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Abstract

Purpose

To investigate the therapeutic effect of local photothermal (PT) heating on suppression of

stent-induced granulation tissue formation in mouse colon.

Materials and methods

A gold nanoparticle (GNP)-coated self-expandable metallic stent (SEMS) was prepared

using a two-step synthesis process for local PT heating under near-infrared laser irradiation.

Twenty-four mice were randomly divided into two groups of 12 and subjected to SEMS

placement in the colon. Group A received a GNP-coated SEMS without local heating and

Group B received a GNP-coated SEMS and underwent local heating at 55˚C after SEMS

placement. The therapeutic effect of local heating was assessed by comparing the histo-

pathological, immunohistochemical, and endoscopic results.

Results

Four mice were excluded because of stent migration (n = 3, group B) or death (n = 1, group

A). Stent-induced granulation tissue-related variables were significantly lower in group B

than in group A (p < 0.001). In vivo endoscopic images, 4 weeks after stent placement,

showed granulation tissue formation over the wire mesh in group A and relatively good

patency of the stented colon with no definite irregularities in group B. There was more vascu-

lar endothelial growth factor (VEGF) positivity in group A than in group B.
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Conclusion

Local PT heating suppresses granulation tissue formation after stent placement in mouse

colon.

Introduction

Self-expandable metallic stent (SEMS) placement was originally developed for treating malig-

nant and benign strictures [1–7]. Colonic stent placement is effective and safe and can be used

as a palliative treatment or an alternative to surgery [6–10]. Stents are commonly used to treat

diverticular disease, Crohn’s disease, colonic fistula, and postsurgical anastomosis [11–19].

However, therapeutic options for these patients are restricted by the stent-induced granulation

tissue formation that occurs in the uncovered portion of the SEMS or the ends of covered

SEMS; it can induce additional stricture with recurrent obstruction and increase the technical

failure of stent removal [7]. Therefore, uncovered and covered SEMS placement is insufficient

for patients with benign and malignant strictures, and stenting for benign strictures is not yet

recommended as a first treatment option. Various drugs such as paclitaxel, sirolimus, and

transforming growth factor-beta inhibitors have been investigated in vitro and in vivo for their

ability to suppress granulation tissue formation after SEMS placement in various nonvascular,

luminal organs [20–23]. However, despite recent advances in various stent technologies for

suppressing stent-induced granulation tissue formation, the current therapeutic strategies are

insufficient. Additionally, there is a lack of data on long-term outcomes.

Laser-induced local heating can suppress tumor and granulation tissue formation [24–28].

Under near-infrared (NIR) laser-induced local heating, the temperature of the gold nanoparti-

cle (GNP)-coated stent is significantly increased leading to hyperthermia of the tissue [27–30].

Local heating at moderate temperatures reduces collagen deposition, increases apoptosis, and

activates heat shock proteins [25–27]. Various GNP-based stents with multifunctionality and

high photothermal therapy efficiency have been investigated [28,31–33]. Our previous study

using GNP-coated SEMS with near-infrared (NIR) irradiation demonstrated that in vivo tem-

peratures (49˚C) can suppress the stent-induced tissue granulation tissue formation [27].

However, thermal effects did not improve the suppression of hyperplasia or endoscopic tissue

changes. A moderate temperature may suppress the revascularization of stented mechanical

injury. We hypothesized that this therapeutic strategy may also suppress stent-induced granu-

lation tissue formation by thermal-induced suppression of revascularization. The aim of this

study was to investigate the therapeutic effect of local photothermal (PT) heating on suppress-

ing stent-induced granulation tissue formation in the mouse colon.

Materials and methods

Preparation of GNP-coated SEMS

The SEMS was knitted from a single 0.127-mm-thick nitinol wire filament (S&G Biotech, Yon-

gin, South Korea). The stent was 4 mm in diameter and 8 mm in length. The colonic stent

introducer set consisted of a 6-Fr sheath, dilator, and pusher catheter (Cook, Bloomington, IN,

USA). The materials for the preparation of gold-coated stents have been previously described

[27,34]. The preparation of the GNP-coated stent and its characterization were performed as

previously described [27,34] (Fig 1). GNP-coated SEMS was fabricated through a two-step syn-

thesis process to create a stent capable of PT local heating under NIR laser irradiation. The
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cationic polymer was coated on the surface of SEMS through polydopamine (PDA) coating

before deposition of GNP on the surface. To coat the surface of the PDA-coated stent with a

cationic polymer, the PDA-coated stent was immersed in PEI. Finally, the PEI-coated stent

was immersed to synthesize the gold nanoparticle.

Animal study

All animal experiments were approved by the Institutional Animal Care and Use Committee

at the Asan Medical Center, University of Ulsan College of Medicine (No. 2017-13-267). The

animals were housed one per cage in a room with 12-hour light/dark cycles at an environmen-

tal temperature (24 ± 1˚C) and moisture (55 ± 10%); they were provided standard rodent

chow and water ad libitum. All animals were acclimatized for at least 1 week before the experi-

ment. Twenty-four C57BL/6 male mice (25–30 g; Orient Bio, Seongnam, South Korea) were

divided using a random allocation software (version 2.0; Microsoft, Seattle, WA, USA) into

two groups: Group A, GNP-SEMS without local heating, and Group B, GNP-SEMS with local

heating at 55˚C. All mice were euthanized by inhalable pure carbon dioxide 4 weeks after the

start of local heating, which was started 1 week after SEMS placement.

Stent placement and local PT heating

All procedures were performed on a heating mat warmed to 38˚C with the mouse in the supine

position. The mice were anesthetized by intramuscular injection of 50 mg/kg zolazepam, 50

mg/kg tiletamine (Zoletil 50; Virbac, Carros, France), and 10 mg/kg xylazine (Rompun; Bayer

HealthCare, Leverkusen, Germany). A 0.014-inch micro-guidewire (Transcend; Boston Scien-

tific, Watertown, MA, USA) was inserted under fluoroscopic guidance, and a 4-Fr sheath and

dilator were advanced over the guidewire into the sigmoid colon at the level of the pelvis. With

the sheath left in place, the guidewire and dilator were removed from the mouse. A GNP-

coated SEMS in a compressed state was loaded into the sheath and placed in the sigmoid colon

using a pusher catheter. The GNP-coated SEMS was deployed at the level of the upper pelvis

Fig 1. Representative scanning electron microscopy images after the stent coating process. PDA: Polydopamine; GNP: Gold

nanoparticle.

https://doi.org/10.1371/journal.pone.0249530.g001
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under fluoroscopic monitoring. After the procedure, colonography was performed to verify

the position and patency of the stent (Fig 2).

Local PT heating was performed 1 week after the stent placement. For NIR laser irradiation,

a 1-mm-diameter fiber-coupled NIR (808 nm) diode laser (OCLA™ LASER, NDLUX Inc.,

Anyang, South Korea) was inserted into a 6-Fr sheath with a radiopaque tip to allow visualiza-

tion under fluoroscopic guidance. The 6-Fr sheath with the fiber-coupled NIR laser was

advanced to the middle portion of the stented sigmoid colon. NIR laser irradiation was applied

for 70 s (including 10 s after irradiation) in group B. Mice received an intramuscular injection

of 0.05 mg/kg buprenorphine (Renophan; Hanlim Pharmaceutical, Seoul, South Korea) before

the stent placement, local heating, and on days 1 and 2 after the interventional procedure.

After the stent placement, weight change and behavioral change were monitored weekly. Four

weeks after stent placement, all mice were sacrificed for histologic analysis. All mice were

euthanized 4 weeks by inhalable pure carbon dioxide after stent placement.

In vivo endoscopic examination after PT laser-induced local heating. We evaluated tis-

sue effects, such as the recovery of the epithelium and granulation tissue formation, after the

stent placement and local heating in all mice.

Endoscopic evaluation using a Hopkins II rigid endoscope (Karl Storz, Goleta, CA, USA)

was used to identify the adjacent stent mesh framework. In vivo endoscopic images were

Fig 2. Representative radiographic images showing the stent in the sigmoid colon at the level of the pelvis. [Arrows = stented

sigmoid colon at the level of the pelvis].

https://doi.org/10.1371/journal.pone.0249530.g002
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obtained 4 weeks after stent placement in Group A and immediately after local heating and 4

weeks after the stent placement in Group B.

Histologic evaluation. All mice were euthanized by inhalable pure carbon dioxide 4 weeks

after stent placement. Surgical exploration of the colon was followed by a gross examination to

evaluate the degree of granulation tissue formation. The stents were then gently removed from

the stented colon. The stented colons were sectioned transversely at the proximal and distal

regions.

Tissue proximal region samples were fixed in 10% neutral-buffered formalin for 24 h and

embedded in polymethyl methacrylate (Polysciences Inc, Warrington, PA, USA), which is a

hard acrylic resin. Samples were then cut into sections using a tungsten carbide knife, leaving

the stent wires intact in the cross-sections to minimize potential artifacts from stent wire

removal.

Histological evaluation using hematoxylin and eosin included determining the thickness of

submucosal fibrosis (mm) and the granulation tissue-related percentage of the stent. The

cross-sectional area of stenosis was calculated as 100 × (1 - [stenotic stented area/original

stented area]) [21,27]. Histological analysis of the colon was performed using a BX51 micro-

scope (Olympus, Tokyo, Japan). Image-Pro Plus software (Media Cybernetics, Silver Spring,

MD, USA) was used for the measurements. The analyses of the histologic findings were

assessed based on the consensus of three observers blinded to the study.

Immunohistochemical analysis

Formalin-fixed, paraffin-embedded sections of the colon were used for immunohistochemical

analysis. Immunohistochemistry (IHC) was performed on paraffin-embedded transverse sec-

tions of the stented colon with VEGF (ab45010, 1:100, Abcam, Cambridge, UK) and as the pri-

mary antibodies. The sections were visualized using a BenchMark XT IHC automated

immunohistochemical Stainer (Ventana Medical Systems, Tucson, AZ, USA). VEGF positivity

were determined as follows: 1 = mild, 2 = mild to moderate, 3 = moderate, 4 = moderate to

severe, and 5 = severe. IHC reporting was based on the consensus of three observers, who were

blinded to the study.

Statistical analysis

Differences between the groups were analyzed using the Mann-Whitney U test, as appropriate.

A p-value of< 0.05 was considered statistically significant. Statistical analyses were performed

using SPSS (version 24.0; SPSS, IBM, Chicago, IL, USA).

Results

Stent placement, local heating, and in vivo endoscopic findings

Stent placement and local PT heating were technically successful in all the mice (Fig 2). Four

mice were excluded because of stent migration (n = 3) or death (n = 1). GNP-coated SEMSs

had migrated into the rectums of three mice in group B within 10 days after placement. One

mouse in group A died after stent placement because of perforation caused by the radial stent

force in the colon. Data from these mice were omitted. The remaining 20 (83.3%) mice sur-

vived until the end of the experiment without stent-related complications.

The in vivo endoscopic images are shown in Fig 3a–3c. The colon mucosa adjacent to the

stent wire was mildly burned in Group B immediately following local PT heating. Follow-up

in vivo endoscopic images 4 weeks after stent placement showed granulation tissue formation
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over the wire mesh in Group A and relatively good patency of the stented colon, including the

wire mesh, and no definite irregularities in Group B.

Histologic findings

The histological findings are summarized in Table 1 and examples are presented in Fig 4. The

mean percentage of granulation tissue area, mean thickness of submucosal fibrosis, and mean

VEGF positivity were significantly different between the groups (all p< 0.001, Mann-Whitney

U test).

The mean percentage of the granulation tissue area and the mean thickness of submucosal

fibrosis were significantly higher in Group A than in Group B. Further, immunohistochemical

analysis showed that the degree of VEGF positivity was higher in Group A, which did not

undergo local PT heating, than in Group B, which underwent local PT heating. Therefore, the

level of VEGF decreased after local PT heating.

Discussion

The minimally invasive intervention of colonic stricture using a stent strategy is currently lim-

ited due to the development of stent-induced granulation tissue formation. In this study, we

investigated the therapeutic effect of local heating of GNP-coated SEMS, which generates

Fig 3. In vivo endoscopic images obtained (a) 4 weeks after stent placement without local heating in Group A, (b)

immediately after local heating in Group B, and (c) 4 weeks after stent placement with local heating in Group B.

PT: Photothermal.

https://doi.org/10.1371/journal.pone.0249530.g003

Table 1. Histological and immunohistochemical findings after GNP-coated stent placement with or without local heating.

Group A Group B +p-value

Granulation tissue area (%) 49.80 ± 7.80 28.1 ± 7.07 0.001

Thickness of submucosal fibrosis (mm) 0.53 ± 0.17 0.26. ± 0.62 0.001

VEGF positivity (%) 3.72 ± 0.46 2.22 ± 0.44 0.001

Note. Data are presented as mean ± standard deviation.
+ Mann–Whitney U test.

GNP: Gold nanoparticle; VEGF: Vascular endothelial growth factor.

https://doi.org/10.1371/journal.pone.0249530.t001
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significant heat when irradiated with a NIR laser. The stented sigmoid colon was successfully

heated, as evidenced by the prominent burning change in the endoscopic evaluation. Granula-

tion tissue formation-related histopathological features were decreased in mice treated with

local PT heating but not in mice who received stenting alone. Further, hypervascularization

was significantly decreased in Group B than in Group A. decrease in microvessels showed that

stent-induced granulation tissue formation is associated with angiogenesis [35,36]. Our results

demonstrate that local PT heating of the GNP-coated SEMS using NIR laser irradiation sup-

pressed the stent-induced granulation tissue formation in the mouse colon.

The GNP-coated SEMS for local heating was synthesized using a two-step process. Cover-

ing the surface of the stent with GNPs is crucial for the in vivo heat effect. The GNP-coated

SEMS was irradiated with a NIR laser; the burn change induced by the heat was then evaluated

endoscopically to confirm the heat effect. Angiogenesis was also different between the two

groups. Park et al. reported that PT can supply adequate heat to the stent, which helps suppress

the stent-induced granulation tissue formation [27,30,34,37]. These results indicate that local

PT heating to a GNP-coated SEMS using NIR irradiation generates significant heat to block

the granulation tissue formation. Photothermal local heating. BGNP-coated SEMS may also

have the potential to prevent tissue ingrowth and overgrowth [38,39].

Tissue ingrowth resulting from stent-induced mechanical injury to the colon mucosal wall

can be classified into three phases that occur over time: inflammation, proliferation, and

remodeling [27,40–42]. According to literature, the proliferation phase begins 4–14 days after

stent placement and increased angiogenesis [27,40,42]. This study clarified the therapeutic

Fig 4. Representative microscopic images of histological sections and immunohistochemistry sections were

obtained 4 weeks after stent placement. Hematoxylin and eosin (H&E) staining and VEGF immunohistochemistry.

[Arrowheads = stent struts (magnification ×1.25), Arrows = VEGF-positive cells (magnification ×25)]. VEGF:

Vascular endothelial growth factor.

https://doi.org/10.1371/journal.pone.0249530.g004
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effect of heat by suppressing hypervascularization in the proliferation phase. Our suppression

methodology had good results, and the therapeutic effect of heat suppressed the stent-induced

granulation tissue formation after stent placement. To prevent long-term complications, our

study showed that adequate local heating of BGNP-coated SEMS could prevent stent-induced

tissue hyperplasia in the mouse colon.

There were some limitations to our study. First, the results may not accurately reflect the

pathological mechanisms of granulation tissue formation in humans. Further studies are

required to confirm the results and explore the effects of various aspects of local PT heating in

animal experiments. Second, although representative markers of angiogenesis were evaluated,

more precise pathological markers should be applied for further insight into the effect of local

PT heating. Third, although the differences in the variables were of statistical significance, the

sample size was small. However, the differences in the variables between the two groups are

indisputable Finally, the experiment ended after a follow-up of only 4 weeks. Studies with

long-term follow-ups are needed to identify changes caused by local heating. Nevertheless, our

study supports a substantial therapeutic effect based on the results of endoscopic and patholog-

ical evaluations.

Despite their low complications and high technical success rates, many stent technologies

have limited long-term stent patency. Local PT heating may be a valuable option for suppress-

ing the stent-induced granulation tissue formation and tumor ingrowth and/or overgrowth in

patients with benign and malignant obstructions. This stented mouse colon model enables the

evaluation of the granulation formation mechanism. In conclusion, local PT heating sup-

presses granulation tissue formation after stent placement in the mouse colon.

Supporting information

S1 Table. Granulation tissue area, the thickness of submucosal fibrosis, and VEGF positiv-

ity in both groups after stent placement.

(XLSX)
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