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Humans perceive and spontaneously move to one or several levels of periodic
pulses (a meter, for short) when listening to musical rhythm, even when the
sensory input does not provide prominent periodic cues to their temporal
location. Here, we review a multi-levelled framework to understanding how
external rhythmic inputs are mapped onto internally represented metric
pulses. This mapping is studied using an approach to quantify and directly
compare representations of metric pulses in signals corresponding to sensory
inputs, neural activity and behaviour (typically body movement). Based on
this approach, recent empirical evidence can be drawn together into a concep-
tual framework that unpacks the phenomenon of meter into four levels. Each
level highlights specific functional processes that critically enable and shape
the mapping from sensory input to internal meter. We discuss the nature, con-
straints and neural substrates of these processes, starting with fundamental
mechanisms investigated inmacaquemonkeys that enable basic forms ofmap-
ping between simple rhythmic stimuli and internally representedmetric pulse.
We propose that human evolution has gradually built a robust and flexible
system upon these fundamental processes, allowing more complex levels of
mapping to emerge in musical behaviours. This approach opens promis-
ing avenues to understand the many facets of rhythmic behaviours across
individuals and species.

This article is part of the theme issue ‘Synchrony and rhythm interaction:
from the brain to behavioural ecology’.
1. Meter is fundamental for temporal coordination
Humans across cultures engage in collective musical behaviours such as ensem-
ble performance and dance, which involve precise temporal coordination of
actions between individuals [1,2]. In such scenarios, information used for
coordination is delivered through dynamically changing acoustic (as well as
visual and tactile) inputs that stimulate the sensory organs. Importantly, both
the auditory input and behavioural output can take the form of non-periodic
(i.e. non-repeating), mutually distinct sequences, which supports the emergence
of complex creative behaviours. In a string quartet, for example, each musician
produces a complex series of movements that may not systematically repeat (i.e.
are not necessarily periodic). Still, these movements are precisely coordinated in
time with the acoustic input the musician receives, which comprises a complex
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Figure 1. (a) Schematic of meter perception, which is a critical ability allowing temporal coordination in musical behaviours. The physical sensory input is mapped
onto internal representations of time in the form of metric pulses. Different inputs can be mapped onto the same internal meter (many-to-one mapping) and the
same input can be mapped onto different internal meters (one-to-many mapping). (b) Schematic of the framework decomposing meter processing into four levels.
Each level is described with an example mapping from the sensory input (grey boxes) to internal meter ( purple boxes) (here one pulse is chosen for simplicity).
Note that the shape of the signals is chosen for illustrative purposes. The frequency-domain representations of the example signals show frequencies related to the
internal metric pulse in red, and a set of meter-unrelated frequencies (yet prominent in the input spectra for levels 2, 3 and 4). Relative prominence of meter-related
and -unrelated frequencies in the spectra was quantified using z-score normalization (note the enhancement of meter-related frequencies in signals indicating the
internal representation). The chosen metric pulse is different for the two examples in level 4, while the input is identical, thus indicating one-to-many mapping.
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(again, not necessarily periodic) aggregate sound sequence of
the whole ensemble. A powerful way to coordinate such sig-
nals involves using an internal temporal reference that is
largely invariant to the particular pattern of dynamic changes
in the sensory input, yet can be shared and synchronized
across individuals.

A fundamental form of temporal reference is based on
an internal representation of a pulse, i.e. a series of regularly
recurring (periodic) points in time [3,4]. In humans, such an
internal representation of pulse is commonly established
when listening to rhythmic stimuli ranging from strictly peri-
odic metronomes to complex musical performances [5–7].
Moreover, humans often simultaneously represent multiple
pulses with different periods arranged in a nested set [8–11],
a phenomenon referred to asmeter perception [6,7,12,13] (elec-
tronic supplementary material, figure S1). This nested set of
metric pulses thus represents an internal temporal reference
that can be used bya number of processes includingmovement
planning [8,11,14–17], dynamic attention [18–22], anticipation
of features of the sensory input [23,24] or encoding of time
intervals making up the rhythmic input [25,26].

Traditionally, different terms were used to refer to one
periodic level within the perceived metric set as the beat (or
tactus in music theory [27]), and the other, slower and faster
pulses, as grouping or subdivision of the beat periodic level
[6,7,28]. Relatedly, meter is often described as a hierarchical
structure, where the beat serves as a central time reference.
However, as an operational definition for the purpose of
the current review, the term ‘metric pulse’ will be used to
refer to any constituent periodic level within a meter. In
other words, we acknowledge that the number of periodic
levels (i.e. pulses) in the perceived meter can differ across
individuals and contexts (and perhaps in certain cases, only
one periodic level can be perceived). But here this will be con-
ceptualized as a quantitative (one, two or N periodic levels)
rather than qualitative (categorizing pulses as beat, grouping,
subdivision) distinction. Such an approach does not exclude
the possibility of hierarchical organization in the way
metric pulses are internally represented, but rather reduces
the number of assumptions to allow for the development of
a more general framework.

It is important to stress that in musical behaviours, the
mapping between internally represented metric pulses and
the rhythmic modulations of physical signals is typically
not one-to-one (figure 1a; electronic supplementary material,
figure S1) [6,7,29]. Rather, different meters (i.e. with different
periods and phase) can be perceived with the same rhythm,
and the same meter (i.e. characterized by the same periods
and phase) can be perceived with different rhythms. An
example of such many-to-one mapping is when listeners
perceive the same meter across different rhythms played by
a musician at different time points during a performance.1

Another example of many-to-one mapping is when dancing
a waltz (requiring representation of a meter where pulse
periods have 1 : 3 relationship) to music as acoustically dis-
tinct as Strauss’ The Blue Danube and Metallica’s Nothing
Else Matters. At the same time, physically identical
stimuli can induce representation of different meters across
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individuals or contexts [15,31–33], which can be described as
a form of one-to-many mapping.

In the last decades, an important aim of psychology and
cognitive neuroscience has been to describe the nature of the
processes that enable and shape the mapping between rhyth-
mic sensory inputs and internal representation of metric
pulses, to uncover their neural basis [34–36], how they develop
over the lifetime [37–39] and to what extent they are present in
other species [40,41]. To this aim, it is critical to use a valid and
comparable method to measure the internal representation of
metric pulses across these different contexts.
l/rstb
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2. Approaches to measure internal
representation of meter

Similar to other perceptual phenomena, the internal represen-
tation of meter cannot be measured directly in individuals.
Instead, a variety of methods have been developed to infer
this representation indirectly, based on a range of assump-
tions. A particularly fruitful family of methods has been
based on analysing dynamic fluctuations of behavioural
and neural signals in real time, as the individual is stimulated
with rhythmic sensory inputs.

(a) Approaches based on measuring secondary
processes

One particularly influential approach to estimate the internal
representation of meter is based on measuring the dynamics
of a secondary perceptual or cognitive process. This approach
is equivalent to probing whether (and how) the brain rep-
resents, for example, time, space or semantic content, by
quantifying whether the system can use these dimensions
to guide processes such as overt movement, attentional selec-
tion or expectations. Using such an approach to probe the
internal representation of meter rests on three critical assump-
tions: (i) that the secondary process dynamically changes
over time, (ii) these dynamic changes can be measured with
appropriate temporal resolution, and (iii) these dynamic
changes are coupled one-to-onewith the internally represented
metric pulses.

A commonly used process that may meet these assump-
tions is overt body movement [11,12,42]. This is owing to the
intrinsic connection between meter and movement [43–46] in
musical contexts across cultures [47], and the ability to directly
measure movement dynamics in real time using motion cap-
ture equipment. Crucially, the assumption about one-to-one
coupling between movement and internally represented
metric pulse can be satisfied via instructions [15,16]. In other
words, it is straightforward to ask human participants to
directly move along with a periodic pulse they spontaneously
perceive when listening to the rhythmic input (note that this is
not conventional for many musical styles, e.g. in swing or
Second Line music, enculturated listeners commonly move in
antiphase with one of the perceived metric pulses by clapping
or snapping fingers at mid-points between successive pulse
positions). However, such instructions cannot be given to
infants or non-human animals, where researchers must rely
on one-to-one coupling of movement and internal metric
pulses emerging spontaneously [37,42], an assumption that
may depend on the nature of the sensory input [48]. Moreover,
it is important to keep in mind that biomechanical constraints
which limit movement at fast rates may not directly apply to
the internal pulse representation. This is evidenced by the abil-
ity to internally represent faster pulses that can be directly
executed through stable movement [49]. Yet, such consider-
ations do not contradict the wide range of evidence
suggesting that the internal representation of a metric pulse
might be implemented within neural circuits involved in
motor control [40,50]. Rather, the aim is to point out that in cer-
tain contexts, the actual executed movement sequences might
not match this internal representation one-to-one, and that
this possibility should be considered when using movement
to infer internal meter representation.

Besides movement, it has been shown that several other
psychological processes may use the internal representation
of meter as a temporal reference. These include dynamic fluc-
tuations of attentional sensitivity or dynamic attention [22],
and predictions of the upcoming sensory input (‘when’ and
‘what’ predictions) [51]. Both, dynamic attention and predic-
tion, can be indirectly measured through their behavioural or
neural correlates. Measuring these correlates typically involves
capturing responses to transient events in the sensory input.
Depending on the targeted process, events may be defined as
simple sounds [52–55], or sounds that violate a statistical rule
established by preceding context (e.g. having greater or smaller
intensity relative to the context) [9,24,56], or silences that
violate a repeating sequential pattern [22,57,58]. If the targeted
secondary process dynamically changes over time and is
coupled one-to-one with the internal metric pulse (assump-
tions 1 and 3 listed above), the behavioural or neural
response to a physically identical event should be consistently
different depending on the temporal position of the event
with respect to this internally represented metric pulse. At
the behavioural level, the responses are typically measured
in terms of perceptual sensitivity and reaction times. At the
neural level, the responses can be captured as event-related
potentials (time-locked fluctuations of field potentials elicited
by the event; for a review, see [59]). Capturing these processes
through their neural correlates is advantageous, as responses
from infants [58] or non-human animals [60] can be measured.
However, similar to movement, the assumption about one-to-
one coupling between these processes and internally rep-
resented metric pulses must be carefully considered before
using them to make inferences about the represented meter.
While there is a considerable amount of evidence suggesting
that fluctuations of attention and prediction can be directly
coupled to the metric pulses [18,19,61,62], some studies
indicate that this may depend on stimulus properties, behav-
ioural goals and prior experience of the individual [23,63–65].
Moreover, unlike movement, these processes may be harder
to control via explicit instructions.

If the assumptions are carefully considered, measuring
processes such as overt movement or dynamic attention con-
stitutes a powerful tool to estimate the internal representation
of metric pulses.

(b) Approaches based on measuring neural
representations

Instead ofmeasuring a secondary process that uses the internal
representation of metric pulses as a time reference, an alterna-
tive approach aims to directly capture the neural representation
of metric pulses. Hence, this approach does not rely on the
assumption about the coupling of a secondary process with
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the internally represented metric pulses. Rather, it is based on
the assumption that the internal representation of a pulse is
encoded in the dynamic fluctuations of neural activity that
can be measured using neuroscientific methods [34,66–69].
The fact that neural activity can be captured at multiple spatial
scales, and in a number of ways (e.g. as single-unit firing
rates, population trajectories, amplitude modulations of
band-limited local field potentials or large-scale electroenceph-
alogram (EEG) activity), may provide complementary insights
into the way metric pulses are represented in the nervous
system, and into the nature of the transformation processes
that support the mapping between internal representations of
metric pulses and the sensory input [29,46,67,70–72].

Using this approach is valid even for neural signals of
complex physiological origin (such as EEG) that probably
reflect a mixture of lower- and higher-level processes related
to the internal representation of the sensory input [29,73,74].
While such signals cannot be expected to directly isolate
neural representation of metric pulses, they can be assumed
to be systematically influenced by this representation.
Hence, in carefully designed experiments and analysis
methods, such responses can provide valuable insights into
the nature of internal meter representation. It is crucial to
note that large-scale neural responses such as field potentials
can hardly reveal low-level neurophysiological implemen-
tation of metric pulse processing (this can be only achieved
by directly capturing neuronal firing rates or layer-specific
dendridic currents, e.g. [75,76]). Rather, these neural signals
can be used as a powerful complement to behavioural
responses (offering several advantages owing to little reliance
on decisional processes and movement abilities). Moreover,
when recorded intracranially, field potentials can offer critical
insights into the spatio-temporal characteristics of the neural
network involved in meter processing ([72,77], see also [78]).
(c) Quantifying pulse prominence
Once a behavioural or neural signal has been measured while
the individual was stimulated with a particular rhythm, the
goal is now to measure how prominent a particular set of
metric pulses is within the captured signal. To this goal, a
range of analysis methods can be used, and these different
analytic tools are linked to a common principle which
is based on the definition of pulse, i.e. periodic recurrence.
Particularly, periodic recurrence can be decomposed into
three crucial components (see the electronic supplementary
material, figure S2) that will all need to be quantified in the
signal: (i) a part of signal’s dynamic trajectory in the state
space must consistently repeat (self-similarity), (ii) this rep-
etition must occur precisely separated by the time interval
given by the pulse period (regularity), and (iii) the trajectory
must be otherwise different from the repeated part (contrast).
Here, the state space is a general term that captures possible
patterns of features relevant for the signal (e.g. amplitudes
measured at different sensors).

It is important to note that periodic recurrence can be con-
sidered a quantitative property. That is, a signal characterized
by a greater degree of self-similarity, contrast and regularity
at a particular period may be considered to comprise a
more prominent representation of a pulse with that period.
Moreover, because a variety of signals can show comparable
self-similarity, contrast and regularity, it follows that equival-
ent pulse representation might be implemented in signals
with various shapes and formats (see the electronic sup-
plementary material, figure S3). Hence, a valid method to
quantify the prominence of a pulse would generalize across
signal properties irrelevant to periodic recurrence, but
remain sensitive to self-similarity, contrast and regularity.
To this aim, several families of measures have been
developed.

Firstly, methods based on phase analysis have been pro-
posed [12]. These phase-based methods are sensitive to the
regularity of signal trajectory with respect to pulse period.
However, they are less sensitive to the contrast property (see
the electronic supplementary material, figure S4 for an
example). Secondly, contrast-based methods assume that
periodicity in the signal is driven by transient features (such
as high-amplitude bursts) that differ within narrow time win-
dows centred on- versus off- pulse positions [74,79,80].
However, these measures might be less sensitive to fine tem-
poral regularity (see the electronic supplementary material,
figure S4). Finally, a third family of measures include autocor-
relation (based on high self-similarity of a periodic signal when
shifted by time equivalent to the pulse period) ([72]; see the
electronic supplementary material, figures S4 and S5) and fre-
quency-tagging (based on the fact that periodic recurrence in a
signal can be identified in the frequency domain as narrow-
band peaks of energy centred at the frequencies corresponding
to the pulse period and its harmonics) [29,81].

These different methods and their respective assumptions,
advantages and pitfalls are illustrated and further discussed
in the electronic supplementary material, figure S4. In order
to make valid conclusions about pulse prominence, it is
crucial to consider these strengths and weaknesses, as well
as the nature of the analysed signals. In many cases, the differ-
ent measures might be used in a complementary way to
provide better insight into pulse representation within a
signal (e.g. [82,83]).

(d) Taking into account pulse prominence in the
physical input

In order to investigate the nature of the mapping between the
sensory input and internal metric pulses, the physical proper-
ties of the sensory input itself must be taken into account.
How prominent a pulse is within the physical input has
been estimated, for example, using methods based on con-
trast [4,79,82,84], frequency-tagging [77,81,83,85,86] or
autocorrelation [72,87]. Investigating the sensitivity of the
perceptual system to the periodicity of various input features
has contributed to understanding the mapping from rhyth-
mic input to internal meter [4,74,88,89], and has led to the
development of extensive models of pulse and meter percep-
tion [46,88,90,91]. However, it is important to note that the
aims of analysing pulse prominence in the physical input
also go beyond providing a comprehensive model of percep-
tual experience. In fact, analysing the physical stimulus is
critical to capture the relevant transformation underlying
the mapping from rhythmic input to internal meter. The
term ‘transformation’ is thus used here to emphasize the
range of neural processes from the peripheral receptors to
cortical pathways, which are involved in the mapping from
physical input to meter by gradually transforming the
internal representation from faithful tracking of input phys-
ical features towards higher-level behaviourally relevant
categories (metric pulse(s) in our case) [29,92–94].
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There is converging evidence that the brain can faithfully
track modulations of various input features [95–97]. Hence,
observing a prominent periodicity in behavioural or neural
responses may be trivially explained if this periodicity is
already prominent in these physical features [91]. Therefore,
quantifying the prominence of periodicities in the acoustic
input is critical to avoid such trivial conclusions [92,98]. In
the case of metric pulses, this can be done by directly compar-
ing the prominence of metric pulses in signals representing a
chosen input feature (e.g. amplitude envelope) and the elicited
response (e.g. EEG activity, or finger tapping). This is valid
if the measure under comparison is sensitive to signal
properties that are relevant to the functional definition of
the phenomenon (here the three properties making up
periodic recurrence: self-similarity, contrast and regularity),
while generalizing across units, scales and different possible
representation formats [99]. As discussed in the electronic
supplementary material, if used carefully, measures of pulse
prominence based on frequency domainmay fulfil these criteria
[72,100]. Moreover, these methods can be used to make valid
comparisons between signals captured from different brain
regions at different spatial scales (including neuronal firing
rates, local field potentials, narrow-band power fluctuations),
as well as overt behaviour (e.g. finger tapping) [29].

In the following section, we discuss recent evidence based
on capturing and directly comparing prominence of metric
pulses in sensory inputs, elicited neural activity and behaviour-
al outputs. Together, this evidence suggests that depending on
input properties and context, the prominence of particular
metric pulsesmay be gradually enhanced throughout the audi-
tory pathway and the dorsal processing stream linking
temporal, parietal and premotor cortices, thus providing a
neural basis for mapping between external rhythmic signals
and internal periodic pulse representations.
3. A range of processes involved in mapping
from sensory input to metric pulses

The mapping from sensory input to internally represented
meter has been often treated as a general ability. In other
words, it is common to ask whether, for instance, non-
human animals or human newborns can perceive the pulse
(or a set of metric pulses) when listening to music
[40,41,58]. However, there is increasing evidence that meter
perception may be conceptualized as multiple processes
which may be engaged differently depending on the nature
of the sensory input and context [60,81,83,101]. These differ-
ent processes can be described in terms of what the perceptual
system does to map a sensory input onto an internal meter,
and can be organized within four levels in which internal
metric pulses are mapped (i) one-to-one with periodic input
(level 1), (ii) with strongly periodic input (level 2), (iii) with
weakly periodic input (level 3), and (iv) based on learned
flexible associations (level 4). It is important to note that the
boundaries between these proposed four levels are not categ-
orical, but the processes involved at different levels might be
involved in a graded fashion depending on the stimulus and
context. Still, this four-level structure may constitute an
insightful way to organize the growing and diverse body of
empirical evidence on rhythm processing into a coherent fra-
mework, and guide future research. For example, the nature
of the constituent processes making up each level remains
to be identified, together with their specific constraints that
may shape the mapping from specific inputs to specific
internal meters. Moreover, the neural substrates underlying
these constituent processes, how these processes differ
between individuals and across species, and develop over
the lifetime, remain largely unknown.

Finally, this conceptual four-level framework is generally
compatible with influential theories, such as the neural reson-
ance theory (NRT) [28,91], the sensory-motor theory [46,102]
or predictive coding [51], which propose computational
models to explain the processes highlighted across the four
levels. Thus, the current aim is not to propose an alternative
to these models. Rather, the goal of the proposed framework
is to organize the empirical data these theories need to account
for and to highlight the diversity of functional processes under-
lying rhythmic behaviour across individuals and species.
Similar multi-level conceptual frameworks have stimulated
progress in understanding phenomena such as theory of
mind [103] or language [104].

(a) Level 1: one-to-one mapping internal metric pulse
with periodic input

At the most fundamental level, the metric pulse is directly rep-
resented already in the sensory input (as illustrated in
figure 1b). This includes notionally isochronous, metronomic
stimuli that contain periodic modulations of a physical feature.
One-to-one mapping from such inputs onto internally rep-
resented pulses can be considered a fundamental ability for
meter processing and has been observed across a number of
species, including humans [12,49], but also insects [105].

Recent findings also demonstrate that macaque monkeys
have the neural machinery to map a metronomic (auditory or
visual) stimulus onto an internal pulse representation, and
coordinate tapping one-to-one with this pulse (figure 2a).
Macaques show proper period matching, switching flexibly
their tapping rate across a wide range of stimulus periods
(450–1000 ms) [106]. Critically, they are capable of precisely
timing their taps, such that they consistently occur slightly
before the individual brief stimuli (e.g. tones or visual flashes)
making up the periodic pacing sequence [107]. The ability to
produce negative tapping asynchrony provides strong evi-
dence that macaques do not simply react to the stimuli, but
rather internally represent input period and use this internal
representation to precisely time their movement. A similar pre-
dictive behaviour has been observed when monkeys were
trained to synchronize their saccadic movements [108] or to
internally calculate the position of a stimuluswithin a sequence
of isochronously presented visual stimuli [109,110].

These observations support the view that monkeys have a
sensory-motor system with all the anatomical and neurophy-
siological properties to compute the fundamental processing
steps for one-to-one temporal coordination with a periodic
stimulus [111]. Firstly, they must be able to extract the period-
icity from a dynamically changing feature of the input.
Hence, the characteristics of the relevant sensory system
may constrain the ability to extract periodicity from inputs
within specific modalities and limit the extraction process to
specific input features [112]. For instance, the spontaneous
preference to coordinate tapping with visual compared to
auditory metronomic inputs observed in monkeys [106,107]
might be partially driven by the lower sensitivity of their
auditory system to low-frequency temporal modulations in
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acoustic inputs [113,114]. However, the auditory cortex of
monkeys is still capable of spontaneously extracting the regu-
larity of isochronous acoustic sequences, as evidenced by
neural responses to sound omissions in an auditory metro-
nome captured by scalp EEG on macaques [115]. Moreover,
the fact that macaques show human-like frequency-following
EEG responses elicited by fast acoustic periodicities suggests
that their auditory system can precisely encode fine sound
timing, thus providing a critical basis for coordination of
movement with incoming acoustic inputs [116]. Secondly,
the periodicity extracted from the sensory input must be
mapped onto an internal pulse-like representation of time.
Converging evidence suggests that the core timing network
comprised by the cortico-thalamic-basal ganglia skeletomotor
circuit (CTBGc) constitutes the neural underpinning of an
internal pulse representation [117–119]. Specifically, the
medial premotor cortex (MPC), composed of the supple-
mentary motor cortex proper and the presupplementary
motor area, is a key area for the conformation of an internal
pulse signal [71]. Although the neural basis of these proces-
sing steps is still fairly unknown, the Rhesus monkey is a
great model to study the dynamical interplay between
bottom-up and top-down signals, using the simultaneous
high-density single-cell recordings at different node levels
of the beat-based timing audiomotor circuit [75]. In fact,
critical observations have already been made in the primate
MPC regarding the representation of a metric pulse during
rhythmic tapping.

A key property of MPC neurons during rhythmic tapping
to a metronome is the relative representation of pulse timing.
Cells that encode elapsed or remaining time for a tap
show up–down ramping profiles that span the produced
time interval, scaling in speed as a function of pulse
period [120,121]. Interestingly, neurons encoding elapsed or
remaining time are tuned to the tapping rate, generat-
ing period-dependent subpopulations for pulse processing
within MPC [122,123]. These neural signals are far from
static. MPC cells are recruited in rapid succession producing
a progressive neural pattern of activation (called moving
bumps) that flexibly fills the time interval corresponding to
one pulse period (figure 2b). This neural pattern may thus pro-
vide a relative representation of how far an interval between
two successive metronome events has evolved [124,125].
Another critical aspect of the MPC periodic clock is that it
resets on every pulse period cycle. Thus, the progressive
pattern of activation starts with a group of cells, migrates to
other cells during the timed interval, stops with the last
group of cells and simultaneously is initialized for the next pro-
duced interval with the previous initial set of cells [70,125]. The
neural cyclic evolution and resetting are more evident when
the time-varying activity of MPC neurons is projected into a
low-dimensional state space (figure 2c) [70]. The population
neural trajectories show the following properties. First, they
have circular dynamics that form a regenerating loop for
every produced interval. Second, the periodic trajectories
increase in amplitude as a function of the input period. These
period-dependent increments in the trajectory radius are the
result of a larger number of neurons within a moving bump
[70]. Finally, the population neural trajectories converge in
similar state space at tapping times, resetting the pulse-based
clock at this point [70]. Hence, the convergence to this neural
attractor state could be the internal representation of the
pulse that is transmitted as a phasic top-down predictive
signal to the auditory areas before each tap [70,126]. In
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addition, the population state during pulse-based predictive
timing indicates the traversed proportion of an interval (rela-
tive timing) instead of its absolute magnitude. Consequently,
these population dynamics can be the fundamental primor-
dium of an internal signal of meter in humans, generating a
predictive, relative-timing and flexible pulse signal within the
MPC [36,126].

These findings are compatible with recent observations
that low-dimensional population trajectories constitute a gen-
eral mechanism to encode time in primate frontal cortices
[127]. Yet, the establishment of an internal pulse represen-
tation is linked to a specific type of dynamics in the form
of regenerating loops, which is distinct from the activity
that emerges during interval reproduction tasks where the
speed of dynamics is adjusted according to the timed interval
[128,129]. This showcases how frontal motor regions can
encode time predictively with a great deal of flexibility, thus
supporting adaptive behaviour in a context-sensitive way.

(i) Adaptation and anticipation mechanisms
In the real world, rhythmic inputs that allow one-to-one
mapping of a metric pulse are not perfectly periodic. Rather,
ecologically valid stimuli often contain small variations in
time-locking to a strictly isochronous pulse period, or tempo
drift (i.e. gradual systematic change of the pulse period deliv-
ered by the input). Hence, real-time mechanisms must be
used to maintain the precise one-to-one temporal coordination
between the input and internal pulse representation (and con-
sequently between the input and overt behaviours that use the
internal pulse as a temporal reference). Studies of externally
paced finger tapping responses (the sensorimotor synchroniza-
tion paradigm) have revealed that these mechanisms include
reactive error correction processes entailing phase and period
correction [49]. Moreover, additional online mechanisms
include anticipatory processes that allow the timing of upcom-
ing sensory events to be predicted during ongoing tempo
changes [1,130]. These processes may be engaged differently
depending on attentional resources [131], individual charac-
teristics [132,133] and task demands [134,135]. Temporal
adaptation and anticipation are nevertheless fundamental pro-
cesses, and evidence for their operation has been observed in
the macaque monkey [107]. In humans, adaptation and antici-
pation mechanisms are also sensitive to hierarchical metric
structures, and can use multiple periodicities in the stimulus
to stabilize performance [14,136].

(ii) Going beyond one-to-one using grouping and subdivision
Research has identified two fundamental processes that allow
going beyond one-to-one mapping between internal pulses
and an external periodic input. Subdivision provides an
internal representation of pulses with faster periods than the
input, whereas grouping provides an internal representation
of pulses slower than the input period [12,49]. Both grouping
and subdivision open to possible simultaneous internal
representation of multiple pulses, a cornerstone of meter pro-
cessing in humans [8,10]. Importantly, subdivision [8,137]
and grouping [9,24] seem to be engaged spontaneously in
humans. Moreover, both processes seem to be biased to
binary ratios [8,9,24,138], although this may be influenced by
long-term exposure [139] and input properties [140].

Despite these intrinsic biases, humans show extraordinary
flexibility to employ subdivision and grouping processes based
on top-down intention. This is evidenced by finger-tapping
experiments [138,141], and studies capturing neural responses
using the frequency-tagging approach [142–145] and contrast-
based methods [53,54,146]. Furthermore, musically trained
individuals show similar flexibility in controlling the phase
of internal pulse representation with respect to the input, as
well as the phase with which overt movement is coupled to
this internal representation [8,14,147]. Such top-down flexi-
bility is an important characteristic of human coordination
abilities,which could be built upon fundamentalmode-locking
mechanisms proposed by neurodynamical models [148]. This
human-specific top-down flexibility can be used to investigate
the limits in the range of absolute pulse periods that can be
internally represented, while partially controlling for limits
inherent to the measured secondary process (e.g. biomechani-
cal limits of movement). For example, grouping has been used
to reveal slow limits of absolute pulse periods, whereas mental
subdivision and antiphase tapping has been used to reveal fast
limits (for a review, see [6,12,49,149]).
(iii) Excluding passive reactions to the input
A common concern with one-to-one mapping is to rule out the
possibility that the system is being passively driven by the
input. As discussed above, a perfectly periodic sensory input
may be trivially expected to give rise to a perfectly periodic
response (either neural or behavioural). Hence, a requirement
for zero or negative asynchrony between the input and
response has been proposed, to ensure that the response
‘predicts’ the input instead of passively reacting to it [40].
This approach can be easily applied to transiently changing
signals where the phase of the input and the response can be
located at specific time points of the signals based on reason-
able assumptions (e.g. one-to-one finger tapping to brief
metronome sounds).

However, locating the relevant time points may be difficult
with smooth continuous signals [11,83,150,151]. Moreover,
beyond the conventional one-to-one finger tapping paradigm,
it is often not feasible to determine the target time points in the
input. In spontaneous one-to-N tapping with a fast metro-
nome, for example, it is often difficult to know which
metronome ticks are the targets. In fact, even in one-to-one
coordination, ‘predictive’ responses can be simply considered
a precisely timed ‘reactive’ responses to previous events in
the input [12]. Nevertheless, it is evident that most tapping
behaviours described in humans and non-human primates
are not simply reactive responses. When the periodic input
stops, subjects can continue to tap with a very similar period
(if instructed or trained appropriately). Thus, the neural rep-
resentation of the pulse can be studied in a synchronization-
continuation task, where initially the subjects synchronize
movement to a periodic stimulus, followed by an internally
driven epoch, where the neural pulse runs endogenously in
the absence of the auditory input [70].Moreover, the possibility
of passive reactions can be excluded when the mapping from
input to internal meter is not one-to-one.
(b) Level 2: mapping internal metric pulse with
strongly periodic input

In human music, rhythmic inputs are rarely metronomic, and
hence do not allow one-to-one mapping from the stimulus
to internal representation of a metric pulse. Yet, the physical
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structure of these rhythmic stimuli commonly contains promi-
nent representation of particular metric pulses, and therefore,
they can be classified as strongly periodic. A large number of
studies have shown that human listeners spontaneously
detect (or extract) prominent input periodicities and directly
map the internal representation of metric pulses onto these
periodicities (example provided in figure 1b) [32,84,89].
Hence, particular pulses prominently represented in an input
strongly bias the periods and phase of the perceived meter,
and thus allow the establishment of consistent temporal
references across individuals [31,80,89]. The process of metric
pulse extraction has been successfully captured in a number
of models [7], including implementations based on rules
[4,32,84] and filterbanks [102,152].

Besides humans, the ability to detect prominent periodic
modulations in strongly periodic inputs and map them
onto strictly periodic movement patterns has been observed
in certain bird species [42,151], and in a sea lion after exten-
sive training [153]. However, such behaviours have not
been observed yet in non-human primates. As evidenced
by scalp EEG recordings, human brain spontaneously inter-
nalizes prominent pulses in a strongly periodic sound input
and differentially responds to unexpected sound changes
depending on their alignment with the phase of these
extracted pulses [56,57]. However, such differential responses
were not elicited in macaque monkeys as they passively lis-
tened to the same auditory stimuli, indicating that their
ability to map internal metric pulses onto sensory inputs
may be restricted to the most fundamental level 1 [60].

It remains possible that non-human primates could learn
to perform level-2-like mappings with appropriate training
procedures (see [107]), which represents an exciting challenge
for future studies. In fact, recent findings support the notion
of certain level 2 abilities in monkeys. For example, electro-
physiological recordings in the basal ganglia indicate that
monkeys can chunk the beginning and end of isochronous
and randomly timed (reactive) tapping sequences [154].
Moreover, preliminary observations of EEG β oscillations (fre-
quency range 12–20 Hz) in macaques reveal magnitude
dynamics that indicate a spontaneous grouping process by
two intervals during passive listening to isochronous stimu-
lus sequences [155]. Nevertheless, more research in the
animals’ natural setting is needed to document whether
different species of birds, cetaceans and monkeys show spon-
taneous abilities to perform a level-2 mapping. The use of a
similar research framework across species with the new
video and audio pattern recognition algorithms using deep
learning are promising avenues to shed light into this
important subject.

Based on the available evidence on cross-species differences,
it has been hypothesized that meter processing beyond level 1
may critically depend on robust connections between auditory
and motor brain regions (electronic supplementary material,
figure S6) [40,41]. Yet, these abilities may be also shaped by
neural mechanisms widely shared across species, particularly
by transformations of sound representation owing to basic
nonlinear mechanisms along the auditory pathway. These non-
linearities further enhance particular periodicities prominently
represented in the acoustic input, hence providing additional
constraints on the space of metric pulses that may be possibly
mapped onto the acoustic input [79,80].

In addition to the enhancement of prominent periodici-
ties in the physical input by subcortical mechanisms, the
mapping of metric pulses can be biased by similar constraints
on absolute pulse periods as have been described for strictly
periodic inputs [147]. These absolute period constraints
have been further corroborated by studies capturing EEG
responses to non-isochronous auditory rhythmic sequences
[83,86]. When otherwise physically identical inputs were
speeded up, the brain transformed the inputs by selectively
enhancing periodicities in the frequency range where spon-
taneous emergence of pulse representations has been
previously shown in behavioural studies [6,12,49]. Collecting
finger tapping responses in the same participants confirmed
functional significance of this neural transformation, as
participants spontaneously changed their tapping period
according to periodicities most prominent in their neural
responses, but not necessarily in the physical structure of
the input. The ability to extract and amplify slow periodicities
from fast acoustic sequences may not only rely on processing
along the auditory pathway, but also on connections to the
cerebellum [156], which is critical for the extraction of precise
temporal information from dynamic modulations of input
features [156].

In summary, mapping inputs with prominent period-
icities in their physical structure to internal metric pulses
may rely on a number of neural mechanisms, including sub-
cortical nonlinearities [79], cerebellar processing [156] and a
frequency tuning curve of the involved neural audiomotor
network [86].

(c) Level 3: mapping internal metric pulse with weakly
periodic input

While many musical rhythms contain prominent represen-
tation of specific pulses in their physical structure, this is not
a general rule. In fact, it is quite common to encounter rhythms
where no clear periodicity directly stands out [101,157,158].
These rhythmic inputs have often been treated as inducing in
some ways weaker internal representation of metric pulses,
or it has been assumed that metric pulses are not mapped
onto such inputs at all [4,21,159–161]. Contrary to these
views, humans seem capable of mapping a stable internal rep-
resentation of metric pulses onto such weakly periodic inputs
(example provided in figure 1b), as observed in spontaneous
finger tapping paradigms [45,81,83,85,86,91,162].

Over the past 10 years, a growing number of studies inves-
tigated neural responses to weakly periodic inputs using EEG
combined with frequency-tagging (for a review, see [29]). This
approach is particularly well suited for this category of inputs
because prominent representation of metric pulses in the
neural responses cannot be easily confounded with passive
reactions to input features. These studies provide converging
evidence that the brain transforms weakly periodic inputs by
selectively enhancing the representation of metric pulses
(figure 3) [81,86] (for similar data obtained with magnetoence-
phalography, see [85]). In other words, this transformation of
the input by the neural system seems to act as a sort of ‘period-
ization’ of the input towards the perceived metric pulses (see
also [93,94,163]). This process of internal periodization is func-
tionally relevant, as the periods of enhanced pulses closely
correspond to those observed in finger-tapping responses of
the same participants, when stimulated with identical acoustic
inputs in a separate behavioural session [81,83,86].

Importantly, this periodization is unlikely to be explained
by low-level processes in the early stages of the auditory
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Figure 3. Neural transformations captured with the frequency-tagging approach. Displayed data show neural responses collected from participants as they listened
to a cyclically repeated rhythmic auditory pattern without overt movement. The periods of internally mapped metric pulses were determined from spontaneous
finger tapping to the same rhythmic inputs collected from the same participants in a separate session. One cycle of each rhythmic pattern is shown in black, above
the corresponding EEG response (purple) ( fronto-central channels, grand average across 14 participants). (a) Frequency-domain representations of the input
(obtained using a cochlear model) and the elicited EEG show that the ‘strongly periodic input’ contained prominent representation of metric pulses already in
its acoustic structure. This prominence (quantified as z-score) was similar in the input (black points) and the EEG responses ( purple points represent individual
participants), and hence can be explained by passive neural tracking of acoustic modulations. (b) The weakly periodic input did not contain prominent metric
periodicities. However, these periodicities were selectively enhanced in the EEG responses, which cannot be easily explained by passive tracking, but rather indicate
an active internal transformation.
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pathway. Indeed, responses predominantly reflecting early
auditory processing (i.e. brainstem auditory responses) iso-
lated from scalp EEG signals closely track the acoustic
input, hence showing little prominence of metric pulses for
weakly periodic inputs [83]. This result is also corroborated
by computational models of subcortical auditory processing,
which provide a biologically plausible estimate of the output
of neural populations at the level of the inferior colliculus
in response to weakly periodic inputs [100]. By contrast,
these neural representations are critically transformed at the
cortical level, as reflected by significantly enhanced pulse
periodicities in responses to weakly periodic inputs captured
directly from Heschl’s gyrus (primary auditory cortex) in
human participants using intracerebral EEG [77]. Together,
these results thus indicate a gradual transformation from
subcortical auditory regions to higher-level regions.

Humans are capable of mapping internal metric pulses
onto weakly periodic inputs, as evident in numerous musical
contexts [158]. However, this mapping might be less spon-
taneous than mapping meter onto strongly periodic inputs
(level 2), thus indicating possible engagement of different
processes. This hypothesis is corroborated by tapping studies
suggesting that long-term musical training may significantly
improve the ability to map meter onto weakly periodic inputs
[45,82]. These results suggest that differentiating strongly and
weakly periodic inputs might significantly improve batteries
aimed to test individual differences in meter processing
[164–167]. Similarly, acknowledging the prominence of
metric pulses within the physical structure of the rhythmic
stimulus might lead to important insights in studies testing
meter processing in non-human animals [42,151,153] or
human infants [58].

Determining how exactly the brain maps a metric pulse
that is not prominently represented in the physical structure
of the stimulus remains an important goal for future empiri-
cal investigations. One hypothesis might be that if other
(faster and/or slower) pulse periods are still prominent in
the stimulus, the system could extract them and map onto
internal pulses. From these, additional pulses might be boot-
strapped by processes of grouping and subdivision to create a
coherent metric set [91]. While slower periodicity in the
stimulus can be driven by cyclic repetition of a rhythmic
pattern [85,86], fast pulse period can be cued by rapid
streams of events. Both of these are common in musical
styles where metric pulses with intermediate periods are
weakly represented in the acoustic input [101,157,158,168].
Such mechanisms have been described in neurodynamic
models as mode-locking of coupled oscillators, which can
reconstruct metric periodicities that are weak (or even com-
pletely absent) in the physical stimulus [91,169]. Notably,
NRT has yielded promising models which posit entrained
oscillation as a parsimonious explanation of behavioural
and neural data across levels 1–3. These mathematical
models are based on a physiologically plausible description
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of neural dynamics [170], yet they also rely on assumptions
that still need to be demonstrated by neurophysiology. For
instance, the existence of two interconnected gradient fre-
quency networks in the human brain, necessary to model
level 3 mappings, remains to be established [91,169]. In fact,
recent neuroimaging work failed to observe gradient network
dynamics in human premotor regions, which was predicted
by previous modelling [85]. Similarly, neural dynamics
observed in monkey frontal cortices might not be readily
described as a resonating gradient network [36,70,121,129].
Hence, while neurodynamic models are powerful to explain
data across the levels proposed in the current review, it
remains to be systematically shown which parameters and
parts of the network architecture are necessary to account
for meter mapping at each level. A critical part of future
work would be to show how these predictions correspond
to the neurophysiology of different species, in order to
explain why only some animals seem to achieve certain
levels of the framework (as already pointed out in [34]).

(d) Level 4: mapping internal metric pulse based on
learned flexible associations

At level 3, the ability to map metric pulses onto weakly per-
iodic inputs was conceptualized as a general skill; hence, it is
expected to generalize across sensory inputs. In this sense, a
skilled individual may successfully map a set of stable metric
pulses onto rhythmic inputs from a particular musical tra-
dition (e.g. music based on Afro-Cuban bembe where the
sound modulations simultaneously represent pulse sets
with periods in relation 2 : 2 : 3 and 2 : 3 : 2; figure 1b). How-
ever, while plausible, the meter mapped by this individual
may be different from the meter that would be typically
mapped by enculturated listeners (2 : 2 : 3 meter [168]). This
illustrates that humans can use a range of indirect cues to pre-
cisely constrain the parameters of the internal metric pulses
[6,101]. This may be based on learned arbitrary contextual
mappings between specific rhythmic patterns and specific
metric pulses, as evidenced by a recent study of musical
corpora [23]. Indeed, certain rhythmic figures are often
characteristic of specific genres (e.g. claves or time-line pat-
terns in music influenced by African tradition). Hence,
recognizing these figures could serve as a reliable cue to par-
ticular meters, along with numerous other cues such as
particular timbres, harmonies, but also social contexts.

The associative processes at level 4 are critical to enable
enculturated individuals to share temporal reference in the
form of metric pulses during musical coordination behaviours,
despite little direct periodic cues in the sensory input, which is
characteristic for numerous musical traditions [101]. In fact,
these learned mappings might even allow the listener to go
‘against’ the direct cues in the input, for instance, in ska and
reggae (where ametric pulse is typically perceived in antiphase
with prominent modulations in the musical stimulus). Based
on the data from laboratory studies, such associative flexible
mappings may be learned through multimodal exposure to
musical auditory inputs accompanied by periodic vestibular
stimulation resulting from active or passive movement
[33,44,46]. Similarly, evidence from EEG frequency-tagging
suggests that learning to move along a rhythmic input in a
way that emphasizes particular metric pulses leads to
enhanced representation of those pulses in the EEG activity eli-
cited while the participants subsequently listen to the same
rhythmic input without moving [43]. These results have been
successfully replicated in neurodynamic models of multi-fre-
quency networks with Hebbian plasticity, thus offering a
biologically plausible mechanistic explanation [171,172].
Whether the biases towards particular meters acquired
through multimodal exposure and body movement remain
stable over time, to what extent they generalize (e.g. across
tempi) and whether they become specifically associated with
particular input features (e.g. rhythmic pattern or timbre)
remains to be investigated in future studies.
4. Summary and perspectives
Meter has developed in Homo sapiens as a robust, yet highly
flexible perceptual system that allows stable temporal coordi-
nation of musical behaviours among individuals, while also
allowing for creativity and aesthetic complexity. Meter has
been studied for a number of decades, yet the assumptions
and pitfalls of different approaches used to empirically
measure its internal representation are sometimes not explicitly
acknowledged. The current discussion of methods that allow
direct comparisons of meter representation between sensory
inputs, neural activity and behavioural outputs is intended to
encourage their careful use and further development. As
reviewed in the current paper, thesemethods constitute power-
ful tools to study the nature of the mapping between external
sensory inputs, and internal representations.

The ability to map internal metric pulse (or pulses) onto
external rhythmic inputs and to use this internal represen-
tation for movement coordination has been considered a
rather unitary phenomenon, exclusively present in humans
and few other species of mammals and birds [40]. However,
a recent hypothesis, namely the gradual audio-motor evol-
ution (GAE) hypothesis, proposed a more continuous view
according to which meter processing emerged gradually in
the primate order, peaking in humans but present in simple
forms across other non-human primates (for a detailed
description, see [41]). Based on available empirical evidence,
we have proposed a concrete framework to organize the pro-
gressively more complex forms of meter processing within
four key levels. The simplest form of meter processing, here
identified as level 1, is already present in monkeys, while
more intricate forms of mapping between sensory inputs
and internal meter seem to be fully developed in humans,
supporting coordination in a flexible, culturally appropriate
way, even in response to weakly periodic stimuli. GAE pre-
dicts that these human abilities evolved through a gradient
of functional and structural changes within the CTBG circuit
and across all the audiomotor pathways (electronic supple-
mentary material, figure S6). Future work needs to identify
the particular nature of these changes, and how they support
the levels of our proposed framework. This framework might
be also useful to organize previous evidence on inter-individ-
ual and developmental differences in rhythmic musical
behaviours, and to integrate these findings with data from
comparative studies across species (cf. [173]).

Meter processing is a phenomenon that depends on a
dynamic interaction between auditory and motor systems
in the brain [40,50]. In this regard, GAE suggests that the
astonishing ability to perceive meter in humans is owing to
their massive and dynamic flow of information between the
auditory cortex, the basal ganglia and the frontal lobe
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(electronic supplementary material, figure S6) [41]. Critically,
more complex forms of meter processing reviewed here (par-
ticularly levels 3 and 4) do not simply require a precise flow of
information, but this information must be transformed to
allow for a mapping from sensory inputs that are not strictly
periodic onto internal periodic representation of time in the
form of metric pulses [29]. Hopefully, the proposed four-
level framework will guide future investigations of processes
involved particularly at these more complex levels, which
have received very little attention until recent years [91,101].

It can be expected that recent conceptual, methodological
and analytical advances in systems neuroscience will provide
novel insights into the nature of the mapping between exter-
nal sensory inputs, internal representations and overt
behaviour [174–176]. In particular, the access to high-density
multisite recordings that allow simultaneous longitudinal
recording across sensory, associative, and motor areas in
behaving animals is likely to move us a critical step forward
in our understanding of information processing in the central
nervous system and the neural basis of cognition [177–179].
For example, an emerging view posits that the neural sub-
strates of behaviour can be captured at the population level,
considering the time-varying patterns of activity of large
numbers of neurons as states of a dynamical system. Thus,
the projection of neural population responses into a lower
dimensional subspace defines neural trajectories that can
reveal the computational strategies employed by different
brain regions during cognition (figure 2) [127,128,180–182].
Similarly, the behaviour induced by the experimental task
can be characterized in a space whose axes correspond to
the measured behavioural variables [150]. Hence, capturing
neural substrates of the behaviour relies on describing the
dynamic relationship between the intrinsic neural trajectories
and the behavioural state patterns [183]. In the context of this
review, we hypothesize that in musical scenarios, the map-
ping between the dynamic neural population states
representing metric pulses and behavioural states may take
complex forms, particularly in humans who demonstrate
flexible higher dimensional movement trajectories such as
dance. Critically, it is expected that the mapping from the
dynamic features of the sensory input onto neural population
trajectories would be increasingly indirect when representing
metric pulses from isochrony (level 1) all the way to flexible
learned associations (level 4) [99]. To better understand
these mappings, the analytical tools described for fre-
quency-tagging on EEG signals can be applied to sensory
inputs and the neural and behavioural state trajectories. A
promising way to test these general hypotheses would
involve large-scale recordings in the audiomotor system of
humans and non-human animals performing tasks covering
the proposed four-level framework.

In summary, the proposed conceptual framework, com-
bined with recent advances in systems neuroscience and the
methodological approaches reviewed in the current paper,
may yield new empirical data to critically test and constrain
mechanistic models of pulse and meter. Therefore, we hope
the current review will encourage further debate in the field
between proponents of different theories, using our proposed
four levels as scaffolding to probe and further develop
models of rhythmic behaviour.
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Endnote
1See [30] for a live performance where Joe Dart delivers a variety of
rhythmic patterns that are mapped onto the same pulse by the audi-
ence, and directly expressed by their clapping.
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