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ABSTRACT Genomic selection (GS) is a potential pathway to accelerate genetic gain for perennial ryegrass
(Lolium perenne L.). Themain objectives of the present study were to investigate the level of genetic gain and
accuracy by applying GS in commercial perennial ryegrass breeding programs. Different scenarios were
compared to a conventional breeding program. Simulated scenarios differed in the method of selection and
structure of the breeding program. Two scenarios (Phen-Y12 and Phen) for phenotypic selection and three
scenarios (GS-Y12, GS and GS-SP) were considered for genomic breeding schemes. All breeding schemes
were simulated for 25 cycles. The amount of genetic gain achieved was different across scenarios. Compared
to phenotypic scenarios, GS scenarios resulted in substantially larger genetic gain for the simulated traits. This
was mainly due to more efficient selection of plots and single plants based on genomic estimated breeding
values. Also, GS allows for reduction in waiting time for the availability of the superior genetic materials from
previous cycles, which led to at least a doubling or a trebling of genetic gain compared to the traditional
program. Reduction in additive genetic variance levels were higher with GS scenarios than with phenotypic
selection. The results demonstrated that implementation of GS in ryegrass breeding is possible and presents
an opportunity to make very significant improvements in genetic gains.
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Perennial ryegrass (Lolium perenne L.) is one of the most cultivated
forage species in temperate grasslands, mainly farmed for its
re-growth capacity after defoliation, and high value as feed for
ruminants, due to palatability, digestibility, and nutritive contents
(Wilkins 1991; Fulkerson et al. 1994; Tallowin et al. 1995). Perennial
ryegrass is an obligate allogamous species with genetic gameto-
phytic self-incompatibility, and is bred in genetically heterogeneous
families (Cornish et al. 1979). Perennial ryegrass is naturally diploid;
however, tetraploids have been developed to improve forage quality,
productivity, and turfgrass management (Richardson et al. 2007).

Recurrent selection is currently the most common strategy
employed in ryegrass breeding. Such selection mainly relies on
phenotypic records for key traits, combined with pedigree and
progeny information (Humphreys 2005). A breeding cycle may
include several selection steps based on information on individual
plants and/or plots. Breeding cycles are typically long (10–14 yr.),
because phenotypes for many key traits (such as dry matter yield
and persistency) can only be reliably measured in plot conditions
over multiple years, required to assess the effects of competition
among plants (Hayes et al. 2013) and to control for genotype
by environment (including year) interactions. The most efficient
conventional selection schemes for ryegrass achieve an approxi-
mate genetic gain of between 0.5 and 0.7% per year for dry matter
yield (Wilkins and Humphreys 2003).

Genomic selection (GS) is a potential pathway to accelerate genetic
gain for perennial ryegrass by reducing the length of the breeding cycle
as well as increasing selection accuracy (Meuwissen et al., 2001; Hayes
et al., 2013; Lin et al., 2014). One of the advantages of GS is that genetic
gain can be increased by decreasing the generation interval, as breeding
values can be estimated at an early stage (as soon as DNA can be
extracted). Application of GS first requires derivation of a prediction
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equation using both the phenotypes and genotypes of genome-wide
distributed markers (usually based on single-nucleotide polymor-
phisms [SNPs]) measured in a reference population. Genomic esti-
mated breeding values can then be calculated for selection candidates
based on genotypes only, and for phenotyped families genomic
information will also enhance accuracy of predicted breeding values
over the accuracy obtained from own phenotypic records.

Ryegrass breeding programs typically follow the following steps to
develop new varieties: (1) parental individuals, selected from elite
varieties, are crossed to generate F1 progenies, (2) seeds from each
F1 are multiplied in isolation to generate F2 families that are then
phenotyped in several replicates and locations as family pools, (3)
single plants (SPs) from selected F2 families are evaluated as indi-
vidual genotypes, (4) synthetic varieties (SYNs) are constructed by
poly-crossing several SPs from the best performing F2 families
(generally between 6 and 10 parents), (5) SYNs are maintained and
evaluated as family pools, and after selection, (6) the best-performing
SYNs are submitted for official testing (Detailed reviews of breeding
methods for grasses are presented by Vogel and Pedersen (1993) and
Hayes et al. (2013)). Several studies have developed genomic pre-
dictions for some traits of perennial ryegrass using information from
different stages of the mentioned breeding program. Fè et al. (2016)
explored GS for seed production related traits, forage quality and
crown rust resistance in commercial germplasm achieving moder-
ate correlations between average phenotypes and genomic estimated
breeding values (GEBVs) in the range of 0.2–0.56. Fè et al. (2015b)
considered the trait of heading date, and using a cross-validation
scheme achieved correlations between average phenotype and GEBVs
ranging from 0.52 to 0.9. Grinberg et al. (2016) reported high
predictive abilities for water-soluble carbohydrate (0.59), dry matter
yield (0.41) based on data from previous generations (containing
parental genotypes) to predict the performance of derived half-sib
populations using genomic best linear unbiased prediction (GBLUP)
and machine learning models. Predictive ability for crown rust re-
sistance on individual plants in a large perennial ryegrass population
reached a maximum of 0.52 in a study by Arojju et al. (2018). Although
GP has reportedly succeeded in ryegrass, however, application of GS
into practical breeding schemes is still under development and careful
considerations on steps to be improved by GS are needed.

Different breeding programs with or without GS can be compared
by computer simulation before empirical application (Lin et al. 2016,
2017b). Based on genetic principles and parameters informed by
empirical data, different breeding strategies can be simulated to
predict their performance in term of genetic gain, inbreeding and
maintenance of genetic variance. For dairy cattle (Bos Taurus), for
which GS has perhaps beenmost successful, computer simulation was
first used to demonstrate the benefits of this technology (Schaeffer
2006). Thus, the main objective of the present study was to investigate
the level of genetic gain and accuracy by applying GS in commercial
perennial ryegrass breeding programs. This was achieved by first
simulating a conventional ryegrass phenotype-based breeding pro-
gram and then simulating potential entry points and strategies for GS
in the breeding program.

MATERIALS AND METHODS

Simulation outline
The simulation study consisted of the following main steps: (i)
simulation of ryegrass base population and initial ryegrass varieties,
(ii) simulation of conventional breeding and GS schemes in various
scenarios.

Simulation of the base population and initial varieties
The QMSim software (Sargolzaei and Schenkel 2009) was used to
simulate a historical population of 2000 generations with a constant
size of 2000 individuals for 1000 generations, followed by a gradual
decrease in population size from 2000 to 1000 to create initial linkage
disequilibrium (LD). Random mating with replacement was applied
across historical generations. In the next step, to simulate the initial
varieties, 20 random samples of 200 individuals were drawn from the
last generation of the historical population and, within each sample,
individuals were randomly mated for another one generation for
variety formation.

Genome
A genome consisting of 7 chromosomes of 100 cM with 100 segre-
gating QTL and 1000 SNPs per chromosome was simulated (Table 1).
The bi-allelic genotype at each locus was represented by 0 (homozy-
gous), 1 (heterozygous) or 2 (homozygous alternative allele). Both
QTL and SNPs were randomly distributed over the chromosomes. In
each meiosis, the number of recombination per chromosome were
sampled from a Poisson distribution (l = 1). To obtain the required
number of segregating loci after 2000 generations, about two to three
times as many bi-allelic loci were simulated by sampling initial allele
frequencies from a uniform distribution and applying a recurrent
mutation rate of 2.5 · 1025. Mutation rates of loci were determined
on the basis of the number of polymorphic loci in generation
2000 of the preliminary analysis that were necessary to obtain
1000 polymorphic SNPs and 100 QTL per chromosome. Mutations
were limited to the loci in historical population. SNPs and QTL were
distinct loci and were randomly drawn from segregating loci, with
a minor allele frequency (MAF) higher than 0.05, in generation 2000.

Simulation of true breeding values and phenotypes
for traits
Four traits were simulated: Trait 1 (h2 = 0.3), Trait 2 (h2 = 0.6), Trait
3 (h2 = 0.4), and Trait 4 (h2 = 0.2). Arbitrary traits with different
heritabilities were considered to reflect the heritability estimates by
empirical studies for some economically important traits (e.g., forage
yield and rust resistance) in ryegrass breeding (Fè et al., 2015a, Wang
et al., 2011). For all traits, the plot heritability was considered which
theoretically is equal to the square of the correlation between the sum
(mean) of TBV of individuals and sum (mean) of the phenotypes of
individuals in the plots. So, by trial and error additive variance
(additive effects per se) was calibrated in a way that the realized plot
h2 was equal to the desired plot h2.

True breeding values for the traits were generated as follows. Allele
substitution effects for quantitative trait loci (QTL) were sampled
from amultivariate normal distributionMVN � ðm;ΣÞ, wherem ¼ 0
for all traits and Σ is a covariance matrix among traits (see below).
Each trait had 700 QTL randomly drawn from segregating loci across
the whole genome with MAF . 0.05. All 700 QTL were shared
(pleiotropic) across all traits. The QTL effects were sampled with a
covariance of �0.2 for Trait 3 and Trait 4 and 0 for all other pairs of
traits. As a result, genetic correlation between Trait 3 and Trait 4 was
0.7, while there was no genetic correlation among other traits. The
TBVs for each trait were calculated as follows:

TBVi ¼
X7000

j¼1

Gijaj

where Gij is the genotype (taking values of 0, 1, and 2) of individual i
at locusj, and aj is the QTL allele substitution effect. The TBV of a plot
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was approximated as the average TBV across all individuals in the
plot.

All QTL effects were assumed to be additive and phenotypes were
generated by adding a random normal deviate N � ð0;s2

e Þ to TBVs
where s2

e for each trait was equal to deviation of additive variance
from the phenotypic variance of each trait (i.e., s2

e ¼ s2
p 2 s2

a).

One cycle of conventional breeding program
All stages of a typical 12-yr conventional breeding scheme are shown
in Figure 1. Breeding scheme commences with 20 initial varieties
from the base population. Two randomly selected plants from a pair
of varieties were randomly mated to create an F1 family of full sibs.
The procedure was repeated to create 250 F1 families of 40 plants in
each family (10,000 individuals in total), thus, on average 25 plants
were chosen as parents from each of the initial varieties. Plants within
each F1 family were randomly mated to produce both the F2 families
that were grown in plots and F2 single plants in greenhouse (by a
delay of one year). This means for each F2 family single plants were
also available for later use (see below). Plants in each F2 family were
the result of random mating among full sib plants within each F1
family with absence of self-pollination (ensured by self-incompati-
bility). In the next step, selection index (Equation 1) was used to
identify 50 F2 families with highest performance in the three trait
phenotypes (Tr. 1, Tr. 3 and Tr. 4) and their corresponding single
plants in greenhouse were used for creation of synthetic (SYN) groups
as following. From the 40 single plants belonging to each top 50 F2
family, 8 single plants were randomly chosen to be used as parents of
SYN groups (400 single plants in total). Selected single plants were
grouped into 8-parent synthetics (50 groups) by their similarity of the
heading time phenotypes that was Trait 2 (h2 ¼ 0:6) in our simu-
lation. Three categories were considered for heading time phenotypes
as early, intermediate and late. In each category, there were �50/3
eight-parent groups on average. In the next step, the 8-parent groups
were polycrossed (SYN1), followed by random mating within each
synthetic group. This step is mainly performed to obtain sufficient
seed for SYN2 plot establishment in practice. In the final step,
20 SYN2 plots were selected using a selection index (Equation 1)
based on performance in Tr. 1, Tr. 3 and Tr. 4, followed by random
mating within each SYN2 to created SYN3 plots.

The conventional breeding program simulated in the present
study included two rounds of multi-trait selection. First round of
selection was at the stage of F2 families and the second round of
selection was in SYN2. Multi-trait selection considered Tr. 1, Tr.
3 and Tr. 4 simultaneously using a selection index as follows:

I ¼ b1�P1 þ b2�P3 þ b3�P4 [1]

where b1, b2 and b3 are the selection index weights for Tr. 1, Tr. 3 and
Tr. 4 and �P1, �P3 and �P4 are the mean phenotypes of the three traits in
plots, respectively. All bi were set to 1/3 to achieve standardized
emphasis on each trait. It should be noted that this selection index
does not reflect the multi-trait selection in practice as that would
include defining economic weights and computing b-values based on
genetic and phenotypic variances and covariances. Nevertheless, the
emphasis on Trait 3 was still slightly greater as a result of the higher h2

of this trait. Trait 2 was assumed as heading date and was only used
for grouping single plants into groups with similar heading date, thus
single plants were not selected for this trait.

One cycle of genomic selection breeding program
The proposed GS-based breeding schemes was designed to integrate
with the current breeding program by replacing phenotypic selection
points with GS (Figure 2). All steps of the genomic breeding program
were similar to the conventional breeding with some modifications as
follows. Similar to phenotypic selection, each cycle started by crossing
of single plants from initial varieties to create 250 F1 families and
randommating among full-sibs within each F1 family, which resulted
in 250 F2 families. At this stage, compared to phenotypic breeding
program, single plants in greenhouse were not planted for all F2
families. Instead, once top 50 F2 families were selected using a
selection index based on GEBV of Tr. 1, Tr. 3 and Tr. 4 (Equation
2), F2single plants were planted only for those top 50 F2 families. In
the next step, 400 single plants were selected using a selection index
(Equation 2) based on combination of GEBV of the three traits.
Similar to phenotypic breeding program, selected single plants were
grouped into eight-parent groups (50 groups) by their similarity of
the heading date phenotypes (Tr. 2). In the next step, the 8-parent
groups were polycrossed (SYN1), followed by random mating within
each synthetic to create SYN2 groups. In the final step, 20 SYN2 plots
were selected using a selection index (Equation 2) based on GEBV of
Tr. 1, Tr. 3 and Tr. 4, followed by random mating within each SYN2
to create SYN3 groups. Similar to phenotypic breeding scheme, the
GS scheme had two rounds of multi-trait selection. First round of
selection was at the stage of F2 families and the second round of
selection was in SYN2 plots step. The selection of the top plots in both
stages, was based on the following multi-trait index:

I ¼ b1GEBV1 þ b2GEBV3 þ b3GEBV4 [2]

Where b1, b2 and b3 are the selection index weights for Tr. 1, Tr. 3 and
Tr. 4 and GEBVi (i = 1, 3 and 4) is the GEBV of the trait in plots. The
bi values were similar to the phenotypic breeding.

Genomic breeding strategy had two major differences with phe-
notypic selection. First, F2single plants were planted only for the
selected 50 F2families. Second, selection of the 400 F2single plants for
poly-crossing was not random as phenotypic strategy but based on
their GEBV using an index. To do so, for all F2single plants, GEBV for
the three traits were estimated and the top 400 single plants were
selected based on a similar index for the selection of top plots
(Equation 2). However, GEBVi in the Equation 2 was estimated for a
single plant rather than based on a plot.

n■ Table 1 Parameters of the simulation process

Populations

Historical population
No. of historical Generations (Size) 2000 (2000 to 1000)
Selection and mating Random

Initial varieties
No. of Initial varieties 20
Size of each initial variety 200

Genome
Number of chromosomes 7
Number of SNPs 7000
Number of QTL 700
SNP and QTL distribution Uniform
MAF of SNPs and QTL 0.05
Additive allelic effects for SNPs Neutral
Additive allelic effects for QTL MVN � ðm;PÞ
Mutation rates 2.5 · 1025 per locus

Trait
Number of traits 4
Heritabilities 0.3, 0.6, 0.4 and 0.2
Genetic correlations 0.7 between trait 3 and 4
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A key aspect of a GS is the establishment of a reference population,
which is used to train prediction equations for traits in the breeding
goal. The reference population for the prediction of marker effects
and calculation of GEBV for F2 families and F2 single plants was
recruited from F2 families. For each F2 family one phenotype and one
summary genotype (allele dosage per marker) per plot was generated
(similar to Ashraf et al. 2014). In other words, every F2 family was
treated as a proxy individual in the reference population with one
phenotype and genotypes of mean dosage of 20 plants. Genotypes for
the plots were represented by the allele dosage, which is the mean
genotype of a subset of 20 individuals per plot and per SNP.
Therefore, genotypes were real numbers between 0 and 2, which
calculated from allele frequencies, rather than integers 0, 1, or 2. For
example if the alleles at a SNP were A and T, with the T designated as

the second allele, and the frequency of the T allele was 0.7 in the plot,
the allele dosage would be 0.7�2 = 1.4. Allele dosage or summary
genotype was used because each plot contains a large number of
individuals each with a different genetic makeup. Once the reference
population was established and SNP effects were predicted (Equa-
tion 3), GEBV of the 3 traits for each of the selection candidates
(F2 families) was calculated. Here, genotypes of each plot were again
represented by mean allele dosage of 20 plants per plot. However,
for F2 single plants, the observed genotype of each single plant was
used to estimate GEBV.

Logical flow of the breeding cycles
Both the conventional and genomic breeding schemes were simulated
for 36 years by starting a new cycle every year and 36 years of breeding

Figure 1 Schematic of one cycle in the
conventional (phenotypic) breeding strat-
egy of perennial ryegrass. Green arrows
indicate selection stages. HD, heading
date; SP, single plants.

Figure 2 Schematic of one cycle in the
genomic selection breeding strategy. Green
arrows indicate selection stages. HD, head-
ing date; SP, single plants; GEBV, genomic
estimated breeding value.
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program was equivalent to 25 cycles (Figure 3). Each year, one
breeding cycle was started by crossing single plants from available
parents to create F1 families and so on. Each breeding cycle takes
12 years to complete, from F1 to SYN3 groups.

Scenarios
We examined five different scenarios (Table 2). Two scenarios
(Phen-Y12 and Phen) were considered for phenotypic selection
and three scenarios (GS-Y12, GS and GS-SP) were simulated for
genomic breeding schemes. The simulations were performed with
scripts developed in R version 3.4.0 (R Core Development Team
2016). All scenarios were conducted with 50 independent replicates
except for the historical population, which was same for all the
replicates and scenarios.

Sc. Phen-Y12
In this scenario, all cycles for the first 11 years were started by
sampling single plants from 20 initial varieties. For each of these
cycles, single plants sampled from initial varieties were crossed to
create F1 families, following the same steps mentioned above for
conventional breeding program (Figure 1). As new cycle was starting
in each year, it was assumed that there was no material exchange
among the 11 initial cycles. For the following cycles after cycle 11, the
initial material (parents) for making F1 families were recruited from
output (SYN2) of previous cycles. As an example, for the start of cycle
12, the SYN2 groups of cycle 1 were already available and served as a
starting material for cycle 12. Similarly, cycle 13 could start with
SYN2 groups of cycle 1 and 2, which were available at the starting
time of cycle 13 (Figure 3). Finally, for cycle 25, SYN2 groups of cycle
1 to 14 were available to be used as initial materials. This reflected the
outcomes of a breeding practice in which elite varieties serve as the
starting material for multiple breeding cycles. As each cycle required
12 years from the stage of F1 families to SYN3 groups to be
accomplished, 36 years of breeding program was equivalent to 25 full
cycle of breeding and selection in this scenario.

Sc. Phen
In this scenario, the 5 initial cycles were similar to the 11 initial cycles
of Sc. Phen-Y12 meaning that a new cycle started by sampling and
crossing single plants from the base population. However, for this
scenario, it was assumed that both F2 single plants and SYN2 groups
could be used as parents once they are available. So, for starting cycle
6 as F2 single plants from cycle 1 were already available, they were
used as the starting material for cycle 6. Similarly, cycle 7 could start
with crossing of F2 single plants from cycle 1 and 2. In other words,
once F2single plants from earlier cycles were available, they served as

initial material for the later cycles. For breeding cycle 12, besides
F2single plants from previous cycles SYN2 groups of cycle 1 could
also be used for making crosses. In this scenario, all available F2 single
plants and SYN2 groups from previous cycles could be used as
starting material for a new cycle. Compared to Sc. Phen-Y12, in
which 11 years were needed to start a new cycle by the output of cycle
1, in Sc. Phen using F2 single plants as starting material upon their
availability, could potentially reduce the breeding cycle from 12 years
to 6 years. Then, the remaining 6 years in the cycle primarily used for
product development before marketing.

Sc. GS-Y12
The breeding structure of this scenario was similar to Sc. Phen-Y12
and can be considered as genomic variant of Sc. Phen-Y12. Similar to
Sc. Phen-Y12, the first 11 cycles started by crossing of initial varieties
as parents. Once SYN2 groups of cycle 1 were available, they were
used as parents for starting cycle 12 and for starting cycle 13, SYN2
groups of both cycle 1 and 2 were available to be used as parents.
Thus, in this scenario, only SYN2 groups could be used as starting
material for a new cycle once they were available (cycle 12 onward).
Similar to Sc. Phen-Y12, first 11 breeding cycles were running
independently with nomaterial exchange among the cycles. However,
as selection at the stage of F2 families and F2 single plants in each cycle
were based on GEBV, reference population for estimating marker
effects were not limited to the F2 families of the corresponding cycle.
Instead, as breeding program was running over the years, the
reference population (F2 families) were increased by adding new
phenotypes and genotypes from the F2 families across years. This
means that for cycle 1 only F2 families of cycle 1 were used as a
reference, however, for cycle 2, F2 families from both cycle 1 and
2 were used for prediction of marker effects, i.e., every year the size of
reference population was growing by 250. Also, as in genomic
breeding schemes, selection of SYN2 groups in each cycle were based
on GEBV, the reference population for the prediction of marker
effects at this stage was not limited to the SYN2 groups of the
corresponding cycle. Here, once SYN2 groups were available,
phenotype and genotype of each SYN2 group were also added
to the same reference population that was used for the prediction
of marker effects to be used in calculation of GEBV in F2 families.
In other words, the GEBV for SYN2 groups of cycle 1 were
calculated based on a reference population consisting of F2 fam-
ilies from cycle 1 to 8 and SYN2 groups of cycle 1 and 2. It should
be noted that it was assumed SYN2 groups of cycle 1 were selected
after being sown in multiplication plots in year 11 and by that time
SYN2 groups of cycle 2 could be genotyped to be added to the
reference population.

Figure 3 Logical flow of the simulated breeding cycles. Breeding schemes were simulated for 36 years by starting a new cycle every year. Y, year;
Cyc, cycle.
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Sc. GS
This scenario is genomic variant of Sc. Phen. Similar to Sc. Phen, the
first 5 cycles started by using initial varieties as parents. For
starting cycle 6, F2 single plants from cycle 1 were available
and were used as input material (parents) for this cycle. Similarly,
cycle 7 could use F2 single plants from cycle 1 and 2 as parents
for making F1 families. In this scenario, it was assumed that both
F2 single plants and SYN2 groups could be used as parents of a
new cycle once they were available. All steps within each cycle of
this scenario was also similar to Sc. GS-Y12. However, compared
to Sc. GS-Y12, where only SYN2 groups could be used as starting
material after 11 years, in this scenario using F2 single plants of
previous cycles, upon their availability, resulted in reduction of
breeding cycle. In other words, the time required to start the first
cycle with superior genetic material of previous cycle was reduced
from 11 to 5 years. Construction of the reference population were
similar to Sc. GS-Y12. As breeding program was running, geno-
types and phenotypes from F2 families and SYN2 groups were
added to the reference population to predict marker effects. The
predicted effects then could be used for calculation of GEBV of the
relevant stage.

Sc. GS-SP
This scenario was the same as Sc. GS with one modification at the
stage of SYN2. For this scenario, it was assumed that not only F2
families have single plants planted in greenhouse, but also SYN2
groups in each cycle were assumed to have SYN2 single plants
planted in greenhouse. So, rather than using F2 single plants and
SYN2 groups as parents for making new cycles as it was done in Sc.
GS, in Sc. GS-SP, both F2 single plants and SYN2 single plants
could be used as parents for making F1 families for new cycles.
Similar to F2 single plants, GEBV for SYN2 single plants was
estimated based on observed genotypes of single plants rather than
mean allele dosage of SYN2 groups. The construction of reference
population in this scenario was similar to GS-Y12 and GS sce-
narios, where F2 families and SYN2 groups were added to the
reference population once they become available, resulting in a
step wise increase in the size of reference population for the later
cycles of breeding program.

Prediction of marker effects
Bayesian ridge regression (BRR) implemented in the BGLR package
was used to predict effects of SNPs (Pérez and de los Campos 2014).
The following model was used to predict the additive effects asso-
ciated with each SNP:

yi ¼ mþ
X

Xijaj þ ei [3]

where yi is the phenotypic observation of plot i (F2 family or SYN2
group) in the training data,m is the overall mean, Xij is the mean allele

dosage of 20 plants randomly sampled per plot for marker j, ranged
from 0 to 2, aj is the random unknown allele substitution effect for
marker j, and ei is the residual effect for plot i, and Σ denotes
summation over all SNPs j. For BRR model Gaussian priors for
the marker effects are assumed. The BGLR package assigns scaled-
inverse x2 densities to the variance parameters whose hyperpara-
meters were given values using the default rules implemented in
BGLR, which assign 5 degrees of freedom and calculates the scale
parameter based on the sample variance of the phenotypes (further
details can be found in Pérez and de los Campos, (2014)). For each
analysis, the Gibbs sampler was run for 50,000 iterations, with the first
10000 discarded as burn in.

Selections of single plants in the genomic breeding schemes at the
stage of F2or SYN2 were based on the GEBVs. Thus, from the
predictions of allele substitution effects (â), GEBV for each trait in
all single plants was calculated as:

GEBVi ¼
Xn

j¼1

ðxijÞâj

Where xij is the copy number of a given allele of marker j, coded 0,
1 and 2 for aa, aA and AA, respectively and Σ denotes summation
over all SNPs j. GEBV for F2 families or SYN2 groups was calculated
similarly except that xij represented themean allele dosage of 20 plants
randomly sampled per plot for marker j:

Genetic gain
Genetic gain in all scenarios was investigated by the cumulative
genetic standard deviations (DG) in later cycles after cycle 1, which
were calculated as follows:

DG ¼ av:ðTBViÞ2 av:ðTBV1Þ
sðTBV1Þ

where av:ðTBV1Þ and av:ðTBViÞand are the mean TBVs of the F1
families in cycle 1 and in later cycles (i = 2 to 25), and sðTBV1Þ is the
standard deviation of the F1 true breeding values at cycle 1.

Accuracy
Selection accuracy in the genomic breeding schemes for F2 and SYN2
single plants was evaluated as the Pearson correlation between in-
dividual GEBVs and TBVs in each cycle. Selection accuracy at the
stage of SYN2 for phenotypic scenarios was calculated as the Pearson
correlation between plot phenotypic performance and TBVs, whereas
for genomic scenarios, it was the Pearson correlation between plot
GEBV and TBV in each cycle.

Additive genetic variance
Additive genetic variance in all scenarios was measured as the
variance of mean TBV of F1 families in each cycle.

n■ Table 2 The five different simulated scenarios

Scenarios Independent cyclesa Input from previous cycles

Phen-Y12 11 SYN2 groups
Phen 5 F2 single plants, SYN2 groups
GS-Y12 11 SYN2 groups
GS 5 F2 single plants, SYN2 groups
GS-SP 5 F2 single plants, SYN2 single plants
a
Number of cycles where initial varieties were used as parents.
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Linkage disequilibrium
To evaluate the extent andmagnitude of LD in the initial varieties, LD
was measured by r2 and was compared with expected LD with
mutation (Tenesa et al. 2007), and to empirically observed LD in
ryegrass. Only markers with a MAF greater than 0.05 were con-
sidered, because the power of detection of LD between two loci
is minimal when at least one of the loci has an extreme allele
frequency (Goddard et al. 2000). To determine the decay of LD with
increasing distance between SNPs, the average r2 within each variety
was expressed as a function of distance between SNPs. SNP pairs were
grouped by their pairwise distance into intervals of 1 cM, starting
from 0 up to 20 cM. The average r2 for SNP pairs in each interval was
estimated as the mean of all r2 within that interval.

Data availability
All the materials used for simulation including the R scripts are
available on GitHub (https://github.com/hadigenetic/Ryegrass-simulation).
Supplemental material available at figshare: https://doi.org/10.25387/
g3.1281175.

RESULTS

Genetic gain
The amount of genetic gain achieved was different across scenarios
(Figure 4). Compared to phenotypic scenarios, GS scenarios achieved
substantially higher genetic gain (in genetic standard deviation units)
for all traits. In all scenarios, as long as cycles were running in-
dependently and using initial varieties (base population) as parents,
no cumulated genetic gain was observed. However, once the output of

previous cycles were available and used as the starting material, a
trend in genetic gain could be realized with different rates across
scenarios. It should be noted that the comparison of genetic gain
among scenarios should take into account the structure of the
breeding program, meaning that comparison for genetic gain was
made between breeding structures with similar set up. In this sense,
Sc. Phen-Y12 and GS-12 can be compared to each other as they have
similar breeding structure (starting with 11 independent cycles).
Likewise, Sc. Phen, GS and GS-SP can be compared to each other
for having 5 initial cycles starting independently from the base
population. Sc. GS-Y12 compared to Sc. Phen-Y12 resulted in higher
genetic gain. Similarly, Sc. GS and GS-SP were also superior to Sc.
Phen. The genetic gain achieved by Sc. GS and GS-SP were similar for
all traits.

The difference between mean TBV of plots at the stage of F1 and
SYN2 within each cycle, for all scenarios, are shown in Figure 5. In all
scenarios, mean TBV of SYN2 groups was higher than the mean TBV
of F1families. The difference between genetic levels of two stages is
due to selection (two-step selection) within each cycle. In all scenar-
ios, genetic level of F1and SYN2 stages in GS breeding schemes was
higher than phenotypic scenarios (Figure 5a). Also, with GS breeding
schemes rate of genetic gain within cycle was more than phenotypic
scenarios (Figure 5b).

Accuracy
The accuracy of phenotypic and genomic selection for all scenarios
for SYN2 is shown in Figure 6. Higher accuracy of selection was
obtained for GS scenarios compared to phenotypic scenarios. As
expected, for phenotypic scenarios limited accuracies were achieved

Figure 4 Genetic gain in cumulative ge-
netic standard deviations (sd) for the three
traits at the stage of F1. Error bars indicate
standard deviations.
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which were constant across the cycles. However, for GS scenarios
accuracy improved across the cycles as a result of increase in the size
of the reference population used for the prediction of marker effects.
At the end of the breeding program, the highest accuracy was�0.6 for
Sc. GS and GS-SP while the lowest was 0.15 for both phenotype-based
selection (Phen-Y12 and Phen).

The accuracy of GEBVs was evaluated for the three traits at the
stage of F2and SYN2 single plants in Sc. GS-SP (Figure 7). In both F2
and SYN2 single plants, accuracies were low (0.15-0.25) for the initial
cycles and improved across the cycles as the reference population size
increased. For F2single plants, Trait 4, had the lowest accuracy as a
result of lower h2. Single plants at the stage of F2 had higher accuracy
than single plants in SYN2 stage. For F2 single plants, the average
accuracy of the three traits for the first and last cycle was 0.25 and
0.55, respectively. The corresponding values for SYN2 single plants
were 0.15 and 0.35.

Additive genetic variance
Additive genetic variance was measured at the stage of F1 for all
scenarios (Figure 8). Changes in the amount of additive genetic
variance was different across scenarios. For phenotypic scenarios,
the additive genetic variance was almost constant across the cycles.
In GS scenarios, however, additive genetic variance was constant
only for the initial cycles (the first 5 cycles for Sc. GS and GS-SP)
and was reduced afterward. At cycle 25, these scenarios retained
approximately 60% of the initial additive variance. For Sc. GS-Y12,
reduction in the additive variance was less than other genomic
scenarios. In fact, for this scenario, the additive variance was
constant for the 11 initial cycles as theses cycles were running
independently but reduction for variance could be realized for
cycle 12 onward.

Linkage disequilibrium
To estimate LD, we used SNP genotypes in all initial varieties. An
average r2 of 0.21 for adjacent SNPs was found which was similar to
the empirical levels of LD reported in the literature (Ponting et al.
2007; Brazauskas et al. 2011). Figure 9 displays an overview of the
decline of r2 over distance. As expected, the most tightly linked SNP
pairs had the highest average r2, and the observed average r2 de-
creased rapidly as the map distance increased. The observed hetero-
zygosity in initial varieties (He = 0.34) was slightly below those
presented by Brazauskas et al. (2011) (0.40) among ryegrass sub-
populations. These observations suggest that the structures of the
simulated genomes were similar to those of actual ryegrass genomes.

DISCUSSION
The potential effects of applying GS on genetic gain in a commercial
ryegrass-breeding program were investigated using simulations. GS
breeding schemes resulted in a substantially larger genetic gain for the
simulated traits when compared with phenotypic selection. This was
mainly due to (a) GS more effectively selecting F2single plants as well
as F2 and SYN2 groups using GEBVs (b) GS allowing for reduction in
cycle time (i.e., earlier availability of elite parents from previous
cycles), which led to at least doubling and trebling genetic gain
compared with traditional selection. However, reduction in additive
genetic variance levels were higher with GS than with phenotypic
selection.

Genetic gain
Different scenarios were compared to the conventional breeding
program to investigate their potential in improvement of genetic
gain. Simulated scenarios differed in the method of selection and in
the structure of the breeding program. For the base scenario (Sc.
Phen-Y12) limited genetic gain could be realized over 25 cycles which
in practice would requires 36 years to be completed. The reason for
the limited genetic gain is basically due to the fact that (a) this
breeding scheme only uses SYN2 groups upon their availability as
parents for a new cycle (this means that 11 initial cycles are running
independently by using initial varieties as parents and as a result,
improvement in genetic gain is delayed and can only be realized by
cycle 12 and onward), (b) with phenotypic selection, selection of top
F2 families can be somehow accurate, depending to the h2 of the trait,
however the single plants at this stage are selected randomly from
these top F2 families. Random selection is inefficient in selecting
individuals with the highest breeding value as there may be a low
genetic correlation between the performance of a plot and single plant
being chosen randomly. Thus, the overall genetic gain observed by the
end of cycle 25, with this scenario, depends mainly on the accuracy of
selection at SYN2 groups (Figure 6).

An alternative for the base scenario (Sc. Phen-Y12) was Sc. Phen.
In this scenario, a new cycle could use the F2 single plants of previous
cycles as starting material as soon as they were available. Compared to
Sc. Phen-Y12, this scenario realized higher genetic gain by cycle
25 mainly because of shortening the length of breeding cycle.
Nevertheless, the realized genetic gain was somehow limited with
this scenario due to constraints mentioned above for the selection of
F2 single plants.

In general, genomic breeding schemes had higher genetic gain
than corresponding phenotypic based scenarios. The cumulative

Figure 5 Mean TBV of F1 and SYN2
stages based on average of 25 cycles. Plot
(a) is based on non-scaled and observed
values in both stages. In plot (b), mean
TBV at stage of F1 in all scenarios are
scaled to zero to illustrate trend of genetic
gain within cycles.
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genetic gain in Sc. GS-Y12 for trait 3 was approximately 2 times
greater than the one achieved with Sc. Phen-Y12. Similarly, Sc. GS
and GS-SP realized �3.2 times more genetic gain than Sc. Phen
(Figure 4). This indicates that adding genomic information improves
selection accuracy of parents that in turn resulted in increased genetic
gain. The improvement of genetic gain by GS scenarios is essentially
due to more accurate selection for both single plants and plots. In fact,
with GS scenarios, the selection of F2 single plants based on GEBV
was efficient and equivalent to having a strong genetic correlation

between single plants and plot traits, making it an immensely power-
ful tool to increase genetic gain. As previously mentioned, random
selection of F2 single plants from F2 families is not very useful due to
lack of genetic correlation between the performance of single plants
and their corresponding plot. In addition, the accuracy of selection in
SYN2 groups with GS scenarios was more than twice than the
accuracy with phenotypic scenarios for initial cycles and accuracy
improved over the cycles resulting in more accurate selection of SYN2
groups in later cycles. Thus, basically with GS scenarios not only the

Figure 6 Selection accuracy in SYN2groups.
For genomic scenarios, accuracy was the
correlation of GEBV and TBV, while in
phenotypic scenario accuracy was the
correlation of mean phenotype and TBV.
Error bars indicate standard deviations.

Figure 7 Accuracy of selection in F2 single
plants (plot a) and SYN2 single plants (plot
b). Accuracy is the correlation of GEBV and
TBV of single plants. Error bars indicate
standard deviations.
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genetic gain within each specific cycle was higher than phenotypic
scenarios (Figure 5) but also the cumulative genetic gain over the
cycles was higher due to improvement in prediction accuracy of both
F2 single plants and SYN2 groups.

Comparing Sc. GS and GS-SP, our results did not show any
advantage of using SYN2 single plants (Sc. GS-SP) over SYN2 groups
(Sc. GS) as parents for a new cycle. The reason for the similar genetic
gain would be that, in both scenarios up to cycle 11, starting material
for a new cycle were recruited from the F2 single plants and
theoretically both scenarios would perform the same up to cycle
11. By cycle 12, even though a new cycle could use the output of cycle
1 (either SYN2 single plant or SYN2) as initial material, but appar-
ently F2 single plants could get higher ranking in terms of GEBV and
could be used as initial material for the cycles after cycle 11. As a
result, the performance of both scenarios were similar in terms of
genetic gain.

Iwata et al. (2011) investigated the performance of GS against
phenotypic selection under single trait selection using simulation and
found that larger levels of gain could be achieved for the less heritable
traits. In contrast, Lin et al. (2016) found larger gains to be achieved
for the traits with higher h2 under multi-trait selection. In our study,
we could not realize a dependency between traits h2 and genetic gain
mainly because of the index selection rather than a single trait
selection. However, trait 4 with h2=0.2 had comparable genetic gain
as Trait 3 with h2=0.4 because of a high genetic correlation between
these two traits (rg=0.7).

To evaluate genetic gain, the cumulative genetic gain in all
scenarios were standardized by the standard deviation of the F1 true
breeding values at cycle 1 as representative of an unselected stage and
cycle. However, the alternative could be to measure genetic gain at the
stage of SYN groups as the final product of the breeding cycles.
To evaluate genetic gain at SYN stage, then would require standard-
ization by standard deviation of the SYN true breeding values. The
problem of standardizing using the SYN variances is that such a
variance is influenced by the change in gene frequencies during
selection plus the selection during each crossing cycle that led to
the SYNs. Therefore, genetic gain was measured at F1 stage for all
scenarios. Alternative measurements of cumulative genetic gain for
breeding cycles are in supplementary Figure S1 and Figure S1.

Accuracy
The accuracy of selection in SYN2 groups was constant over the
cycles with phenotypic scenarios and lower than the accuracy
obtained by GS scenarios. Across the cycles, in genomic scenarios
the accuracy improved for F2single plants, SYN2 groups and SYN2
single plants due to the increase in the size of the reference pop-
ulation. Increasing the reference population size should increase the
accuracy achieved (Daetwyler et al. 2010; Albrecht et al. 2011).

Compared to SYN2 single plants, the accuracy was higher in
F2single plants (Figure 7) despite having smaller reference population
at each cycle. As an example, the GEBV for F2 single plants at cycle 1,
were based on the predicted marker effects using the 250 F2 families

Figure 8 Changes in additive genetic var-
iance in F1 over the period of 25 breeding
cycles. Additive genetic variances for each
scenario were standardized by the initial
additive variance (cycle 1) of each sce-
nario. Standard deviations ranged from
0.01 to 0.02.
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of cycle 1, whereas, the GEBV for SYN2 single plants at cycle 1 were
based on the predicted marker effects using F2 families of cycle 1 to
8 and SYN2 groups of cycle 1. The difference in accuracy between two
stages can be explained as following. (a) for F2 single plants essentially
training and validation is on the same stage (i.e., the same generation)
while SYN2 single plants are two generation away from the training
population (random mating of F2 single plants to create SYN1 and
mating within SYN1 groups to create SYN2). In fact, SYN2 single
plants are more genetically distant to the reference population
compared to F2 single plants. A general decrease in accuracy in
response to an increasing genetic distance between the training and
the validation population have been confirmed in livestock genomic
evaluations (Habier et al. 2007, 2010). (b) For the initial cycles, the
input material for starting a new cycle was from the initial varieties, so
even though, the training size for calculation of GEBV in SYN2 single
plants, for cycle 1 as an example, was larger but in fact, the extra F2
families being used for the training, were from independent cycles.
In this sense, a large reference population consisting of F2 families
with different genetic makeup cannot translate to a high prediction
accuracy in SYN2 single plants.

In our simulation, the reference population was recruited from
plot stage (F2 and SYN2) rather than single plants. The use of mean
dosage as a genotyping unit per plot is expected to decrease the
achievable accuracy in genomic prediction. The reason is that the
association of phenotype with mean allele dosage per plot is expected
to be less than the association of one phenotype with its individual
genotype. The calculation of the mean dosage results in a loss of
resolution because the variance of genotypes within the plot pop-
ulation is lost. In this case, larger reference populations are required to
obtain significant improvements for the accuracy for predicting plot
performance. An alternative would be to establish a reference pop-
ulation consisting of genotypes of single plants for the traits that can
be reliably measured in single plants (e.g., water soluble carbohydrate
content, flowering time). Reference populations would be easier and
less costly for collection from spaced plants or clonal rows, especially
if phenotypic assessment could be performed with high-throughput

methods (Pembleton et al. 2016). It is expected that for such traits
prediction accuracy to be higher due to individual assessment of
genotyped plants than the traits with reference population consisting
of mean dosage as a genotyping unit per plot. Lin et al. (2016) found a
higher prediction accuracy (0.7) for flowering time that had a
reference population consisting of single plants than productivity
traits with a reference population consisted of plots.

In the proposed GS scenarios, the reference population was
updated and enlarged in each breeding cycle. This retains the
genomic relationship between reference population and selection
candidates (i.e., higher probability of SNP being in LD with QTL
resulting in better prediction), which is necessary to achieve usable
prediction accuracy.Without these updates to the reference population,
the accuracy of prediction would deteriorate after a few cycles. This was
confirmed by several studies that have investigated the frequency of
reference population updates and their effect on genetic gain (Iwata
et al. 2011; Yabe et al. 2013).

Additive genetic variance
Our simulated GS scenarios were found to reduce additive genetic
variance over cycles at a more rapid rate than the phenotypic
scenarios. Theory predicts a linear decline in additive genetic variance
with increasing inbreeding coefficient (F) when loci underlying the
trait act additively (Van Buskirk andWilli 2006). Thus, this reduction
of additive variance by GS scenarios indicates that the inbreeding rate
per cycle for GS is higher than for the phenotypic selection. Similar
results were found by Lin et al., (2017a) where GS resulted in greater
inbreeding levels than conventional breeding. These results suggest
that control of the extent of inbreeding should be considered in
GS-based ryegrass breeding programs. One such method is optimum
contribution selection, which aims to maximize genetic gain while
restricting the rate of inbreeding per cycle (Meuwissen 1997). Con-
trols of inbreeding using this method will probably come at a cost of
marginally reduced genetic gain in the short term, while delivering
higher gain in the long term (Henryon et al. 2015). Therefore,
management of inbreeding levels would be prudent when using
GS in perennial ryegrass breeding.

A breeding program needs to be affordable to be implemented, in
practice. The cost benefit of a new breeding technology such as GS
will depend on the value of the extra gain achieved vs. the extra cost
incurred through genotyping. GS can be introduced in ryegrass
breeding programs to replace phenotypic selection in a variety of
ways; therefore, implementation of GS in breeding programs will
incur several cost components, i.e., genotyping individual plants and
plots, which may be best evaluated as cost per unit of genetic gain.
Thus, it is important to determine the increments of gain and cost
through the whole system in different scenarios to inform the optimal
GS option.

CONCLUSIONS
The present study demonstrated the potential for GS to substan-
tially increase genetic gain, as compared with phenotypic selection,
when applied under the design constraints of a commercial ryegrass
breeding program. This increased genetic gain with GS was mainly
due to (a) the ability to select individual plants for plot traits using
GEBVs trained from a plot reference population and more effective
selection of F2 and SYN2 groups using GEBVs (b) reduction of the
duration of breeding cycle times, which led to doubling and trebling
genetic gain than the traditional selection. However, reduction in
additive genetic variance as an indication of inbreeding levels were
higher with GS than with phenotypic selection indicating that active

Figure 9 Decay of average r2 over distance.
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methods to simultaneously manage inbreeding and genetic gain will
be required.
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