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A B S T R A C T

Raloxifene (RAL) is an FDA-approved drug used to treat osteoporosis in postmenopausal women. RAL suppresses
bone loss primarily through its role as a selective estrogen receptor modulator (SERM). This hormonal estrogen
therapy promotes unintended side effects, such as hot flashes and increased thrombosis risk, and prevents the
drug from being used in some patient populations at-risk for fracture, including children with bone disorders. It
has recently been demonstrated that RAL can have significant positive effects on overall bone mechanical
properties by binding to collagen and increasing bone tissue hydration in a cell-independent manner. A
Raloxifene-Analog (RAL-A) was synthesized by replacing the 6-hydroxyl substituent with 6-methoxy in effort to
reduce the compound's binding affinity for estrogen receptors (ER) while maintaining its collagen-binding
ability. It was hypothesized that RAL-A would improve the mechanical integrity of bone in a manner similar to
RAL, but with reduced estrogen receptor binding. Molecular assessment showed that while RAL-A did reduce ER
binding, downstream ER signaling was not completely abolished. In-vitro, RAL-A performed similarly to RAL and
had an identical concentration threshold on osteocyte cell proliferation, differentiation, and function. To assess
treatment effect in-vivo, wildtype (WT) and heterozygous (OIM+/−) female mice from the Osteogenesis
Imperfecta (OI) murine model were treated with either RAL or RAL-A from 8 weeks to 16 weeks of age. There
was an untreated control group for each genotype as well. Bone microarchitecture was assessed using microCT,
and mechanical behavior was assessed using 3-point bending. Results indicate that both compounds produced
analogous gains in tibial trabecular and cortical microarchitecture. While WT mechanical properties were not
drastically altered with either treatment, OIM+/− mechanical properties were significantly enhanced, most
notably, in post-yield properties including bone toughness. This proof-of-concept study shows promising results
and warrants the exploration of additional analog iterations to further reduce ER binding and improve fracture
resistance.

1. Introduction

Current interventions used to reduce skeletal fragility focus on in-
creasing bone mass rather than improving bone quality, intrinsic ma-
terial properties of the tissue regardless of mass, size, or shape.
Although increasing mass helps support bone's mechanical integrity,
tissue quality is increasingly recognized as an important consideration.
Bisphosphonates (BPs) have been the gold standard treatment for nu-
merous bone disorders over the past 30 years (Russell, 2011; NIH,

2001; Glorieux et al., 1998). Although BPs improve bone mineral
density, long-term use can have unintended consequences and can lead
to negative quality-based changes such as microdamage accrual, in-
creased non-enzymatic collagen cross-linking, and increased regions of
non-viable osteocytes (Allen and Burr, 2008; Allen et al., 2008, 2006;
Tang et al., 2009; Gourion-Arsiquaud et al., 2010). These negative
quality-based changes have been correlated with reduced mechanical
properties of bone tissue (Acevedo et al., 2015; Allen and Burr, 2011).

Bone quality can be quantified by measurements including, but not
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limited to, tissue mineral density, tissue hydration, chemical composi-
tion, enzymatic and non-enzymatic collagen cross-linking, collagen
organization, or accumulation of microdamage. Changes to bone
quality can have profound macroscopic mechanical effects (van der
Meulen et al., 2001; Donnelly, 2011; Judex et al., 2003; Seeman and
Delmas, 2006; Launey et al., 2010). It is well accepted that collagen
quality in bone is directly related to bone ductility and toughness,
properties that contribute to overall fracture resistance. Targeting col-
lagen offers a unique therapeutic option when other treatments fall
short.

Raloxifene (RAL) is in a class of drugs known as selective estrogen
receptor modulators (SERM). In the past, RAL was used to treat os-
teoporosis in postmenopausal women and, clinically has been shown to
reduce fractures by ~50% with only modest changes in bone mineral
density (BMD) (Seeman et al., 2006; Recker et al., 2011; Ettinger et al.,
1999). While RAL's primary mechanism relies on cell-dependent
binding to osteoblasts through its high affinity for estrogen receptor
alpha (ERα: one of the two main types of estrogen receptor) (Bryant,
2001), the compound has been shown to enhance bone material
properties in a cell-independent manner by increasing tissue hydration
at the collagen-mineral interface (Gallant et al., 2014; Bivi et al., 2016).
These cell-independent, material-based changes induced by RAL are
exciting from the perspective of presenting a unique way to improve
fracture resistance in diseased bone, but RAL's estrogen-based effects
pose challenges. As with estrogen treatment, RAL can lead to adverse
reactions, such as hot flashes and increased thrombosis risk. There is
also a risk of pulmonary embolism, cerebrovascular death, and RAL
does not reduce the risk of non-vertebral fractures and hip fractures.
The hormonal therapy also prevents its usage in some at-risk patient
populations, including children with bone disorders such as Osteogen-
esis Imperfecta (Qaseem et al., 2017; Reid, 2015).

Osteogenesis Imperfecta (OI) is a genetic disease in bone with ma-
jority of the cases caused by a mutation in Type I collagen or related
proteins involved in collagen synthesis and assembly. The mutated
collagen leads to improper assembly of its triple helical structure,
driving quality-based deficiencies in the collagen-mineral composite
(Kuivaniemi et al., 1997; Pihlajaniemi et al., 1984; Rowe and Shapiro,
1998). These changes induce macroscopic effects and cause brittle
bones and frequent fractures in patients suffering from the disease. BPs
are currently used for treatment in children with OI. Although bone
mass is increased in OI patients treated with BPs, tissue quality remains
inferior, and it is unclear if BP treatment consistently improves long
bone fracture resistance in this clinical population (Dwan et al., 2016).

The clinical use of a drug like RAL to combat fragility though
changes in collagen quality holds much promise, but forward progress
necessitates the development of novel analogs that produce the positive
hydration effect in collagen without binding to estrogen receptors.
These pursuits led to the synthesis of a first iteration Raloxifene Analog
(RAL-A). The goal of creating this analog was to maintain the cell-in-
dependent effects of RAL, but abolish or reduce ER binding by altering
key structural features of molecular recognition (Bivi et al., 2016). It
was hypothesized that RAL-A would improve the mechanical integrity
of bone in a manner similar to RAL, but with reduced estrogen receptor
binding. In this study, the Osteogenesis Imperfecta murine (oim) model
was used to investigate how treatment would impact the phenotype of a
quality-based disease state (Carriero et al., 2014).

2. Materials and methods

2.1. Compound fabrication

The preparation of the 6-methoxyraloxifene derivative RAL-A
(Fig. 1, structure 2) utilized published procedures which have been
devised for the synthesis of raloxifene itself (Ablenas et al., 2011; Grese
et al., 1997). In this analog, the methoxy substituent has replaced the 6-
hydroxy functionality of RAL (Fig. 1, structure 1) which is thought to

mimic the A-ring hydroxylation present in estrogen and estradiol as a
key feature for ER binding. The 6-methoxyraloxifene (RAL-A, 2) was
synthesized via the published procedures described for RAL (1) itself,
starting with 4-methoxybenzaldehyde. Four steps were utilized to
construct the RAL-A (2) beginning with the deprotonation of N,N-di-
methylthioformamide for condensation with 4-methoxybenzaldehyde
(Ablenas et al., 2011). Acid-catalyzed cyclization subsequently pro-
vided an intermediate benzothiophene for acylation and then conjugate
addition of aryl Grignard reagent (Grese et al., 1997). In our case, the
crude product was separated from other reaction byproducts using two
successive flash column chromatographies [silica gel:ethyl acet-
ate:hexanes (9:1 by volume) and then chloroform (100%)]. Clean
fractions of the desired product were combined and solvent was re-
moved in vacuo for subsequent recrystallization from ether:methanol to
yield 4.0 g of yellow powder. Product RAL-A (2) was characterized by
proton and carbon NMR spectroscopy and high-resolution mass spec-
trometry.1 The RAL-A (2) was then converted into its hydrochloride
(HCl) salt for increased water solubility in our biological studies. The
HCl salt was obtained by passing anhydrous HCl gas through the diethyl
ether solution of RAL-A (2), followed by evaporation of solvent under
reduced pressure. The yellow HCl salt of RAL-A (2) (MW = 524.072)
was a fine powder, characterized by proton NMR spectroscopy and
stored at 22 °C under argon.1

2.2. Experiment #1: estrogen receptor binding assay

To assess the ability of RAL and RAL-A to bind to estrogen receptors
(ER), a commercially available ERα-competitor assay was used
(PolarScreen, Life Technologies). The ability of these compounds to
bind to ERα and displace a fluorochrome tracer was measured using
fluorescence polarization (EnVision 2102 Multilabel Plate Reader,
Perkin Elmer) for compound concentrations ranging from 10−10 to
10−6 M. 17β-Estradiol was used as a positive control. Each con-
centration for each compound was measured in triplicate. The IC50

Fig. 1. Structures of RAL (1) and RAL-A (2). RAL possesses a 6-hydroxy sub-
stituent, while RAL-A possesses a 6-methoxy substituent.

1 Characterization data for 6-methoxyraloxifene (RAL-A) and its corre-
sponding HCl salt: (2-(4-hydroxyphenyl)-6-methoxybenzo[b]thiophen-3-
yl)(4-(2-(piperidin-1-yl)ethoxy)phenyl)methanone 1H NMR (600 MHz,
Chloroform-d) δ 7.69 (d, J=8.9 Hz, 2H), 7.62 (d, J=8.9 Hz, 1H), 7.32 (d, J=
2.4 Hz, 1H), 7.21 (d, J = 8.6 Hz, 2H), 6.97 (dd, J = 8.9, 2.4 Hz, 1H), 6.69 (d, J
= 8.9 Hz, 2H), 6.61 (d, J = 8.6 Hz, 2H), 4.08 (t, J = 6.0 Hz, 2H), 3.89 (s, 3H),
2.73 (t, J = 6.0 Hz, 2H), 2.51 (s, 4H), 1.61 (p, J= 5.6 Hz, 4H), 1.45 (p, J= 5.6
Hz, 2H); 13C NMR (101 MHz, CDCl3) δ 193.6, 162.8, 157.9, 157.2, 144.1,
140.2, 134.2, 132.6, 130.8, 130.3, 125.4, 124.3, 116.1, 115.0, 114.4, 104.7,
65.8, 57.7, 55.9, 55.1, 53.6, 25.5, 24.0. (2-(4-Hydroxyphenyl)-6-methox-
ybenzo[b]thiophen-3-yl)(4-(2-(piperidin-1-yl)ethoxy)phenyl)methanone
hydrochloride 1H NMR (400 MHz, Chloroform-d) δ 11.70 (s, 1H), 8.24 (s, 1H),
8.11 (d, J = 9.0 Hz, 1H), 7.49 (d, J = 8.2 Hz, 2H), 7.32 (d, J = 2.4 Hz, 1H),
7.08 (dd, J = 9.0, 2.4 Hz, 1H), 6.96 (d, J = 8.2 Hz, 2H), 6.67 (d, J = 8.1 Hz,
2H), 6.55 (d, J = 8.3 Hz, 2H), 4.51 (s, 2H), 3.91 (s, 3H), 3.58 (d, J = 11.0 Hz,
2H), 3.33 (s, 2H), 2.84 (s, 2H), 2.29 (d, J = 13.3 Hz, 2H), 1.93 (d, J = 12.9 Hz,
3H), 1.60 (s, 1H).

K.M. Powell, et al. Bone Reports 12 (2020) 100246

2



value, half of the maximal concentration the compound needs to fully
displace the tracer, was obtained for each compound. A lower IC50

value indicates the compound is more potent and has a higher affinity
for the receptor.

2.3. Experiment #2: in-vitro cellular function assessment

2.3.1. Cell culture
MC3T3-E1 Subclone 4 (ATCC® CRL-2593) murine pre-osteoblasts

were obtained from the American Type Culture Collection (ATCC,
Manassas, VA) and cultured in α minimal essential medium (α-MEM,
Life Technologies, Carlsbad, CA) supplemented with 10% fetal bovine
serum (FBS, GIBCO, Carlsbad, CA), 0.5% penicillin/streptomycin
(GIBCO, Carlsbad, CA), 1% L-glutamine (Hyclone, Logan, UT), and
50 μg/ml ascorbic acid 2-phosphate (Sigma Aldrich, St. Louis, MO).

2.3.2. Cell proliferation assay
Cells were seeded into four 96-well plates (5,000 cells per well),

corresponding to treatment periods of 1, 2, 3, or 7 days. Cells were
allowed to adhere to the wells for 24 h prior to the start of treatment.
Within each plate, cells were treated with one of six doses (0 nM, 1 nM,
10 nM, 100 nM, 1 μM, 10 μM) of RAL or RAL-A in 0.02% di-
methylsulfoxide (DMSO; n = 4 per group). The CellTiter 96® AQueous
One Solution Cell Proliferation Assay (Promega, Madison, WI) was used
as a colorimetric method to determine the number of viable cells after
the treatment period. At the end of each treatment period, 20 μL of
CellTiter 96® One Solution Reagent was added to each well according to
manufacturer instructions, and the plate was incubated for 2 h. The
absorbance was then read at 490 nm using an ELx800 microplate reader
(BioTek, Winooski, VT) to measure the soluble formazan produced from
the cellular reduction of the reagent's tetrazolium compound, a mea-
surement directly proportional to the number of living cells in culture.

2.3.3. Cell staining preparation
Cells were seeded into 24-well plates (60,000 cells per well). Cells

were allowed to adhere to the wells for 24 h prior to the start of
treatment. Starting with treatment, cells were cultured in mineraliza-
tion media, which consisted of the media described above supple-
mented with 10 nM Dexamethasone and 10 mM β-glycerophosphate.
Cells were cultured for 21 days with media changes every 2–3 days,
during which time they were treated with one of six doses (0 nM, 1 nM,
10 nM, 100 nM, 1 μM, 10 μM) of RAL or RAL-A in 0.02% DMSO (n = 3
wells per group).

2.3.4. Alizarin red staining
The PromoCell protocol for Osteogenic Differentiation and Analysis

of MSC was used for this assessment. To prepare the staining solution,
2 g of Alizarin Red was dissolved in 100 ml distilled water, mixed,
adjusted to a pH between 4.1 and 4.3, and filtered. The medium was
aspirated from the wells, and the cells were washed with Phosphate
Buffered Saline (PBS; without Ca++/Mg++). The PBS was aspirated,
then 10% neutral buffered formalin was added. After approximately
30 min, the formalin was removed and the cells were washed with
distilled water. The Alizarin Red staining solution was added to the
cells, and the plate incubated at room temperature in the dark for
45 min. The cells were washed 4 times with washing buffer, then im-
aged for qualitative analysis or staining.

2.3.5. Alkaline phosphatase staining
The PromoCell protocol for Osteogenic Differentiation and Analysis

of MSC was used for this assessment. To prepare the staining substrate
solution, one BCIP/NBT tablet (SigmaFastTM BCIP-NBT; Sigma
Aldrich) was dissolved in 10 ml distilled water. Washing buffer was
prepared by adding 0.05% Tween 20 to PBS. The medium was aspirated
from the wells, and the cells were washed. 10% neutral buffered for-
malin was added for 60 s, at which time the cells were again washed

with buffer. The cells were then covered with BCIP/NBT substrate so-
lution and incubated at room temperature in the dark for 10 min. The
cells were then washed with washing buffer and s imaged for qualita-
tive analysis or staining.

2.4. Experiment #3: in-vitro C3 expression

2.4.1. Cell culture and treatment
MLO-Y4 osteocytic cells were cultured in phenol red-free α minimal

essential medium supplemented with 2.5% fetal bovine serum/2.5%
bovine calf serum and 1.0% penicillin/streptomycin. Cells were seeded
into four collagen-coated 6-well plates (500,000 cells per well) in
growing media and cultured overnight. After being given 24 h to adhere
to the wells, media was removed and replaced with fresh media sup-
plemented with 2% bovine serum albumin. The cells were cultured for
an additional 25 min, then corresponding treatment was added to the
wells in triplicate. Cells were treated with either RAL or RAL-A at
concentrations of 10−7 M, 10−8 M, or 10−9 M. 17β-Estradiol (10−8 M)
served as a positive control and DMSO served as the vehicle (final di-
lution of DMSO being 1:100 in each well). The cells were cultured for
an additional 24 h, at which time mRNA was isolated as recommended
(Kousteni et al., 2001).

2.4.2. RNA isolation and qPCR
Total RNA was isolated using TRIzol (Invitrogen, Grand Island, NY,

USA), as previously published (Davis et al., 2017). Reverse transcrip-
tion was performed using a high-capacity cDNA kit (Applied Biosys-
tems, Foster City, CA, USA). qPCR was performed using the Gene Ex-
pression Assay Mix TaqMan Universal Master Mix and an ABI 7900HT
real-time PCR system. The house-keeping gene glyceraldehyde 3-
phosphate dehydrogenase (GAPDH, Applied Biosystems, Foster City,
CA, USA ABI) was used. Primers and probes for C3 complement were
designed using the Assay Design Center (Roche Applied Science, In-
dianapolis, IN, USA). Relative expression was calculated using the ΔCt
method (Livak and Schmittgen, 2001).

2.5. Experiment #4: in-vivo animal study

2.5.1. Animals and treatment
All protocols and procedures were performed with prior approval

from the Indiana University School of Medicine Institutional Animal
Care and Use Committee. Female wild-type (WT) and heterozygous
(OIM+/−) mice were bred from heterozygous parental strains on a
C57BL/6 background (Carleton et al., 2008). Beginning at 8 weeks of
age, mice (n = 15 per group) were subcutaneously injected with either
RAL (0.5 mg/kg; 5×/week) or RAL-A (0.5 mg/kg; 5×/week). Solu-
tions were prepared in 10% β-Cyclodextrin. Untreated controls were
also included for each genotype. RAL dosage was chosen based on
previous research showing efficacy in-vivo, and RAL-A dosage was
chosen to match that of RAL (Allen et al., 2007, 2015; Berman et al.,
2016). At 16 weeks of age, after 8 weeks of treatment, the mice were
euthanized by CO2 inhalation and right tibiae were harvested, stripped
of soft tissue, and frozen in saline-soaked gauze at −20 °C.

2.5.2. Microcomputed tomography (μCT) and architectural analysis
To determine the effects of treatment on bone architecture, right

tibiae were scanned using a nominal voxel size of 10 μm (Skyscan 1172,
Bruker). Scans were performed using a 0.7-degree angle increment, two
frames averaged, through a 0.5 mm Al filter (V = 60 kV, I = 167 μA).
Images were reconstructed (nRecon) and calibrated to hydroxyapatite-
mimicking phantoms (0.25 and 0.75 g/cm3 Ca-HA). For each tibia, a
cancellous region was selected at the proximal metaphysis and then
quantified using CT Analyzer (CTAn). For consistency, the cancellous
region started at the most distal portion of the proximal growth plate
and extended distally 1 mm into the bone. To obtain cortical archi-
tectural properties, a 1 mm cortical region was selected at
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approximately 50% length of the tibia, then analyzed with a custom
MATLAB script (Berman et al., 2015).

2.5.3. Mechanical testing
Each tibia was tested to failure in four-point bending (upper loading

span of 3 mm, lower support span of 9 mm) with the medial surface in
tension. The bones were loaded at a displacement control rate of
0.025 mm/s while the sample remained hydrated with PBS. Cross-
sectional cortical properties at the fracture location were obtained from
μCT images as described above. These properties were used to map
load-displacement data into stress-strain data using standard en-
gineering equations derived from Euler-Bernoulli beam theory as pre-
viously reported to estimate tissue level properties (Wallace et al.,
2009). Due to an error during the data acquisition process, some of the
mechanical data were lost, resulting in n = 7–8 per group.

2.6. Statistical analysis

For the in-vivo study, all data were checked for assumptions of
normality and homogeneity of variance, and violations were corrected
using transformations. Within each genotype, a One-Way ANOVA with
post-hoc Dunnett's test was used to statistically analyze the effect of
each treatment versus control. Analysis was performed using GraphPad
Prism (v.8) with a significance level at α = 0.05. For the experiment
using MLO-Y4 cells, a One-Way ANOVA followed by Tukey post-hoc
test was performed.

3. Results

3.1. RAL and RAL-A similarly affected cellular behavior

RAL and RAL-A had no discernible impact on cell proliferation for
any treatment period until the concentration of the compounds reached
10 μM (Fig. 2A and B). Qualitatively, cells were able to generate and
mineralize a matrix, again until a concentration 10 μM, suggesting that
neither compound impacted cell differentiation nor function (Fig. 2C).

3.2. RAL-A has reduced binding to ERα, but downstream ER pathway
signaling is present

The results from the ERα binding assay (Fig. 3A) demonstrated an
average IC50 value at 19.52 nM for the positive control, 17β estradiol.
For RAL, the average IC50 value was 9.28 nM, while RAL-A produce an
IC50 value nearly 20-fold of that at 183.2 nM. These results suggest that
it took over an order of magnitude more of the raloxifene analog to
displace the tracer and bind to ER. In-vitro, 17β estradiol binds to ER
leading to downstream signaling as demonstrated by the increased
expression of C3 (Fig. 3B). From 1 nM to 100 nM, there is C3 signaling
present with RAL and RAL-A. For RAL-A, C3 expression trends upward
with increasing concentration, reaching significance versus vehicle at
100 nM. These finding demonstrate that RAL-A is still able to signal
through estrogen receptor in MLO-Y4 osteocytic cells.

3.3. RAL-A and RAL improve tibial trabecular microarchitecture

At the proximal metaphysis, bone volume fraction and bone mineral
density were higher with RAL and RAL-A treatment in both OIM+/−
and WT compared to their respective controls (Fig. 4A–F, Supplemental
Table 1). Both treatments also generated higher trabecular thickness
and trabecular number for each genotype. These changes led to a sig-
nificantly lower trabecular separation in OIM+/− with RAL treatment
(−10.7%) and a lower trend with RAL-A treatment (−8.4%,
p = 0.081). Separation trended downward with RAL treatment in WT
(−6.7%, p = 0.12) while RAL-A treatment led to a significant reduc-
tion (−9.5%). Tissue mineral density trended higher with treatment
but failed to reach significance in either genotype (WT: p = 0.063; OIM
+/−: p = 0.106).

At the mid-diaphysis, RAL and RAL-A had greater effects in OIM
+/− than in WT (Fig. 4G–H, Table 1). Cortical thickness was sig-
nificantly higher with RAL and RAL-A treatment in both genotypes. In
WT, cortical area was significantly higher with RAL treatment
(+15.5%) and trended upward with RAL-A treatment (+9.8%,
p = 0.083). Cortical area was significantly higher in OIM+/− with
both treatments. Total cross sectional area was also significantly higher
with RAL-A treatment (+8.65%) but not changed with RAL (+7.22%,
p = 0.076). Together, these changes led to significantly higher max-
imum moment of inertia in OIM+/− with both RAL and RAL-A

Fig. 2. Cells were treated with RAL (A) or RAL-A (B) at concentrations of 0 nM, 1 nM, 10 nM, 100 nM, 1 μM, and 10 μM. Absorbance was normalized to the 24 h 0 nM
value for each compound. Cell proliferation had no qualitative impact until treatment reached 10 μM. (C) Alkaline Phosphatase and Alizarin Red staining for cells
treated with RAL or RAL-A for concentrations at 0 nM, 1 nM, 10 nM, 100 nM, 1 μM, 10 μM. Qualitatively, cells were able to mineralize a matrix until treatment
reached 10 μM.
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treatments.

3.4. RAL-A and RAL enhanced post yield mechanical behavior in OIM
+/−

As with the cortical properties noted above, mechanical effects were
more apparent in OIM+/− (Tables 2 and 3, Fig. 5). Although some
properties trended upward, treatment did not lead to any significant
structural or tissue-level mechanical effects in WT compared to the
control. For OIM+/− structural properties, RAL and RAL-A both led to
similar changes. Both treatments produced significantly higher post-
yield displacement and post-yield work. With RAL-A, this led to a non-

significant but increasing trend in total displacement (p = 0.07) and
total work (p = 0.12), while RAL produced a significant increase in
these properties compared to control. At the tissue-level, RAL and RAL-
A treatment increased total strain in OIM+/−. This contributed to
increased toughness with both treatments compared to control in OIM
+/− mice.

4. Discussion

Harnessing the cell-independent effects of Raloxifene in bone is a
potential therapeutic option to target bone quality at the microscopic
tissue level and improve mechanical integrity. However, RAL's cell-

Fig. 3. (A) The ERα binding assay indicates the compounds ability to bind to ERα and displace a fluorochrome tracer, measured by fluorescence polarization.
Polarization was measured for 17β estradiol, RAL, and RAL-A for concentrations ranging from 10−10 to 10−6 M. The IC50 value (50% tracer displaced) for 17β
estradiol was 19.52 nM, RAL was 9.28 nM, and RAL-A was 183.2 nM. (B) Expression of C3 (multiplied ×1000) in MLO-Y4 osteocytic cells after being treated with
vehicle (DMSO), 17β estradiol (10−8 M), RAL (10−7, 10−8, and 10−9 M), or RAL-A (10−7, 10−8, and 10−9 M). A significant change from vehicle is indicated by ‘*’ at
p < 0.05. There was a significant increase noted for RAL at 10 nM and RAL-A at 100 nM compared to vehicle.

Fig. 4. Treatment effects on trabecular microarchitecture for (A) bone volume fraction (BV/TV), (B) bone mineral density (BMD), (C) trabecular thickness, (D)
trabecular number, (E) trabecular separation, and (F) tissue mineral density (TMD). Significant change from control at p < 0.05 is indicated by ‘*’ within each
genotype. Schematic representation of the average cortical profile for each treatment group compared to respective control for (G) Wildtype and (H) Heterozygous
OIM+/− samples.
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dependent effects as a SERM cause unintended side effects and make
the drug unfit for use in some populations, including children. In this
study, the goal was to create an analog of RAL which maintained the
positive cell-independent effects on bone quality, but lacked the ability
to bind to estrogen receptors and drive estrogenic signaling. Our ra-
tionale was to prepare a raloxifene analog that maintained the chemical
and electronic properties of the parent drug, but altered RAL's 6-hy-
droxy substituent, affecting its capability as a hydrogen bond donor, an
important feature for ER binding. Replacement with the 6-methoxy
ether in RAL-A offered a direct, first generation derivative that also
minimized the steric effects for substrate recognition. Further studies
are needed to evaluate the role of electronic effects and steric bulk for
C-6 substitution of the raloxifene parent structure. Overall, results in-
dicate that RAL and RAL-A behave similarly in-vitro and in-vivo, but
with reduced estrogen receptor binding with RAL-A. Although the
binding was not completely abolished, this proof-of-concept study
shows promising results and warrants the exploration of additional
analog iterations to further reduce ER binding while still having posi-
tive effects on fracture resistance.

In-vitro, when osteoblasts were exposed to RAL and RAL-A across a
range of concentrations, there were no discernable impacts of either
compound on cell proliferation or differentiation (as measured through
mineralization potential) until the concentration rose to 10 μM. This
concentration threshold was similar for both compounds, and higher
than treatments that would be used in-vitro or in-vivo. Utilizing an

estrogen receptor competitor binding assay, it was shown that the
binding of RAL-A to ERα was decreased by over an order of magnitude
compared to both the 17β estradiol positive control and RAL. While the
synthetic ERα binding assay indicated reduced ER binding with RAL-A,
it was not completely abolished and some downstream ER signaling was
still detected through C3 expression from cells treated with the com-
pound. As future analogs are fabricated and tested, a more compre-
hensive analysis of ER signaling will be undertaken to verify reduced
signaling prior to moving into in-vivo treatment studies.

RAL and RAL-A produced similar changes to tibial micro-
architecture at both trabecular and cortical regions of interest. In both
genotypes, the compounds increased trabecular bone volume fracture,
number, and thickness as well as bone mineral density. In OIM+/−,
cortical area, thickness, and maximum moment of inertia were all in-
creased with both compounds as well. Similar geometric changes have
been noted in the past with RAL treatment in male mice (Berman et al.,
2016; Powell et al., 2019). However, the changes were not as pro-
nounced as seen in this study with female mice. This could indicate that
RAL is primarily acting as a SERM drug through its cell-dependent
mechanism and promoting growth seen with estrogen receptor stimu-
lation. Considering RAL-A resulted in similar architectural changes as
RAL, it is likely that ER signaling is still prevalent with the analog,
again supporting that more research is warranted to develop additional
RAL iterations to minimize ER binding.

Animals treated with RAL and RAL-A also exhibited analogous

Table 1
Cortical geometry at the tibial mid-diaphysis.

WT p-Value OIM+/− p-Value

Control RAL RAL-A Control RAL RAL-A

(n = 15) (n = 15) (n = 15) (n = 15) (n = 15) (n = 15)

Total CSA (mm2) 0.95 ± 0.07 1.03 ± 0.12 0.99 ± 0.09 0.223 0.852 ± 0.036 0.914 ± 0.063 0.926 ± 0.05* 0.038
Marrow area (mm2) 0.35 ± 0.04 0.35 ± 0.06 0.34 ± 0.04 0.778 0.30 ± 0.03 0.30 ± 0.03 0.31 ± 0.03 0.815
Cortical area (mm2) 0.59 ± 0.04 0.69 ± 0.07* 0.65 ± 0.05 0.013 0.55 ± 0.01 0.62 ± 0.05* 0.62 ± 0.05* 0.012
Cortical thickness (mm) 0.213 ± 0.008 0.240 ± 0.01* 0.232 ± 0.01* <0.001 0.211 ± 0.006 0.232 ± 0.01* 0.230 ± 0.02* 0.025
Periosteal perimeter (mm) 4.20 ± 0.20 4.37 ± 0.31 4.28 ± 0.23 0.439 3.98 ± 0.08 4.10 ± 0.14 4.14 ± 0.11* 0.045
Endocortical perimeter (mm) 2.65 ± 0.17 2.63 ± 0.26 2.59 ± 0.17 0.773 2.46 ± 0.10 2.44 ± 0.12 2.46 ± 0.12 0.907
Imax (mm4) 0.074 ± 0.02 0.096 ± 0.03 0.087 ± 0.02 0.097 0.059 ± 0.00 0.072 ± 0.01* 0.074 ± 0.01* 0.009
Imin (mm4) 0.055 ± 0.01 0.064 ± 0.01 0.059 ± 0.01 0.238 0.046 ± 0.01 0.052 ± 0.01 0.053 ± 0.01 0.140
TMD (g/cm3) 1.30 ± 0.04 1.34 ± 0.05 1.33 ± 0.04 0.232 1.38 ± 0.03 1.38 ± 0.04 1.37 ± 0.03 0.799

Values are presented as mean ± standard deviation. CSA - cross sectional area; Imax - maximum moment of inertia; Imin - minimum moment of inertia; TMD - tissue
mineral density. A significant main effect of treatment within genotype is indicated by p-value at< 0.05. A significant difference compared to control indicated by ‘*’
in the result columns.
P-values at< 0.05 are bolded as significant.

Table 2
Structural mechanical properties from 4-point bending of the tibial mid-diaphysis.

WT p-Value OIM+/− p-Value

Control RAL RAL-A Control RAL RAL-A

(n = 8) (n = 7) (n = 7) (n = 8) (n = 9) (n = 7)

Yield force (N) 14.6 ± 2.722 17.01 ± 1.8493 16.01 ± 1.78 0.134 12.35 ± 3.027 13.05 ± 2.171 11.31 ± 2.107 0.582
Ultimate force (N) 18.0 ± 1.921 19.3 ± 1.512 19.04 ± 1.5210.287 14.27 ± 2.438 15.69 ± 1.801 14.59 ± 0.731 0.277
Displacement to yield (μm) 199.0 ± 26.03 231.4 ± 39.057 227.5 ± 36.34 0.152 228.6 ± 71.73 204.9 ± 33.61 200.6 ± 37.31 0.507
Postyield displacement

(μm)*
393.1 ± 207.5 404.7 ± 169.03 458.7 ± 100.1 0.732 119.1 ± 82.83 293.9 ± 108.9* 257.7 ± 71.7* 0.002

Total displacement (μm)* 592.1 ± 186.3 636.1 ± 178.96 686.2 ± 119.8 0.557 347.7 ± 98.67 498.8 ± 108.3* 458.3 ± 82.57 0.005
Stiffness (N/mm) 81.9 ± 10.28 82.8 ± 15.364 79.51 ± 17.13 0.907 62.1 ± 13.66 72.33 ± 14.85 63.21 ± 7.745 0.218
Work to yield (mJ) 1.6 ± 0.445 2.096± 0.3804 1.971± 0.36 0.067 1.59 ± 0.762 1.454± 0.372 1.249± 0.446 0.496
Postyield work (mJ)* 5.6 ± 2.276 6.721± 3.0204 7.478± 1.8760.336 1.539± 1.069 3.918± 1.39* 3.13 ± 0.71* 0.001
Total work (mJ)* 7.2 ± 2.017 8.817± 3.1509 9.45 ± 2.0910.207 3.129± 1.408 5.372± 1.36* 4.379± 0.84 0.005

Values are presented as mean ± standard deviation. A significant main effect of treatment within genotype indicated by ‘*’ in the property column. A significant
difference compared to control indicated by ‘*’ in the result columns.
P-values at< 0.05 are bolded as significant.
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changes in mechanical behavior. For both compounds, the effects were
most pronounced in the diseased OIM+/− groups, and minimal
treatment effects were observed in WT groups. This observation is likely
because it is difficult to improve bone that is already of good or suffi-
cient quality, as is the case in wild-type animals. In OIM+/−, perhaps
the most notable finding is the increased toughness with RAL and RAL-
A. Decreased post-yield behavior is a critical feature of the brittle
phenotype associated with this OI model. In this case, increased
toughness resulted from an increase in post-yield behavior, perfor-
mance that is typically less dependent on bone mass and more related to
the properties of the material itself (Boskey et al., 1999; Burstein et al.,
1975; Wang et al., 2002; Garnero et al., 2006; Viguet-Carrin et al.,
2006). Toughness is an estimated material property that has been
normalized for bone size and shape. The increase in toughness noted
here suggests that bone from the animals treated with RAL and RAL-A
were able to absorb more energy before failure. Improvement of these
properties in diseased OI bone gives further support for the need to
pursue additional analogs. Similar increased post-yield behavior has
been noted with RAL in ex-vivo soaking studies as well as RAL-treated
female animals (Gallant et al., 2014; Allen et al., 2007; Berman et al.,
2016). Conversely, assessment of mechanical properties from RAL-
treated male mice of a similar age showed less compelling post-yield
benefits of treatment (Berman et al., 2016; Powell et al., 2019). This
discrepancy could indicate that ER signaling has a more important role,
and further investigation of RAL and its analogs are needed in both
sexes.

There are some limitations to this study. Due to data acquisition

errors during mechanical testing, the sample size for each group was
essentially cut in half. In both WT and OIM+/−, trends were present,
but the unintentional loss of data and statistical power limited some of
these properties from reaching significance. Even so, significant
changes were present and compelling with the reduced sample size.
Given the scope and duration of this study, adding additional animals to
compensate for the loss was not an option. Future studies with other
analog iterations will be powered to be able to detect these differences
if they exist. Additionally, homozygous (OIM−/−) mice were origin-
ally included in this study. However, the severity of the phenotype
caused numerous spontaneous fractures and only 3 control samples
were usable for analysis.

Regarding study design, female mice were used here to model the
current human population that most often uses RAL to determine if the
analog would produce any SERM-like effects. Previous literature has
demonstrated differences in ER activity between male and female
mouse bone, and some even suggest that female mouse bones are more
susceptible to changes in ERα activity (Nakamura et al., 2007; Sims
et al., 2002; Saxon et al., 2012). Future studies should investigate the
analogs in both female and male sexes to optimally reduce ER binding
potential and isolate the cell-independent effects of RAL and RAL-A.
Investigating both sexes could help determine if RAL-A is capable of
enhancing bone mechanical integrity in-vivo without (or with reduced)
ER binding. In addition, ER signaling will be investigated in vivo. In
regard to in-vitro work, the impact on cells and ER binding should be
investigated in all bone-related cell types (i.e. osteocytes, osteoblasts,
and osteoclasts). This proof-of-concept study was not designed to

Table 3
Estimated tissue-level mechanical properties from 4-point bending of the tibial mid-diaphysis.

WT p-Value OIM+/− p-Value

Control RAL RAL-A Control RAL RAL-A

(n = 8) (n = 7) (n = 7) (n = 8) (n = 9) (n = 7)

Yield stress (MPa) 268.4 ± 50.89 296.8 ± 43.6 299 ± 59.68 0.452 267.9 ± 45.88 265.9 ± 36.6 240.7 ± 49.14 0.670
Ultimate stress (MPa) 331.1 ± 43.24 337.1 ± 44.4 352.6 ± 45.02 0.637 311.5 ± 33.54 320.3 ± 25.07 310.5 ± 26.64 0.696
Strain to yield (mε) 19.52 ± 2.406 22.74 ± 2.9 22.4 ± 3.173 0.073 22.46 ± 6.215 19.76 ± 3.551 20.01 ± 3.719 0.448
Ultimate strain (mε) 31.46 ± 3.946 30.62 ± 3.1 33.12 ± 7.126 0.639 29.48 ± 4.663 29.53 ± 2.979 33.18 ± 3.293 0.111
Total strain (mε)* 58.32 ± 19.18 62.93 ± 18.2 67.5 ± 10.63 0.574 34.11 ± 8.681 47.81 ± 10.0* 45.77 ± 8.59* 0.008
Modulus (GPa) 15.43 ± 2.764 14.62 ± 3.0 14.95 ± 3.532 0.878 13.79 ± 3.439 15.18 ± 1.451 13.45 ± 1.627 0.305
Resilience (MPa) 2.864 ± 0.744 3.583 ± 0.6 3.635 ± 0.941 0.118 3.352 ± 1.338 2.889 ± 0.846 2.662 ± 1.019 0.458
Toughness (MPa)* 13.37 ± 4.83 14.95 ± 4.8 17.22 ± 3.896 0.286 6.488 ± 1.734 10.61 ± 2.88* 9.253 ± 1.68* 0.004

Values are presented as mean ± standard deviation. A significant main effect of treatment within genotype indicated by ‘*’ in the property column. A significant
difference compared to control indicated by ‘*’ in the result columns.
P-values at< 0.05 are bolded as significant.

Fig. 5. Treatment effects on mechanical properties for (A) yield force, (B) ultimate force, (C) total displacement, (D) total work, (E) yield stress, (F) ultimate stress,
(G) total strain, and (H) toughness. Significant change from control at p < 0.05 is indicated by ‘*’ within each genotype.
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directly compare the effects of in-vivo treatment on the quality of the
bone extracellular matrix or levels of hydration. Future studies will
incorporate additional techniques to assess quality changes at and
below the microscopic level of bone, and bone matrix hydration.
Measures of fracture toughness will also be evaluated.

In conclusion, this proof-of-concept study shows the potential ben-
efit of using an analog of Raloxifene to enhance bone mechanical in-
tegrity while reducing the hormonal effects of estrogen therapy. By
replacing an estrogen receptor binding motif on the compound, we
were able to reduce, but not completely abolish, ER binding while still
enhancing mechanical behavior in a manner similar to RAL. These re-
sults are exciting and demonstrate the need to investigate additional
analog iterations of Raloxifene to minimize ER binding, enhance tissue
quality, and improve bone health.
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