The true positive
set used here is obtained from a collection of high-
throughput ChIP datasets and is missing the three targets
Dusp6, Mll5 and Gadd45b, while these targets were identi-
fied from our ChIP assay. If we include these three in the
positive set, we have an improved sensitivity 0.1538 with a
significant p-value 0.0039. Unfortunately, JUN had only one
ChIP data in ChEA database. Based on this single ChIP
dataset, we had specificity 0.7853, sensitivity 0.2593 but
with a less significant p-value 0.1734. Lastly, TP53 had six
ChIP datasets. Among the 426 genes with an P53 binding

site, 142 were true positives and the 50 predicted targets
included 25 true positives. This corresponds to specificity
0.9120, sensitivity 0.1761 and a significant p-value 0.0071.
In summary, REGNET provides highly specific pre-

dictions for context-specific transcriptional regulations.
Though less sensitive, they still contain a number of novel
regulatory relationships as shown in our ChIP assay and
the EMT networks.

Assessment for extended GO and KEGG annotations
Because many genes are still unannotated in GO and
KEGG, transcriptional regulations for such genes are not
covered by REGNET. To ameliorate the problem, we ex-
tended GO and KEGG annotations using protein-
protein interaction networks [23], and tested how the
extended annotations affect the predictions in REGNET.
The annotations are extended as follows: For each gene
gi (protein), we identified the set of interacting proteins
Li from the BioGrid database [24]. For each functional
gene set (GO or KEGG annotation), say Fj, we assessed
the significance of overlap between Li and Fj using
hypergeometric distribution. If an overlap p-value ≤ p0,
we assign the annotation Fj to the gene gi.
In the original GO and KEGG annotations, 2,409 GO

biological process terms (GO-BP), 369 GO cellular com-
ponent terms (GO-CC), 186 GO molecular function
terms (GO-MF) and 666 KEGG terms are used to

Figure 5 EMT transcription networks in HUVECs inferred from REGNET. The sun symbols indicate the corresponding TFs or TF-target
relationships have strong supports from the literature. The circle symbols indicate weak supports from the literature. The evidences from
the literature are all summarized in Additional file 1: Table S2. The graph is depicted using the Graphviz software.
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annotate genes 164,562, 26,270, 12,875 and 41,063
times respectively. When a threshold p0 = 10E-4 is ap-
plied, GO-BP, GO-CC, GO-MF and KEGG terms are
used 233,878, 37,455, 23,370 and 54,142 times exhibiting
overall 29.8% increase. Using these extended annotations,
we regenerated significant patterns in REGNET and
extracted context-specific targets of E2F1 and TP53,
respectively. With the original annotations, 65 and 50
context-specific targets were identified for E2F1 and
TP53, but the extended annotations increased these
numbers to 183 and 71, respectively. The extended pre-
dictions, as expected, exhibited somewhat reduced spe-
cificities 0.7313 and 0.8627, and increased sensitivities
0.3852 and 0.2253 for E2F1 and TP53, respectively.
Here, we illustrated how current annotations can be

extended using protein interaction data and how such
extension could affect the predictions in REGNET, but
such extensions are not included in the current REGNET
system.

Discussion and conclusions
For a given TF or a functional gene set, REGNET provides
the associated TNs as well as the corresponding condi-
tions. From the heat map provided for each of the associ-
ated pairs of a TF and functional gene set, investigators
can select putative targets that exhibit large expression
changes across a number of different conditions. We note
that the transcription networks inferred in our approach
have multiple lines of evidences and a substantial portion
of such predictions are highly likely true as validated by re-
ports in the literature and the ChIP assay in the finding re-
ported here.
For a global validation, we pooled targets from multiple

ChIP datasets and pooled context-specific predictions for
each of three TFs. As expected, predictions in REGNET
were highly specific and less sensitive. For example,
REGNET provides 65 context-specific targets of E2F1, 42
of which were actually bound by the TF. More import-
antly, REGNET suggests the cell conditions in which such
regulation patterns occur. Despite the high specificity, pre-
dictions by REGNET included many novel targets provid-
ing useful clues for unraveling cellular processes.
Because many microarray datasets have only a small

number of samples, we applied a gene randomizing gene
set analysis method [25,26] to assess the overall expres-
sion changes in each gene set. Most gene-randomizing
methods, however, suffer from increased false-positives
[26]. To reduce false positives, we applied an auxiliary
filter that requires a significant regulation pattern to be
observed across a number of different conditions.
Specifically, REGNET deploys a composite gene-set ana-

lysis method [9,10] to combine three sources of genomic
information: TFBS gene set, functional gene set and
gene expression fold-change profile. As a result, three-

dimensional information among the TFs, their functional
targets and cell conditions are readily explored. Most other
approaches including DAVID [27], the Molecular Concept
Map [28] and ConceptGen [29] investigate the ‘binary’ rela-
tionships between a TFBS gene set and another gene list.
One may apply the overlap of gene-sets once more to in-
vestigate such three-dimensional relationships, but the re-
peated use of gene-set overlaps may cause a serious loss of
power due to the use of threshold values [26,30].
Because the activity of a TF is estimated by the overall

pattern of expression change in its target genes, REGNET
is most useful for finding relatively strong transcriptional
activities in which a TF regulates multiple target genes
simultaneously. On the other hand, specific regulation
of one or two targets that have only small expression
changes might be missed in this approach. Another
limitation is that by using the TFBS information instead
of genome-wide ChIP data, which are mostly unavail-
able, we only consider the sequence-specific transcrip-
tional regulation. Furthermore, many gene functions are
still unknown and remain unannotated in GO or KEGG.
We here demonstrated a method to extend annotation
gene-sets using protein interaction data and its effect on
the performance of REGNET. More reliable extension
of gene annotation may be possible by integrating di-
verse types of genomic data and network information
which may help identifying missing transcriptional asso-
ciations in REGNET [31-33].
Over the last decade, more than a million gene expres-

sion microarray datasets have been deposited in public
databases [11,34,35], covering virtually all of the cell condi-
tions of interest including a broad range of tissues, dis-
eases, development and treatments. Most of them are
made up of test and control samples, and their fold-change
values provide information on the TNs specific to each
condition. For this reason, we have collected the fold-
change profiles for a diverse array of cell conditions in
order to identify context-specific TNs. We have collected
2,482 human expression fold-change profiles in our
current database. As this number increases, it is expected
that more specific TNs are newly identified. Moreover, de-
veloping a similar system for other species would be valu-
able for the purpose of comparative analysis.

Additional file

Additional file 1: The description on ChIP assay and EMT networks.
Figure S1. ChIP assay design. Figure S2. Heat maps associated with
c-JUN. Figure S3. EMT transcription networks by five TFs. Table S1.
Oligos used for ChIP assays. Table S2. Evidences of the EMT transcription
networks from literature.
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