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Abstract

The effects of each type of machine perfusion preservation (MP) of liver grafts donated after

cardiac death on the bile canaliculi of hepatocytes remain unclear. We analyzed the intracel-

lular three-dimensional ultrastructure of the bile canaliculi and hepatocyte endomembrane

systems in porcine liver grafts after warm ischemia followed by successive MP with modified

University of Wisconsin gluconate solution. Transmission and osmium-maceration scanning

electron microscopy revealed that lumen volume of the bile canaliculi decreased after warm

ischemia. In liver grafts preserved by hypothermic MP condition, bile canaliculi tended to

recover in terms of lumen volume, while their microvilli regressed. In contrast, midthermic

MP condition preserved the functional form of the microvilli of the bile canaliculi. Machine

perfusion preservation potentially restored the bile canaliculus lumen and alleviated the ces-

sation of cellular endocrine processes due to warm ischemia. In addition, midthermic MP

condition prevented the retraction of the microvilli of bile canaliculi, suggesting further miti-

gation of the damage of the bile canaliculi.

Introduction

The shortage of brain dead donors for liver transplantation is a serious problem worldwide

[1]. Although donors with circulatory arrest have the potential to expand the transplanted liver

pool [2,3], post-circulatory arrest liver grafts induce high rates of primary nonfunction and

ischemia-reperfusion injury after transplantation [4]. In particular, a high risk of acute and

chronic rejection, including ischemic bile duct damage, and biliary complications has been

reported [5]; thus, the development of liver graft preservation methods after circulatory arrest

is required to overcome these problems [1].
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Existing cold storage organ preservation techniques fail to preserve marginal donor grafts

[6]. On the other hand, machine perfusion (MP) of post-circulatory arrest donor liver grafts

has been reported to have numerous advantages [6–25], and the optimal conditions of MP,

including perfusion temperature, oxygenation status, flow rate, steady flow and pulsatile flow,

have been discussed [26–33]. Recently, hypothermic MP (HMP) has been established to main-

tain the functions of liver grafts, and its application in clinical practice has begun [34–46]. On

the other hand, warm perfusion has also been reported as an advanced MP method that main-

tains the liver graft functions [2,38,47–56]. Warm perfusion had introduced to maintain liver

grafts at a more physiologic temperature compared with HMP to offers the opportunity to

assess and possibly repair a metabolically active liver graft. Our previous reports indicated that

the midthermic MP (MMP), one type of warm perfusion [57], reduces the hepatocellular

enzyme release [58,59]. In addition, we confirmed that hepatocytes of DCD liver grafts after

MMP retain a functional ultrastructure compared to HMP, by using the observation method

of scanning electron microscopy after osmium-maceration (OM-SEM) [60,61]; ultrastructural

characteristics of hepatocytes are reported to reflect the function of the transplanted liver [60].

One of the important physiological functions of hepatocytes is the production and secretion

of bile [62]. For liver grafts, MP has the potential to not only inhibit the development of post-

transplant biliary complications, including ischemic cholangiopathy [17,63–67], but also to

protect the bile canaliculus [68]. We evaluated the ultrastructural changes in the bile canaliculi

and hepatocytes around them at four hours after HMP or MMP using OM-SEM and transmis-

sion electron microscopy (TEM). As a result, the bile canaliculi that regressed one hour after

warm ischemia showed a strong tendency to recover after MP, especially in MMP, suggesting

the preventative effects of HMP and MMP on bile canaliculi-related functions in liver grafts.

Materials and methods

Animals

We purchased domestic female pigs (cross-bred Large White, Landrace, and Duroc pigs; age,

2–3 months; body weight, approximately 25 kg) from Taisetsusanroku-sya Co., Ltd. (Asahi-

kawa, Japan). The pigs were kept in a well-ventilated room with a 12-h light: dark cycle, con-

trolled temperature and humidity, and ad libitum access to food and water. All experiments

were performed according to the Guide for the Care and Use of Laboratory Animals at Asahi-

kawa Medical University, and the procedures were approved by the Institutional Animal Eth-

ics Committee of the Clinical Research Center, Asahikawa Medical University (permit no.

14172).

Machine perfusion preservation

Livers harvested from pigs were connected and perfused with a MP system (Fig 1), as

described previously [61]. The system was composed of two separate circulating perfusion cir-

cuits, which had a roller pump, for the hepatic artery (HA) and portal vein (PV). Each circuit

had a flow meter and a pressure sensor, allowing pulsatile and non-pulsatile flow, respectively.

Additionally, an oxygenator was installed in the the upstream of the circuits for the PV and

HA were connected via plastic connectors to each of the hepatic vessels. The MP systems had

waterproof thermocouples that measured the solution and organ temperatures, and a dissolved

oxygen meter. The flow conditions and temperatures of the preservation solution were

recorded by a system-installed computer. In the systems, the organ chamber temperature was

controlled by ice-cold water and a heat exchanger. The flow rate was mainly set to 0.22 mL/

min/g for the PV and 0.06 mL/min/g for the HA, as described previously [61].
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Preparation and preservation of the liver donated after cardiac death

Pigs were used as liver graft donors. These pigs were intubated and ventilated with inhalation

anesthesia by isoflurane (Forane; Abbott, Japan), and laparotomized. Immediately after lapa-

rotomy, liver tissue samples from the liver surface were obtained by biopsy as a control. Then

the pigs were intravenously injected with potassium chloride to induce circulatory arrest fol-

lowed by the withdrawal of ventilation, as described previously [61]. The time point of the

Fig 1. Schematic representation of the continuous machine perfusion system.

https://doi.org/10.1371/journal.pone.0233917.g001
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induction of circulatory arrest was defined as 0 minutes of warm ischemia. During warm

ischemia, hepatic artery and portal vein were isolated to connect with organ flush lines, and at

60 minutes of warm ischemia, the liver tissue samples were obtained from distinct regions of

the liver surface. Immediately after tissue sampling, the liver grafts were harvested and subse-

quently flushed with Euro-Collins solution via the HA and PV routes at 8˚C on the back table.

After the initial flushing, the flush routes were connected to the perfusion preservation

machine and the liver grafts were continuously perfused for four hours with modified Univer-

sity of Wisconsin gluconate solution (sodium gluconate 17.5 g, KH2PO4 3.4 g, trehalose 10 g,

glutathione 0.9 g, adenosine 1.3 g, HEPES 4.7 g, penicilline 200,000 U, dexamethasone 16 mg,

MgSO4 1 g, caffeine 4 g, polyethylene glycol 10 g, and glycine 1 g per 1 L). The liver grafts were

conserved at a constant temperature of 8˚C as HMP (n = 4) or gradually warmed from 8˚C to

22˚C during perfusion as MMP (n = 5). After MP, the liver tissue samples were biopsied from

the well-perfused region of graft surface in each group. Liver sample blocks were immediately

fixed with an appropriate fixative for the analysis, as described below. The degree of biliary

injury at four hours after MP were evaluated based on the alkaline phosphatase level in perfus-

ate collected from the suprahepatic vena cava of liver grafts in each MP group, as described

previously [69]. These alkaline phosphatase data were presented as the mean ± SEM, and

unpaired two-tailed t-tests were used to compare the significance of differences between

groups A and B.

Transmission electron microscopy

The liver tissue samples were trimmed into small blocks and fixed with 2% glutaraldehyde and

2% paraformaldehyde in 0.1 M phosphate buffer (PB) for two hours at 4˚C. After fixation, the

blocks were washed 3 times with PB containing 7.5% sucrose and post-fixed with 1% osmium

tetroxide (OsO4) in PB for two hours at 4˚C. After washing thoroughly with PB containing

7.5% sucrose, the blocks were dehydrated with a graded series of ethanol. After dehydration,

the samples were transferred in propylene oxide, infiltrated and then embedded in epoxy resin

(Epon 812). Ultrathin section (80 nm thick) were cut, stained with uranyl acetate and lead cit-

rate, and observed using an HT7700 transmission electron microscope (Hitachi High Technol-

ogies, Tokyo, Japan).

Osmium-maceration for SEM

For SEM observation, the osmium maceration method was applied to the liver tissue samples,

as described previously [61]. In brief, liver samples cut into small pieces were fixed with 0.5%

glutaraldehyde and 0.5% paraformaldehyde in PB for 30 min at 4˚C. After fixation, the liver

blocks were directly immersed in 1% OsO4 in PB for four hours at 4˚C. The samples were then

washed thoroughly with PB and transferred into dimethyl sulfoxide solution in order of 25 to

50% each for 30 min for cryoprotection. The samples were then frozen on a deeply chilled alu-

minum metal plate with liquid nitrogen, and cracked into two particles with a screwdriver and

a hammer. After freeze cracking, the samples were thawed in 50% dimethyl sulfoxide solution,

washed thoroughly in PB and transferred into 0.1% diluted OsO4 in PB for 96 hours at around

20˚C under light for maceration. After the maceration period, the samples were immersed

into 1% OsO4 in PB for one hour for post-fixation and then thoroughly washed with PB. The

samples were transferred into 1% tannic acid in PB for two hours, subsequently washed with

PB, and then immersed in 1% OsO4 in PB for one hour for conductive staining. The liver sam-

ples were dehydrated in graded series of ethanol and immersed in tert-butyl alcohol. After

freezing, the samples were lyophilized in an ES2030 freeze-dryer (Hitachi Koki Co., Ltd.,

Tokyo, Japan). The dried specimens were then mounted onto a metal plate and lightly coated
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with platinum-palladium in an E1010 ion sputtering device (Hitachi Koki). These finally pro-

cessed specimens were observed in secondary electron-mode by a field emission S4100 scan-

ning electron microscope (Hitachi High Technologies).

Results

Ultrastructure of the normal bile canaliculi observed by OM-SEM and TEM

First, we established the overall shape of bile canaliculus by OM-SEM and TEM. In control liv-

ers, OM-SEM revealed that hepatocytes mutually formed the bile canaliculi with microvilli

between the plasma membranes of contiguous hepatocytes (Fig 2A and 2B). The bile canaliculi

were often accompanied by several small stacks of Golgi apparatus around the cytoplasm of

the constituent hepatocytes (Fig 2B). The small vacant spaces without any other endomem-

brane organelles around the bile canaliculi were often found (Fig 2B). The corresponding find-

ings were also obtained by TEM observation (Fig 2C). The vacant space around the bile

canaliculi observed by OM-SEM corresponded to the cytoplasmic region without endomem-

brane organelles (Fig 2C). These findings showed that the details and three-dimensional con-

formation of the bile canaliculi and the related intracellular components could be visualized by

OM-SEM with complementary TEM observation.

Changes in the ultrastructure of the bile canaliculi after warm ischemia

The continuous hypoxic exposure of liver grafts induced by one hour of warm ischemia caused

the cessation of bile production and morphological abnormalities of the bile canaliculi. After

warm ischemia, OM-SEM revealed the large vacuoles in hepatocytes (Fig 3A, colored red), as

described previously. Although the bile canaliculi seemed normal at low magnification (Fig

3A), the cross-sectional area of the lumen of the bile canaliculi after warm ischemia tended to

become smaller in comparison to controls (Figs 2B and 3B). In contrast with the controls,

small stacks of Golgi apparatus were rarely detected around these bile canaliculi (Figs 2B and

3B). The small vacant spaces around the bile canaliculi were observed similarly to controls,

and these space corresponded to the cytoplasmic area without any endomembrane organelles

observed by TEM (Fig 3B and 3C). These findings showed that warm ischemia causes ultra-

structural destruction of bile canaliculi and the related intracellular subsets, reflecting the

decreased bile production induced by hypoxic exposure.

Recovery of the ultrastructure of bile canaliculi by HMP and MMP

Even after liver graft preservation with four hours of HMP or MMP, almost no bile was col-

lected from the bile ducts of the liver grafts. However, ultrastructural restoration of the bile

canaliculi was found to have occurred, particularly after MMP.

After four hours of HMP, OM-SEM revealed swollen mitochondria in many hepatocytes

(Fig 4A). The cross-sectional area of the lumen of the bile canaliculi after HMP was restored

from the changes that were observed in warm ischemia (Figs 3B and 4B); however, the restora-

tion was decreased in comparison to that in the controls (Figs 2B and 4B). This restoration of

the bile canaliculi was more clearly indicated by TEM (Fig 4C), whereas the microvilli in the

bile canaliculi tended to regress after HMP (Fig 4C).

OM-SEM revealed that the hepatocytes after MMP included macro-autophagosomes and

functional forms of mitochondria (Fig 5A), indicating that MMP was more protective for

hepatocytes than HMP, as described previously. Additionally, after MMP, the cross-sectional

area of the lumen of the bile canaliculi almost recovered to the control level (Fig 5B and 5C),

and the microvilli in the bile canaliculi were also maintained (Fig 5B and 5C).
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Fig 2. The ultrastructure of the bile canaliculi in porcine hepatocytes of the control liver. (A and B) Representative hepatocytes and bile canaliculi were observed by

SEM in osmium-macerated control porcine liver graft samples. The partial area indicated in A was further photographed at a higher magnification (B). (C) Typical bile

canaliculi were identified in the ultrathin sections of the Epon 812-embedded control liver tissue. Bile canaliculi are colored green. Arrows indicate the Golgi apparatus,

and asterisks indicate vacant spaces without any other endomembrane organelles around the bile canaliculi. Bars = 1 μm.

https://doi.org/10.1371/journal.pone.0233917.g002
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Fig 3. Changes in the ultrastructure of the bile canaliculi in porcine hepatocytes after warm ischemia. (A and B) Representative hepatocytes and bile canaliculi were

observed by SEM in osmium-macerated porcine liver graft samples after warm ischemia for 60 minutes. The partial area indicated in A was further photographed at a

higher magnification (B). Bile canaliculi are colored green, nuclei are colored blue, huge vacuoles are colored red. Asterisks indicate vacant space without any other

endomembrane organelles around the bile canaliculi. (C) Typical bile canaliculi were identified in the ultrathin sections of Epon 812-embedded tissues from liver graft

samples after warm ischemia for 60 minutes. Bile canaliculi are colored green and asterisks indicate the vacant space without any other endomembrane organelles around

the bile canaliculi. Bars = 1 μm.

https://doi.org/10.1371/journal.pone.0233917.g003
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Fig 4. The ultrastructural changes of the bile canaliculi in porcine liver grafts preserved by HMP. (A and B) Representative hepatocytes and bile canaliculi were

observed by SEM in osmium-macerated porcine liver graft samples preserved by HMP for 4 h after 60 minutes of warm ischemia. The partial area indicated in A was

further photographed under higher magnification (B). Bile canaliculi are colored green, nuclei are colored blue. Asterisks indicate vacant space without any other

endomembrane organelles around the bile canaliculi. (C) Typical bile canaliculi were identified in the ultrathin sections of Epon 812-embedded tissues from liver graft

samples preserved by HMP for 4 h after 60 minutes of warm ischemia. Bile canaliculi are colored green. Asterisks indicate the vacant space without any other

endomembrane organelles around the bile canaliculi. Bars = 1 μm.

https://doi.org/10.1371/journal.pone.0233917.g004
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Fig 5. The ultrastructural changes of the bile canaliculi in porcine liver grafts preserved by MMP. (A and B) Representative hepatocytes and bile canaliculi were

observed by SEM in osmium-macerated porcine liver graft samples preserved by MMP for 4 h after 60 minutes of warm ischemia. The partial area indicated in A was

further photographed under higher magnification (B). Bile canaliculi are colored green, nuclei are colored blue, huge vacuoles are colored red. Asterisks indicate vacant

space without any other endomembrane organelles around the bile canaliculi. (C) Typical bile canaliculi were identified in the ultrathin sections of the Epon

812-embedded tissues from liver graft samples preserved by MMP for 4 h after 60 minutes of warm ischemia. Bile canaliculi are colored green. Asterisks indicate vacant

space without any other endomembrane organelles around the bile canaliculi. Bars = 1 μm.

https://doi.org/10.1371/journal.pone.0233917.g005
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Correspondingly, the value of alkaline phosphatase in perfusate after four hours of MMP (18.0

±3.1 IU/L) was significantly lower in comparison to HMP (26.3±1.0 IU/L) (S1 Fig), indicating

that MMP suppressed the increased biliary enzyme release in comparison to the HMP. Never-

theless, after preservation with both HMP and MMP, small stacks of Golgi apparatus were

rarely detected around the bile canaliculi (Figs 4B and 5B). These findings indicated that, MP

preservation, especially MMP, of liver grafts after warm ischemia enabled the ultrastructure of

the bile canaliculi to be maintained and restored.

Discussion

In the present study, the porcine bile canaliculi after warm ischemia and after HMP and MMP

preservation were analyzed by OM-SEM and complementary TEM methods. Okouhchi et al.

[70] analyzed the ultrastructure of the rat liver after HMP preservation by OM-SEM, but did

not describe the bile canaliculi. Our previous study using OM-SEM [61] described the bile can-

aliculi after MMP preservation under low magnification, but the detailed ultrastructure of the

bile canaliculi was not established at that stage. The present study revealed the detailed ultra-

structural changes of the bile canaliculi after both HMP and MMP preservation.

Morphological abnormalities of the bile canaliculi after warm ischemia were alleviated by

subsequent MP, and this preventative effect was greater in MMP than in HMP. These findings

were consistent with previous physiological reports [2,38,47–56], which suggested that the

ultrastructure of the bile canaliculi is important from both morphological and functional

perspectives.

One hour of warm ischemia was associated with regression of the bile canaliculus lumen;

this change is consistent with our previous findings [61]. Moussa et al. [71] also reported the

regression and disappearance of the bile canaliculi during warm ischemia based on observa-

tion by TEM. These findings may reflect autophagic changes in hepatocytes after warm ische-

mia suppressed the intracellular trafficking pathway [72]. In addition, small stacks of Golgi

apparatus around the bile canaliculi were not found after warm ischemia. This distorted

arrangement of Golgi apparatus was probably caused by hypoxia because the hepatocellular

polarity is maintained by mitochondrial energy [73,74]. On the other hand, the organelle-poor

cytoplasmic region of hepatocytes around the bile canaliculi and functional microvilli in the

bile canaliculi was retained, even after warm ischemia. The accumulation of actin, a cyto-

plasmic component concentrated in the peri-biliary region and microvilli, occurs in hepato-

cyte cytoplasm around the bile canaliculi [75], and the actin in this region is disrupted under

reperfusion rather than during warm ischemia [76], although the microtubules in hepatocytes

are distorted after warm ischemia [77]. The present study supported the opinion that warm

ischemia does not largely affect the cytoplasmic components around the bile canaliculi.

The cross-sectional area of the bile canaliculus lumen in liver grafts that regressed from

warm ischemia tended to recover after both HMP and MMP preservation, suggesting the

resumption of the secretion of bile canaliculi contents, namely bile salts. The secretion of bile

salts from hepatocytes into the bile canaliculi is an important factor for activating bile produc-

tion [78]. HMP and MMP did not seem to irregularly increase the bile duct pressure, although

irregular peri-biliary actin accumulation and biliary dilatation caused by the ischemia-reperfu-

sion treatment—reflecting increased bile duct pressure—has been reported [79]. These find-

ings suggested that the initial cold perfusion phase present in both MMP and HMP may

prevent mitochondrial damage in hepatocytes and lead to the resumption of bile salt secretion

[65].

The bile canaliculus microvilli after HMP preservation tended to regress more in compari-

son to after MMP. The ultrastructure of the microvilli in the bile canaliculi is associated with
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the bile secretion function [73,80,81], and ultrastructural changes of bile canaliculus microvilli

during ischemia-reperfusion injury, drug injury, and cholestasis are characterized by micro-

villi withdrawal [81–87]. Retraction of the microvilli occurs due to damage of the cell mem-

brane forming the bile canaliculi by protonated hydrophobic bile salts [65,88]. Since HMP

consumes less oxygen than warm perfusion [89], hepatocytes may reduce ATP production due

to decreased metabolism during HMP preservation. ATP depletion in hepatocytes alters trans-

porter functions, such as the bile salt export pump and disrupts the balance between bile salts

and phospholipids [65]. It is therefore considered that the neutralization of salts by phospho-

lipids is weakened and that the cell membrane of the bile canaliculi may be more damaged

during HMP than during MMP. Actually, it was also confirmed that the level of ALP, a marker

of capillary bile duct damage, was lower in MMP than in HMP [90].

The present study was associated with several limitations. First, this study did not confirm

the ultrastructural changes in the bile canaliculi in the liver transplanted or monitored after

perfusion storage. Like a previous study of allogeneic liver transplantation of porcine liver

grafts under conditions that were similar to the conditions in this study [91], the present MMP

results are still in the preclinical stage. In addition, this study did not evaluate the effect in

reperfusion at normothermia Thus, the present results should be investigated by further stud-

ies using liver transplant models that are clinically suitable for transplantation and reperfusion

at normothermia ex situ.

Second, among the components of the biliary system, bile duct cells are very sensitive to

ischemia [4]; however, this study did not examine the bile ducts. Future studies are needed to

examine the ultrastructure of the bile duct in order to investigate the optimal conditions for

clinical transplantation [65].

In conclusion, MP preservation alleviated the cessation of intracellular trafficking processes

of hepatocytes caused by warm ischemia and restored the retracted bile canaliculus lumen. In

addition, MMP temperature conditions prevented the retraction of the microvilli in the bile

canaliculi by mitigating the damage to the cell membrane forming the bile canaliculi. In future

study, more clinically appropriate MP conditions to preserve the functions of the liver grafts

should be established by using normothermically reperfusion systems. To achieve the above

objectives, further physiological studies are required to reveal the ultrastructural changes in

liver constituent cells under various conditions, including different temperatures and different

levels of oxygenation, during perfusion storage.

Supporting information

S1 Fig. Changes in the perfusate enzymes after warm ischemia and subsequent preserva-

tion by HMP or MMP. The levels of alkaline phosphatase (ALP) in the perfusate at 4 hours

after hypothermic and midthermic machine perfusion preservation. Data are shown as the

mean ± SEM. Unpaired two-tailed t-tests were used (p<0.05).

(TIF)
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