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Abstract

DNA polyhedra are cage-like architectures based on interlocked and interlinked DNA strands. We propose a formula which
unites the basic features of these entangled structures. It is based on the transformation of the DNA polyhedral links into
Seifert surfaces, which removes all knots. The numbers of components m, of crossings c, and of Seifert circles s are related by
a simple and elegant formula: szm~cz2. This formula connects the topological aspects of the DNA cage to the Euler
characteristic of the underlying polyhedron. It implies that Seifert circles can be used as effective topological indices to
describe polyhedral links. Our study demonstrates that, the new Euler’s formula provides a theoretical framework for the
stereo-chemistry of DNA polyhedra, which can characterize enzymatic transformations of DNA and be used to characterize
and design novel cages with higher genus.
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Introduction

Polyhedral structures are basic markers of space, which have

been known and celebrated for thousands of years [1]. They are

encountered not only in art and architecture, but also in matter

and many forms of life. The study of polyhedra has guided

scientists to the discovery of spatial symmetry and geometry. A

great theorem, which descends from geometry to topology, is

Euler’s polyhedral formula [2,3]

VzF~Ez2 ð1Þ

where V, F and E are the respective total numbers of vertices, faces

and edges of the polyhedron. Separate relations may also be

established between pairs of these structural elements. As an

example, let ni denote the degree of the i-th vertex, and let pj

denote the number of sides to face j, with ni§3 and pj§3. Then,

we have:

XV

i~1

ni~
XF

j~1

pj~2E ð2Þ

In particular, for the regular polyhedron where n edges radiate

from every vertex, and every face is a p-gon, this becomes

nV~pF~2E ð3Þ

Euler’s formula also provides a simple way for characterizing

symmetry properties of polyhedral molecules [4].

In recent years entirely new types of polyhedral molecules,

based on DNA, have emerged [5], which challenge our ideas of

what is possible in the chemical and biological world. Since the

synthesis of the DNA cube [6], a rich variety of DNA polyhedra,

including tetrahedron [7], octahedron [8], dodecahedron [9],

icosahedrons [10], and buckyball [11] have now been reported in

the literature. In these nano-constructions, each face is made of

closed, interlocked DNA rings, each edge is made of double-helix

[12] or quadruplex-helix [13–15] DNA strands, and each vertex

represents an immobile multi-arm junction. The interest in these

species is rapidly increasing not only for their potential properties

but also for their intriguing architectures and topologies. The

unresolved conflict has impelled a search for an even deeper

understanding of nature.

To address these structural puzzles, we were led to the

mathematical models of so-called polyhedral links [16–21], the

rigorous mathematical definition of which was investigated by

Jablan et al [22]. Polyhedral links are not simple, classical

polyhedra, but consist of interlinked and interlocked structures,

which require an extended understanding of traditional geomet-

rical descriptors. Links, knots, helices, and holes replace the

traditional structural relationships of vertices, faces and edges. The

stereochemical control of these curious objects is still in its infancy,

and would greatly benefit from clear theoretical models which

express the relationships between the constituent descriptors,

much in the same way as Euler’s formula has done for the classical

polyhedra. A challenge that is just now being addressed concerns

how to ascertain and comprehend some of the mysterious

characteristics of the DNA polyhedral folding. The needs of such

a progress will spur the creation of better tools and better theories.

Our treatment is based on the standard apparatus of knot

theory [23,24]. A convenient way to facilitate the study of knots

and links in terms of geometry makes use of the Seifert algorithm

[25,26], which provides a surprisingly simple connection between

knots and links and 2D surfaces. Euler’s polyhedral formula has

already provided a powerful tool to study the geometry of classical
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and regular polyhedra. Our aim is to use the Seifert surface to find

the new Euler’s formula for some twisted and complex polyhedra,

in view of revealing the intrinsic mathematical properties and

controlling the supramolecular design of DNA polyhedra. The

new Euler’s formula would offer a novel and profound

modification to our theoretical description of the geometrical

and topological structures of the polyhedral links.

Methods

Polyhedral links are mathematical models of DNA polyhedra,

which regard DNA as a very thin string. More precisely, they are

defined as follows.

Definition 1. A polyhedral link L is an interlinked and
interlocked architecture that is obtained form a
polyhedral graph G, by using tangle structures to replace
its vertices and edges

Our previous work [18,19] demonstrated that polyhedral links

used to describe DNA polyhedra are all alternating links, which

contain crossings alternate between over and undercrossings along

one component circuit. An example of a tetrahedral link is

constructed from an underlying tetrahedral graph shown in

Figure 1. The edges in this structure show two crossings, giving rise

to one full twist of every edge. This example belongs to the class of

T2k polyhedral links [18], where k denotes the number of full-twists

along each edge. In the present example k = 1. For the polyhedral

graphs, the number of vertices, edges and faces, V, E and F are

three fundamental geometrical parameters. In the context of knot

theory, it is realized that crossing numbers c, component numbers

m and Seifert circle numbers s may be most three important

invariants for polyhedral links.

Definition 2. The crossing numbers c(L) of a polyhedral
link L is the least number of crossings that occur in any
projection of the polyhedral link

From this definition, a minimal graph of a polyhedral link with c

crossing numbers is a projection that just has c crossings. It is easy

to determine the minimal projection of an alternating link and our

proofs are all based on minimal projections [19].

Definition 3. The component number m(L) of a polyhedral
link L is the number of closed nonintersecting curves
called components

In the figures we always distinguish components by different

colors. The definition of component number is more or less similar

to the number of boundary components of thickened graphs, as

defined in Ref [27]. Therefore, it is easy to compute c and m by

counting the crossings and component number in a minimal

projection. For Seifert circle numbers, it needs applying Seifert

algorithm, proposed by the German mathematician Herbert

Seifert [28] in 1934, to generate the surfaces which have

polyhedral links as boundaries also based on their minimal

projections. In the case of DNA strands links are ‘oriented’, since

DNA polymerization follows a direction of propagation from 59 to

39. This direction will be denoted by arrows. For links between

oriented strips, the Seifert construction includes the following two

steps (Figure 2):

1) Firstly, each link is ‘nullified’ by directly connecting tails and

heads of intersecting arrows. In this way a set of noninter-

secting circles called Seifert circles will be generated.

2) Secondly, these circles are again connected to each other at

the position of the original crossing by twisted bands. In this

way a Seifert surface is obtained with the link as boundary.

It is easy to show that every set of oriented links gives rise to an

orientable Seifert surface, i.e. a surface with two sides which can be

colored differently. Figure 1 illustrates the conversion of the

tetrahedral polyhedron into a Seifert surface. Each disk at vertex

belongs to the gray side of surface that corresponds to a Seifert

circle. Six attached ribbons that cover the edges belong to the

white side of surface, which correspond to six Seifert circles with

the opposite direction. Due to the helix structure of DNA,

intuitively, there are two kinds of holes in DNA polyhedra: the

large ‘‘holes’’ located at vertices and the small ‘‘holes’’ at edges,

thus Seifert circles are used to fill these kinds of ‘‘holes’’ during the

Seifert construction.

Definition 4. The Seifert circle number s(L) of a polyhedral
link L is the number of Seifert circles distributed in an
orientable surface with the polyhedral link as it only edge

So far two main types of DNA polyhedra have been realized.

Type I refers to the simple T2k polyhedral links, as shown in

Figure 1. Type II is a more complex structure, involving

quadruplex links. In the following two sections, we perform the

Seifert construction for both types, and obtain an elegant knot-

theoretical equivalent of Euler’s theorem for the case of DNA

polyhedra.

Results

Type I polyhedral links
In their seminal paper, Chen and Seeman reported the first

polyhedral catenane synthesized from DNA: the DNA cube [6].

Its edges consist of double-helical DNA with anti-orientation, and

its vertices correspond to the branch points of the junctions. In our

previous works [18], T2k polyhedral links or branched polyhedral

links have been constructed to describe the topology. In order to

compute the number of Seifert circles, the minimal graph of a

polyhedral link can be decomposed into two parts, namely, vertex

and edge building blocks. Applying the Seifert construction to

these building blocks of a polyhedral link, will create a surface that

Figure 1. The Seifert construction. The construction of the T2-
tetrahedral link from a tetrahedral graph and the construction of Seifert
surface based on its minimal projection. Each strand is assigned by a
different color. The Seifert circles distributed at vertices have opposite
direction with the Seifert circles distributed at edges. The arrows
indicate the 59 - 39 direction of the DNA backbone.
doi:10.1371/journal.pone.0026308.g001

Figure 2. The operation of Seifert construction. The arrows
indicate the orientation of the strands.
doi:10.1371/journal.pone.0026308.g002

Euler’s Formula for DNA Polyhedra
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contains two sets of Seifert circles, based on vertices and on edges

respectively.

As mentioned in the above section, each vertex gives rise to a

disk. Thus, the number of Seifert circles sv derived from vertices is:

sv~V ð4Þ

where V denotes the vertex number of a polyhedron. An edge

containing k anti-parallel full twists, as shown in Figure 3, presents

2k crossings which will generate 2k21 circles.

So, the equation for calculating the number of Seifert circles se

derived from edges is:

se~(2k{1)E ð5Þ

where E denotes the edge number of a polyhedron.

Therefore, each half-turn on an edge and each central cavity of

a vertex of a polyhedral link correspond to a Seifert circle. As a

result, the number of Seifert circles s is given by:

s~svzse~Vz(2k{1)E ð6Þ

Moreover, each edge is decorated with two turns of DNA, which

makes each face corresponds to one cyclic strand. Thus, the

number of closed DNA loops, called the component number m, is

given by:

m~F ð7Þ

where F denotes the face number of a polyhedron. In addition, the

relation of crossing number c and edge number E is given by:

c~2kE ð8Þ

The sum of Eq. (6) and Eq. (7) is:

szm~Vz2kEzF{E ð9Þ

Substitution of Eq. (8) into Eq. (9), yields:

szm~czVzF{E ð10Þ

Using Eq. (10) and Euler’s formula for a polyhedron that can be

mapped on a spherical surface of genus zero VzF~Ez2, we

can derive the following result:

szm~cz2 ð11Þ

When not all edges are of the same degree, the term 2kE in the

above derivation should of course be replaced by the more

detailed form
PE

e~1

2ke, where 2ke denotes the number of crossings

on edge e, but this will not affect the further proof.

The formula (11) connects the number of Seifert circles s, and

the component number m and crossing number c of polyhedral

links, in a way which is entirely analogous to Euler’s famous

formula. As a specific example of the Eq. (11), consider the DNA

tetrahedron, characterized by: V = 4, E = 6 and F = 4. For the

tetrahedral link shown in Fig. 1, k = 1, m = 4, then

c~2kE~12k~12 and s = V+(2k21) E = 4+66(26121) = 10,

thus szm{c = 10+4212 = 2 and of course Eq. (11) is always

satisfied. It is easy to see that the number of Seifert circles is 10,

with 4 located at vertices and 6 located at edges. In the DNA

tetrahedron synthesized by Goodman et al. [7], four 30 base pair

long oligonucleotides were appropriately designed to assemble six

DNA duplex edges. As a result, each edge contains 20 base pairs

that form two full-turns. In the related polyhedral link, k = 2, m = 4,

then c~2kE~24 and s~Vz(2k{1)E~22, thus szm-c~2

and Eq. (11) is also satisfied. Obviously, this new Euler’s formula

provides an elegant, consistent, and calculationally tractable

framework for the DNA polyhedra.

Type II polyhedral links
More recently, an alternative kind of DNA polyhedra with more

complexity has also been synthesized [13–15]. First, n unique

DNA single strands are designed to obtain symmetric n-point stars,

and then these DNA star motifs were connected with each other

by two anti-parallel DNA duplexes to get the final closed

polyhedral structures. Accordingly, each vertex is an n-point star

and each edge consists of two anti-parallel DNA duplexes. It is

noteworthy that these DNA duplexes are linked together by a

single-stranded DNA loop at each vertex, and a single-stranded

DNA crossover at each edge. With this information we can extend

our Euler formula to the second type of polyhedral links.

In type II polyhedral links, two different basic building blocks

are also needed. First, we use ‘n-point star curves’ to replace the

vertex of a polyhedron, where n is equal to the vertex degree. In

general, 3-point star curves generate DNA tetrahedra, hexahedra,

dodecahedra and buckyballs, 4-point star curves yield DNA

octahedra, and 5-point star curves yield DNA icosahedra. The

example of a 3-point star curve is shown in Figure 4(a). Then, we

use ‘m-inverted twisted quadruplex-lines’, as shown in Figure 4(b),

to replace the edge of a polyhedron. Each quadruplex-line

contains a pair of double-lines, so the number of half-twists must

be even, i.e., m = 2k, where k denotes the integer number of full-

twists on each edge. For the example shown in Figure 4, there are

1.5 turns of half-twists in each double-line, so k = 3 and the

number of half-twists on each edge m = 2k = 6. Finally, these two

structural elements are connected as shown in Figure 4(c). In view

Figure 3. Annihilating 2k crossings generates 2k21 Seifert
circles.
doi:10.1371/journal.pone.0026308.g003

Figure 4. The building blocks of type II polyhedral links. (a) The
vertex structure of a three-point star and (b) the edge structure of two
anti-parallel DNA duplexes are connected to a star polyhedral link as
shown in (c).
doi:10.1371/journal.pone.0026308.g004
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of their architectures, we call this type of polyhedral links ‘star

polyhedral links’.

Although star polyhedral links exhibit more complex topological

structures, the distribution of the Seifert circles is relatively simple

when transforming into their Seifert surface. Here, we also

consider vertices and edge building blocks based on minimal

graphs, respectively, to compute the number of Seifert circles.

The application of crossing nullification to a vertex building

block, corresponding to an n-point star, will yield 3n Seifert circles.

As illustrated in Figure 5(a), one branch of 3-point star curves can

generate three Seifert circles, so a 3-point star can yield nine

Seifert circles. Accordingly, the number of Seifert circles sv derived

from vertices is:

sv~3nV ð12Þ

By Eq. (3), we can further obtain:

sv~6E ð13Þ

Further application of crossing nullifying to an edge, consisting of

2k-inverted twisted quadruplex-lines, will generate 2k Seifert

circles, as shown in Figure 5(b). So, the number of Seifert circles

se derived from edges is:

se~2kE ð14Þ

Except for these Seifert circles obtained from vertices and edge

building blocks, there are still additional circles which were left

uncounted. In one star polyhedral link, there is a red loop in each

vertex and a black loop in each edge. After the operation of

crossing nullification, a Seifert circle appears in between these

loops, which is indicated as a black bead in Figure 5(c). So the

numbers of extra Seifert circles associated with the connection

between vertices and edges is 2E.

For type II polyhedral links, therefore, the Seifert circles

number s of their Seifert surface can be expressed as:

s~svzsez2E~(2kz8)E ð15Þ

Each face corresponds to a single-stranded DNA that forms

duplexes, while each vertex and edge also contains a DNA single

strand. For component number, the following relationship thus

holds:

m~VzEzF ð16Þ

In comparison with type I polyhedral links, crossings not only

appear on edges but also on vertices. The equation for calculating

the crossing number of edges ce is:

ce~(2kz2)E ð17Þ

and the crossing number of vertices cv can be calculated by:

cv~4nV ð18Þ

Then, it also can be expressed by edge number as:

cv~8E ð19Þ

So, the crossing number c of type II polyhedral links amounts to:

c~cvzce~(2kz10)E ð20Þ

Likewise, substitution of Eq. (1) and Eq. (20) into the sum of Eq.

(15) and Eq. (16) gives the formula of Equation (11):

szm~cz2:

As an example consider the DNA icosahedron, with numbers of

vertices, edges and faces V = 12, E = 30 and F = 20, respectively.

For its synthesis, Zhang et al. [11] first designed twelve ‘5-point

stars’ with unpaired loops of 5 base pairs as vertices of

icosahedron. Any two adjacent vertices are connected by two

parallel duplexes, with lengths of 42 base pairs or four turns. For

the k = 4 polyhedral link mode based on the five-regular

icosahedron, the number of Seifert circles located in vertices and

edges are sv~3|5|12~180, and se~2|4|30~240, as

shown in Figure 5(b), and at the connection between vertices

and edges is 2|30~60, as shown in Figure 5(c). Therefore, the

number of Seifert circles s~180z240z60~480, then we obtain

m~VzEzF~62 and c = (2k+10) E = 540, of course

szm-c = 480z62{540~2 and Eq. (11) is established again.

With the discovery of the new Euler’s equation, fortunately, we

now have a hope of solving some deeper mysteries.

Discussion

Validity and application
Equation (11) relates the Seifert circle number s of Seifert

surfaces and the component number m of links to the crossing

number c of links. In comparison with the well known polyhedral

Euler’s formula VzF~Ez2, the formula szm~cz2 holds the

same form. It is not difficult, intuitively at least, to see that the

structural elements in the right-hand side of the equation have

been changed from vertices and faces to Seifert circles and link

Figure 5. The distribution of Seifert circles. (a) Applying crossing
nullifying to vertex building blocks, (b) Applying crossing nullifying to
edge building blocks and (c) the distribution of Seifert circles at the
connection between vertices and edges.
doi:10.1371/journal.pone.0026308.g005
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components, and in the left-hand side from edges to crossings of

helix structures. Accordingly, we state that the Eq. (11) is the ‘‘new

Euler’s Equation’’ for polyhedral links, with its Euler characteristic

equals 2, which reveals the intrinsic property of DNA polyhedra.

The classical ‘‘Euler’s Equation’’is the study of geometric

properties of rigid objects, while the ‘‘new Euler’s Equation’’ is

detecting the topological characteristics of polyhedral links, such as

connectedness, holes, and twistedness. Conversely, in formal, if

retaining the number of vertices, faces and edges in Eq. (11), i.e.

s = V, mu = F, c = E, will turn the new ‘‘Euler’s Equation’’ back to

the classical ‘‘Euler’s Equation’’ and find where are the vertices,

edges, and faces on a topological surface. The new Euler’s

equation pursues an inner harmony, where elegance, uniqueness

and beauty define DNA polyhedra.

For a Seifert surface, there exist many topological invariants

that can be used to describe its geometrical and topological

characters. Among them, genus g and Seifert circle numbers s

appear to be of particular importance for our purpose. Genus is

the basic topological feature of a surface, which denotes the

number of holes going through the surface. Euler’s formula, as a

geometrical property, can generalize to polyhedral nets on surfaces

with other topologies as:

VzF~Ezx ð21Þ

Here x denotes the Euler characteristic, which is an invariant also,

can be related to genus g by:

x~2{2g ð22Þ

As such, the Euler formula can be generalized to polyhedral links

based on non-planar graphs:

szm~cz(2{2g) ð23Þ

As mentioned in the Euler formula (11) of branch and star

polyhedral links, the Euler characteristic is 2, so we can conclude

that the genus of a DNA polyhedron equals zero. The result shows

that all DNA polyhedral catenanes synthesized so far are restricted

to a surface homeomorphic to a sphere. The exciting implication is

that genus is not only a purely mathematical definition, but also

provides a heuristic principle for novel structures [29]. This opens

the way to the design of novel polyhedral modes with g.0 for

materials and DNA [30–32]. Jonoska and Twarock [32] have

investigated all possibilities of constructing dodecahedral DNA

cages theoretically. Using Eq. (23), it is easy to calculate that they

are embedded on surfaces with genus 3, 4, 5 and 6, which builds a

rich treasure house for chemical investigation. As examples shown

in Figure 6(a) and (b), we propose another way to design two novel

DNA polyhedra with g = 1, based on the complete graph of five

nodes, K5, which is embedded on a torus. For the K5 graph,

V~5, = F~6, and E~10. For its corresponding link shown in

Fig. 6(a), the crossing number c~2E~20, the component number

m~F{1~5 and the number of Seifert circles s~EzV~15. For

its corresponding link shown in Fig. 6(b), the crossing number

c~16E~160, the component number m~VzEzF{1~20
and the number of Seifert circles s~12Vz6Ez2E~140.

Hence, for both types of polyhedral links based on K5 graph, the

new Euler formula satisfy szm~c:
By analogy with the classic Euler’s formula, we expect that such

a simple and elegant relation will greatly contribute to an

understanding of the topologically complex structures of polyhe-

dral links, as well as some potential biological processes. As an

example, we illustrate its use to characterize the recombinase

regulation and controlling mechanisms for DNA polyhedra [33].

Recombinase is a site-specific enzyme, which, by cutting two

segments and interchanging the ends of DNA, can result in the

inversion or the deletion or insertion of a DNA segment. Thus, this

operation exactly matches the crossing nullification in Seifert’s

algorithm! It means that the number of Seifert circles remains

unchanged during the recombination, i.e. s0~s. As shown in

Figure 6(c), the recombination of a tetrahedral link changes the

crossing number c by one, i.e., c0~c{1. By inserting c9 and s9 into

Eq. (11), one obtains m0~m{1. This means that each recombi-

nation will change the component number of polyhedral links by

one, which proves Jonoska’s result [27] of the change of DNA

strands with regard to topological graph theory.

In knot theory, the crossing number serves as the basis for

classifying knots and links. As an invariant, however, it is not very

informative since different knots may have the same crossing

number. Here, we propose that the Seifert circle number gives us a

more satisfactory way to measure the complexity of polyhedral

links. Rearranging Eq. (11) gives:

s~c{mz2 ð24Þ

As we can see from Eq. (24), Seifert circle numbers s consider not

only crossing numbers c but also the additional information of

component numbers m. Such a modified descriptor is shown to be

more effective than the crossing number c. Although this invariant

is still not exclusive, it is an easily derived topological descriptor for

DNA polyhedra. In DNA nanotechnology, crossing number c and

component number m are two experimentally accessible quantities.

Crossing number c determined by the base number of DNA

duplexes: c<base number /5, and component number m equals

the number of circular DNA strands (DNA loops).

Conclusions
In this paper, we have derived an intuitively simple formula for

two types of polyhedral links by means of Seifert’s algorithm. The

new formula unites one geometrical invariant of the number of

Seifert circles, and two knot invariants including crossing numbers

and component numbers, in a single expression which is

reminiscent of Euler’s polyhedral formula. Furthermore, the study

of two molecular descriptors, genus and Seifert circle number, may

provide a new understanding of the structure of polyhedral links.

Figure 6. Two applications of the new Euler’s formula. The type I
(a) and type II (b) genus-one DNA polyhedra based on K5 graph. (c) The
recombination of a tetrahedral link.
doi:10.1371/journal.pone.0026308.g006
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In conclusion, we believe that this research constitutes two main

advances:

It provides a clear connection between the geometry of the

underlying polyhedron and the knot structure of the entangled

polyhedral links, which proves that each DNA polyhedra have

their ‘‘own’’ Euler’s formula.

It offers rigorous descriptors to quantify the geometry and

topology of DNA polyhedra, and paves the way to the design of

intrinsically novel structures.

This discovery could be instrumental to relate the toolbox of

mathematical knot theory to biomolecular recombination pro-

cesses, linking topology to reality-as Euler’s polyhedral formula has

done over and over again in the polyhedral world of molecules.

The new Euler’s equation would mark a beginning, not an end; it

can be extended to objects with higher genus.
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30. Hyde ST, Schröder-Turk GE (2007) Tangled (up in) cubes. Acta Cryst A 63:

186–197.
31. Castle T, Evans Myfanwy E, Hyde ST (2009) All toroidal embeddings of

polyhedral graphs in 3-space are chiral. New J Chem 33: 2107–2113.
32. Jonoska N, Twarock R (2008) Blueprints for dodecahedral DNA cages. J Phys A:

Math Theor 41: 304043–14.

33. Hu G, Wang Z, Qiu WY (2011) Topological analysis of enzymatic actions on
DNA polyhedral links. B Math Biol DOI: 10.1007/s11538-011-9659-z.

Euler’s Formula for DNA Polyhedra

PLoS ONE | www.plosone.org 6 October 2011 | Volume 6 | Issue 10 | e26308


