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Abstract: The use of 5-fluorouracil (5FU) is associated with multifaceted challenges and poor phar-
macokinetics. Poly(lactic-co-glycolic acid)-lipid hybrid nanoparticles (PLNs)-based therapy has
received attention as efficient carriers for a diversity of drugs. This study evaluated the in vivo
chemotherapeutic and anti-proliferative efficacy of 5FU-loaded PLNs against 1,2-dimethylhydrazine
(Di-MH) prompted colon dysplasia in mice compared to free 5FU. 5FU PLNs were prepared. Male
Swiss albino mice were distributed to six experimental groups. Group 1: Saline group. All the other
groups were injected weekly with Di-MH [20 mg/kg, s.c.]. Group 2: Di-MH induced colon dysplasia
control group. Groups 3 and 4: Di-MH + free 5FU treated group [2.5 and 5 mg/kg]. Groups 5
and 6: Di-MH + 5FU-PLNs treated group [2.5 and 5 mg/kg]. Free 5FU and 5FU-PLNs doses were
administered orally, twice weekly. Treatment with 5FU-PLNs induced a higher cytoprotective effect
compared to free 5FU as indicated by lower mucosal histopathologic score and reduction in number
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of Ki-67 immunpositive proliferating nuclei. Additionally, there was significant upregulation of
p53 and caspase 3 genes in colon specimens. Our results support the validity of utilizing the PLNs
technique to improve the chemopreventive action of 5FU in treating colon cancer.

Keywords: apoptosis; 5-flurouracil; experimental colon dysplasia; mouse; polymeric lipid hybrid
nanoparticles; PLGA-lecithin

1. Introduction

Colorectal cancer is the most common cancer affecting the digestive tract and is a
main leading cause of death worldwide [1]. Characteristics of colorectal cancer involve
uncontrolled cell proliferation and growth involving colonic crypt epithelial lining cells,
beginning with hyperplasia and slowly evolving into invasive carcinoma [2]. Several
animal models of colon cancer have been developed in order to explore its molecular
pathogenesis and to investigate the role of various potential preventive nutritional and
pharmacologic agents [3]. Among the various chemically prompted animal models of
dysplastic colon, the 1,2-dimethylhydrazine (Di-MH) model is universally utilized [4,5].

Significant progress in chemotherapy for colorectal cancer has been made, in which
5-fluorouracil (5FU) is still representing one of the cornerstones and most active anti-cancer
drugs among them. However, 5FU is far from perfect as its usage is associated with
multifaceted challenges and dose-related toxicities due to the off-target accumulation and
poor pharmacokinetics, which limits its therapeutic effectiveness and susceptibility to
multi-drug resistance during treatments [6]. Nowadays, delivering safe and efficient doses
of drugs is an ultimate goal of modern cancer chemotherapy; these doses will target the
disease sites and spare the normal tissues [7]. Therefore, a selective drug delivery system
to address the limitations of conventional therapies is required [8,9].

Nanodrug-delivery systems have gained great interest as an effective drug delivery
system, thus representing an innovative approach for controlled release and targeted de-
livery of the drug to cancers [10,11] as they may minimize the toxic effect and enhance
the anticancer treatment efficacy. Among the nanotechnology-based drug-delivery sys-
tems, liposomal systems and polymeric nanoparticles are acquiring interest as they have
biodegradable properties that were approved for clinical use [12]. The recent progress in
biomolecular therapeutics seeks to design new smart strategies for active targeting drug de-
livery approach, which would guarantee the optimum bioavailability of the encapsulated
active pharmaceutical ingredient [10–12].

The poly(lactic-co-glycolic acid) (PLGA)-based materials, are gaining considerable
attention and represent one of the most utilized polymers in formulating drug delivery
systems as they overcome the limitations of lipids and polymers and combine the ad-
vantages of polymeric NPs as well as liposomes; offering enormous potential in the field
of nanmedicine [9,13–18] by enhancing drug pharmacokinetics and distribution in the
biological environment accompanied with a reduction of their side effects [9,19–23].

Polymer (PLGA)-lipid hybrid nanoparticles (PLNs)-based therapy has received atten-
tion as highly useful carriers for a wide range of dosage forms, especially in the preparation
of chemotherapeutic medications. Lecithin was used in this study as a lipid material with
PLGA to prepare PLNs as a new generation of polymer nanoparticles in which a lipid is
required to coat the polymer core and stabilize formed particles. Furthermore, the PLNs
prevent most of the drawbacks of polymer nanoparticles or lipid nanoparticles such as the
burst release [24,25].

Our study used a Box–Behnken factorial design to choose runs depending on indepen-
dent variables like surfactant, lipid, and polymer concentrations and we obtained 15 runs
that were prepared according to the modified nanoprecipitation technique. The formula
of lowest particle size and smallest polydispersity index (PDI) and highest encapsulation
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efficacy (EE%) was in a complete agreement with the predicted values from the experimental
design; this encouraged us to carry out further in vivo screening of chemopreventive activity.

To date, no previous studies have formulated 5FU in PLNs or tested the antitumor
activity in animal models of colon cancer. Therefore, this study was conducted to evaluate
the in vivo chemopreventive efficacy of 5FU-loaded PLNs against Di-MH induced colon
hyperplastic growth in mice and compared to free 5FU.

2. Materials and Methods
2.1. Drugs and Chemicals

5FU and poloxamer 188 (Pluronic F68) were purchased from Sigma-Aldrich Co.
(St. louis, MO, USA). PLGA (RESOMER® Condensate RG 50:50 Mn 2300) was gifted
from Evonik, Essen, Germany, with M.Wt 2000–2500 g/mole. Lecithin was purchased from
CISME Italy s.n.c. (Milan, Italy). All other chemicals and solvents were of HPLC grade and
used as received without further purification.

2.2. Formulating the Hybrid Poly(Lactic-co-glycolic Acid) (PLGA)-Lecithin Nanoparticles

Nanoparticles of 5FU were formulated by a modified single step nanoprecipitation
procedure [11]. Briefly, drug, polymer (PLGA), and lecithin were dissolved in an organic
solvent (10% water-miscible solvent acetone), then added drop-wise into the surfactant
(poloxamer 188) previously dissolved in deionized water (aqueous phase) by using a
syringe (1 mL volume) with a fixed flow rate at 1 mL min−1 over a vortex. The formed
solution was constantly stirred at 800 rpm with a magnetic stirrer (Remi, Mumbai, India)
for 2–6 h (Figure 1).
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nanoparticles (PLNs) synthesis by modified single step nanoprecipitation method.

2.3. Optimization of Formulation Variables

A statistical 3-factor and 3-level Box–Behnken design that yielded 15 runs was applied
for performing the optimization study. Table 1 demonstrates the proposed independent
and dependent variables of the formulated PLNs. A software-based assessment (Version 7
Design Expert®, Stat-Ease Inc., Minneapolis, MN, USA) was utilized to generate a poly-
nomial equation based on quadratic model for formulating the preparations. The major
components for the polymer (PLGA) lipid (lecithin) nanoparticulate system include the
drug, polymer and lipid, and surfactant. These selections were based on their ability to
produce small sized particles. The selections were also based on the safety profile and
approval status of the components. Yi = b0 + b1 × 1 + b2 × 2 + b3 × 3 + b12X1X2 + b13X1X3
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+ b23X2X3 + b11X2
12 + b22X2

22 + b33X2
32, where, Yi is the dependent variable; b0 is the

intercept; and b from 1 to 33 are regression coefficients obtained from design. X1–X3 are
independent variables that were chosen based on a pilot experiment.

Table 1. Box-Behnken design of the polymer (PLGA)-lipid hybrid nanoparticles (PLNs).

Independent Variable Levels

Low Coded (−1) Medium Coded (0) High Coded (1)

Factor Name Units Type Low Actual Medium Actual High Actual

X1 PLGA conc. mg in 100 mL Numeric 33.34 66.67 100

X2 Lecithin conc. mg in 100 mL Numeric 66.67 133.34 200

X3 surfactant % (w/v) Numeric 0.50 1.00 1.50

Dependent variables, Y1 = Particles size (nm); Y2 = % Entrapment efficiency.

The independent variables selected were concentration of PLGA (X1), concentration
of lecithin (X2), and concentration of the surfactant (X3). The dependent variables were
particle size (Y1) and entrapment efficiency (EE%) at high, medium, and low level (Y2).
A checkpoint analysis was done to investigate the capability of the derived polynomial
equation and contour plots to predict the responses [26]. To optimize the conditions, the
level of independent variables (X1, X2, and X3) that would produce the minimal particle
size (in nm) (Y1) and maximum value of EE% (Y2) was selected.

2.4. Characterization and Evaluation of the Optimized Formula
2.4.1. Particle Size, Polydispersity Index, and Zeta Potential (ZP)

The average particle size (in nm), PDI and ZP (in mv) of the PLNs were evaluated by
using a Mastersizer Hydro MU 2000S, Malvern MU Instruments (Malvern, UK), Malvern
Zetasizer Nano-ZS90 (Malvern, UK), built-in dynamic light scattering (DLS) and laser
doppler electrophoresis. The samples were put in ‘folded capillary cells’ and results
obtained for size, PDI, and zeta potential were recorded. The control volume of the sample
was determined automatically by Zetasizer software (version 7.13), which manages the
instrument that is known as obscuration level. Volume of samples for zeta potential in the
cuvette was 1 mL while the angle of measurement was 13◦.

2.4.2. Encapsulation Efficiency (EE%)

Ultrafiltration centrifugation technique was used for the determination of the encap-
sulation efficiency. One mL of the nanoparticle suspension was centrifuged at 12,298 RCF
(Hettich centrifuge, Mikro 22R, Tuttingen, Germany) for 10 min. The solution containing
the free drug was taken from the bottom of an Amicon tube and estimated by spectropho-
tometric analysis (266 nm, GENESYS 10 S UV-VIS Spectrophotometer, Thermo Scientific,
Fisher Scientific-Arendalsvagen, Goteborg, Sweden). Calculation of the drug encapsulation
inside nanoparticles was done by dividing the alteration between the total amount used
(Wtotal 5FU) and the free amount presented in the supernatant aqueous phase (Wfree 5FU)
by the total amount used of 5FU, according to the following formulae:

(Encapsulation efficacy %) = (Wtotal −Wfree)/(Wtotal) × 100 (1)

Wtotal = drug weight in the formulation;
Wfree = drug weight in the formulation.

2.4.3. In Vitro Drug Release of Mixed 5FU-PLNs

One mL of the nanoparticle suspension was moved to a dialysis tube (MWCO =
12,000 g/mole), tightened from both ends, and then added to 50 mL of phosphate buffered
saline (PBS) dissolution medium (pH 6.8) at 37 ◦C in a shaking water bath. One mL of
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dialysis medium was removed at preset time intervals and replaced with fresh media. The
drug release at different time points was estimated by reading the color intensity with
a spectrophotometer at 266 nm (GENESYS 10S UV visible spectrophotometer, Thermo
Scientific, Fisher Scientific-Arendalsvagen, Goteborg, Sweden).

The volume of dissolution medium was 50 mL (sink condition means that dissolution
medium is at least 10 times the saturation solubility, for a sample containing 33.3 mg of the
drug %). For the chosen pH, we found that release of the drug in acidic buffer (pH 1.2) for
2 h was less than 25%. Hence, we carried out the release study in pH = 6.8. In agreement
with us, one study tested 5FU PLGA nanoparticles at pH = 7.4 not in an acidic pH [27].

2.5. In Vivo Pharmacological Activity
2.5.1. Experimental Animals

Sixty male Swiss albino mice (body weight = 20–25 g) were provided by Hamada
Abdelhaleem Company (Giza, Egypt) and acclimatized to the testing conditions. All the
experimental procedures were accepted by the Research Ethics Committee (#201907RA2)
at the Faculty of Pharmacy, Suez Canal University.

2.5.2. Drugs and Chemicals

1,2-dimethylhydrazine (Di-MH) was supplied by Sigma-Aldrich (St. Louis, MO, USA)
and diluted with sterile saline. Mice received weekly doses of Di-MH (20 mg/kg) by
subcutaneous (s.c.) injections for 16 weeks [5,28] for induction of colonic dysplasia. Indeed,
the main route of administration of Di-MH is the subcutaneous route [4,29]. Furthermore,
intraperitoneal injections were also successful to produce colon tumors [30,31]. 5FU was
given by oral gavage twice weekly from the beginning of week 9 until the end of week 16
at doses equal to 2.5 and 5 mg/kg [32].

2.5.3. Experimental Groups

Mice were distributed to six experimental groups (10 mice in each group). Group 1:
Saline group: normal mice injected with saline once weekly (s.c.) for 16 weeks. Group
2: Di-MH induced colon dysplasia control group with mice injected weekly with Di-MH
and received twice weekly oral doses of the 5FU vehicle (distilled water) starting from the
beginning of week 9 and continuing until the end of week 16. Groups 3 and 4: Di-MH +
free 5FU treated group where mice received twice weekly doses of 5FU [2.5 and 5 mg/kg,
by oral gavage]. Groups 5 and 6: Di-MH + 5FU-PLNs treated group where mice received
twice weekly doses of 5FU-PLNs [2.5 and 5 mg/kg, by oral gavage].

2.5.4. Animal Sacrifice and Blood/Tissue Sampling

Mice were anesthetized with ketamine and killed by cervical dislocation. Tissue speci-
mens from the descending colons were removed, rinsed with ice-cold PBS and divided into
two pieces. The first piece was frozen at −80 ◦C and was later homogenized and directed
for the polymerase chain reaction (PCR) assays. The second piece of each colon specimen
was dissected, fixed in 10% paraformaldehyde solution, and embedded in paraffin wax for
subsequent use for histopathological routine staining and immunohistochemistry.

2.5.5. Determination of Colonic Expression of p53 and Caspase 3
RNA Extraction

Homogenized colon specimens were lysed for isolation of the total RNA (t-RNA)
using the Qiagen RNAeasy Kit (Germantown, MD, USA), which was used following the
guidelines listed by the manufacturer. RNA quantity and purity were estimated by a
Beckman dual spectrophotometer (USA). The utilized absorbance ratio was 260/280 nm.
Furthermore, 1% agarose gel electrophoresis was used to estimate the integrity of the
isolated RNA.
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Real Time-PCR Detection of p53 and Caspase 3 Gene Expression

For quantitative assessment of caspase 3 and p53 gene expression, 10 ng of the
t-RNA extracted from each sample were reverse transcribed to cDNA by the aid of the
Applied Biosystems high capacity cDNA Reverse Transcriptase Kit (USA). Amplification of the
cDNA was done in a 48-well plate by the SYBR Green I PCR Master Kit (Fermentas, Waltham,
MA, USA); this reaction was done using the Step-One PCR instrument (Applied Biosystem,
Foster City, CA, USA). The volume of each PCR reaction mix was 20 µL and prepared as
follows: 10 µL SYBR Green I master mix, 7 µL PCR grade water, 1 µL of 10 ng cDNA, and
1 µL (1 µM) for each forward and reverse primer as illustrated in Table 2. The thermal cycle
conditions were adjusted in a Step-One instrument as follows:10 min at 95 ◦C for enzyme
activation followed by 40 cycles of 15 s at 95 ◦C, 20 s at 55 ◦C, and 30 s at 72 ◦C. The PCR
amplicons were established by melting curve analysis. The relative expression of each of
the target genes was normalized to a house keeping gene (glyceraldehyde 3-phosphate
dehydrogenase (GAPDH). The results were calculated as fold change in gene expression
by comparative Ct method (2−∆∆Ct) [33]. The Ct values were calculated by Step-One
PCR software.

Table 2. Primer sequence and Gene Bank accession number for each gene.

Target
Gene Primer Sequence: 5′-3′ Gene Bank Accession Number

p53 F: CTAGCTCCCATCACTTCATCCC
R: AAATGCAGACAGGCTTTGCAG NM_001127233.1

Caspase 3 F: GAGCTTGGAACGGTACGCTA
R: CCGTACCAGAGCGAGATGAC NM_001284409.1

GAPDH F: AGAGAGGCCCAGCTACTCG
R: GGCACTGCACAAGAAGATGC NM_008084.3

2.5.6. Histopathological Examination of Colon Tissue

Paraffin embedded colon tissues were cut into 5 µm thick sections and mounted on
glass slides. Following dewaxing and rehydration, one set of slides was stained with
hematoxylin and eosin (H&E) and another set with Periodic acid Schiff (PAS). Slides were
examined by light microscope for the evaluation of colonic mucosal lesions. Each section
was given a score from 0 to 4 according to the presence and severity of hyperplasia or
dysplasia. Foci in which the crypts were crowded elongated with serrated lumen and
lined by a mixture of absorptive and goblet cells with crowded nuclei, but no stratification
or atypia were considered hyperplastic lesions (score 1). Foci where the crypts showed
loss of mucosal polarity and hyperchromasia of nuclei with nuclear stratification were
classified as dysplastic. Dysplastic lesions were further graded into mild, moderate, and
severe (score 2–4) [3]. PAS stained sections were assessed for the density of goblet cells
and % area of positive staining was measured using VideoTest Morphology software
(Saint-Petersburg, Russia).

2.5.7. Immunohistochemistry

Colon tissue sections were deparaffinized in xylene and rehydrated, followed by
boiling in citrate buffer for antigen retrieval. Rabbit polyclonal antibodies for Ki-67 (AB-
clonal, Catalog #A2094, Woburn, MA, USA) were used for immunohistochemistry. The
tissue specimens were inspected by a light microscope for photography; then the count of
Ki-67 positive nuclei was measured in ten sequential sections from each animal and was
evaluated by VideoTest Morphology software (Saint-Petersburg, Russia).

2.5.8. Digital Morphometric Study

Photography was done using the 40X objective by the aid of an Olympus® digital
camera fixed upon an Olympus® microscope with a 1

2 -X photo adaptor. The photographs
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were examined by VideoTest Morphology® software (Saint-Petersburg, Russia) with a
definite built-in routine for measurement of the area % and object counting. Two parameters
were quantified: the % of the area showing PAS positive staining and the number of Ki-67
immunpositive nuclei.

2.5.9. Statistical Analysis and Data Presentation

Readings were expressed as mean ± standard deviation of the mean (SDM). Box–
Behnken designs are experimental designs for response surface methodology, devised by
George E. P. Box and Donald Behnken in 1960, to achieve the following goals. Each factor or
independent variable, was placed at one of three equally spaced values, usually coded as
−1, 0, +1. Meanwhile, results related to the biology experiment were analyzed using the
version19 of SPSS program (SPSS Inc., Chicago, IL, USA). For quantitative variables, the
normality of distribution was tested with the Kolmogorov–Smirnov test and the difference
between variables was analyzed first by multivariate ANOVA and then one-way analysis of
variance (ANOVA) whereas, Kruskal–Wallis ANOVA was applied for analysis of ordinal
values of the histopathology score. Post-hoc tests were applied for multiple comparisons.
The differences were assigned as statistically significant when the p value was less than 0.05.

Average particle size of the formulae was determined at ambient temperature by
dynamic laser light scattering apparatus. The Zeta potential showed that the developed
formulations were stable and uniformly dispersed (Figure 2).
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by volume, and (C) Zeta potential distribution. Figures demonstrate better polydispersity and narrow
distribution, Z average size in nanometer range and zeta potential ensuring stability.

3. Results
3.1. Formulae Optimization and Characterizations

Fifteen experimental runs of PLNs prepared by the polymer, lipid, and surfactant
were analyzed for particle size and put in the response column in the experimental design
and presented in Table 3. A correlation between the different factors and formulation was
established using the quadratic polynomial generated using the Box–Behnken design using
the Design Expert®7.0.0 program. The particles’ sizes ranged from 138 nm to 210 nm. The
entrapment efficiency (EE %) of PLNs was in the range of 58.7% to 75.6%. Overall, the
influences of different independent variables on the PLNs were similar.
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Table 3. Box–Behnken design with measured responses.

Run Formulation PLGA Lecithin Surfactant Particles Size Entrapment

Code
mg mg (%) (nm) (%)

X1 X2 X3 Y1 Y2

1 PLNs-01 −1 −1 0 153 ± 0.50 59.1 ± 0.15
2 PLNs-02 1 −1 0 155 ± 1.00 71 ± 0.58
3 PLNs-03 −1 1 0 172 ± 0.76 61 ± 0.20
4 PLNs-04 1 1 0 210 ± 1.53 65.5 ± 0.75
5 PLNs-05 −1 0 −1 154 ± 1.00 58.7 ± 0.61
6 PLNs-06 1 0 −1 152 ± 0.58 67.5 ± 1.00
7 PLNs-07 −1 0 1 140 ± 1.00 60 ± 0.55
8 PLNs-08 1 0 1 159 ± 1.00 69.3 ± 1.15
9 PLNs-09 0 −1 −1 140 ± 0.58 74.2 ± 0.20

10 PLNs-10 0 1 −1 191 ± 1.00 72.1 ± 0.51
11 PLNs-11 0 −1 1 139 ± 0.58 75.6 ± 0.25
12 PLNs-12 0 1 1 163 ± 1.53 72 ± 0.61
13 PLNs-13 0 0 0 150 ± 0.58 73 ± 0.25
14 PLNs-14 0 0 0 151 ± 1.00 72.7 ± 0.20
15 PLNs-15 0 0 0 149 ± 0.58 73.4 ± 0.25

After determining the independent variables and their influence on the responses,
optimum responses were selected. Hence, the optimal formula was assigned as the one
that showed smaller particle size along with a high concentration of the entrapped drug.
The variables related to the optimal formula are presented in Table 4.

Table 4. Optimized formulation as per the Design Expert®7.0.0 software.

Name Goal Lower Limit Upper Limit Lower Weight Upper Weight Importance

PLGA Within range 33.3 100 1 1 3
Lecithin Within range 66.7 200 1 1 3

Poloxamer 188 Within range 0.5 1.5 1 1 3
Particle size (nm) Minimize 139 210 1 1 1

EE% Maximize 58.7 75.6 1 1 5

Solutions

Number PLGA
(mg in 100 mL)

Lecithin
(mg in 100 mL)

Poloxamer
188(1% w/v)

Particle Size
(nm) EE % Desirability

Software result 1 72.1 86.8 1.5 139.089 75.6 1
Software result 2 67.5 69.9 1.5 141.145 75.6002 1 (selected)
Software result 3 70.9 78.6 1.4 141.817 75.6 1

Table 4 contains data obtained from the software Design Expert, last column represents how this factor is important for optimization; 1 is
most important while 5 is of least importance. Results 1, 2, and 3 were the different probabilities created by the software, which when
related to runs, they expressed PLNs-11 and Result 2 was selected to be the best.

Figure 3 demonstrates the desirability of the optimized formula (0.948). The overlay
plot describes the design space showing the optimum amount of the three independent
variables (X1–X3) with required features of mean particle size (140 nm) and EE% (75.6%)
(Figure 4). The in vitro release profile was investigated for the optimized formulae with
anticipated particle size, Zeta potential, and entrapment efficiency. Mixed formulation
for PLNs-11 and pure 5FU were studied using cellulose membrane as a semi-permeable
membrane. Mixed PLNs formulation PLNs-11 showed not more than 25% release of 5FU
at pH 1.2 (for 2 h), while at pH 6.8, the drug release was 53.13% (for 6 h). Pure drug
released were 97% at pH 6.8 (for 6 h) (Figure 5). The cumulative percent of drug release
for the PLNs-11 formula was found to be 90% at the end of about 12 h by sustainable
drug released.
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Figure 4. Design space for PLGA-lecithin 5FU nanoparticles. Gray areas show the possible situations
to obtain the desired readings for a 141 nm average particle size and 75.6 EE%.
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Figure 5. Release profile of 5-fluorouracil loaded on PLNs-11 at pH 6.8 (panel A) and pH 1.2 (panel B). Data are mean ±
standard deviation for three replicates.

3.2. Results of the In Vivo Study
3.2.1. Colonic Expression of the Target Genes

mRNA expression of p53 and caspase 3 in colonic lysates indicated non-significant
decreases in the colon dysplasia control group compared with the saline group (Figure 6A,B).
Groups received free 5FU [5 mg/kg] and 5FU-PLNs [2.5 and 5 mg/kg] showed significantly
upregulated expression of p53. The effect produced by the high dose of 5FU-PLNs was
greater than that produced by the equivalent dose of free 5FU (Figure 6A).
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Figure 6. mRNA expression of p53 and caspase 3 genes in colon specimens. mRNA expression of p53 (A) and caspase 3 (B).
Data are mean ± SDM and compared at p less than 0.05. *: Versus saline group; #: Versus colon dysplasia group; $: Versus
5FU [2.5 mg/kg] group; &: Versus 5FU [5 mg/kg] group; ˆ: Versus 5FU-PLNs [2.5 mg/kg] group.

In addition, free 5FU produced a dose-dependent rise in caspase 3 mRNA expression
(Figure 6B). A similar dose-dependent effect was observed in mice treated with 5FU-PLNs
(Figure 6B). Importantly, the effect produced by the high dose of 5FU-PLNs [5 mg/kg] was
greater than that resulting from treating the mice with the free form of 5FU (Figure 6B).

3.2.2. Histopathological Examination and Histologic Grading of Colonic Mucosal Lesions

On examination of the colonic specimens from different groups, no grossly remark-
able lesions were observed. Microscopic inspection for H&E stained colon specimens
revealed normal histologic structure of colonic mucosa, submucosa, and serosa (straight
crypts lined with abundant mucus secreting goblet cells and columnar absorptive cells.
Lamina propria contains scattered lymphocytes and plasma cells) in the saline control
group, whereas colonic mucosa from the Di-MH control group showed foci of aberrant
closely packed, elongated, and irregular crypts. The crypts were lined by hyperplastic to
markedly dysplastic epithelium (large and hyperchromatic nuclei, loss of polarity, and
cellular stratification) with diminished goblet cells and multiple foci of disorganized cell
proliferation. The lamina propria showed moderate to severe chronic inflammatory cell
infiltrate. Sections prepared from colon tissue in mice received 2.5 mg/kg of free 5FU.
Interestingly, colonic tissues obtained from Di-MH + 5FU-PLNs treated mice revealed
scarce to unremarkable histological changes. The crypts were more or less straight and
regular, lined by normal appearing absorptive cells and vacuolated goblet cells. Only a
few foci of cell proliferation were observed in the low dose group (Figure 7A–H). Panel I
demonstrates the median score assigned to each experimental group; it is shown that the
score given to colon dysplasia group and 2.5 mg/kg of free 5FU was greater than the saline
group score, whereas the high dose free 5FU (5 mg/kg) and the low dose of 5FU-PLNs
(2.5 mg/kg) caused a non-significant decrease in histologic picture compared with both
colon dysplasia control groups (Figure 7I).
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Figure 7. Photomicrographs of hematoxylin and eosin stained colonic specimens demonstrating
intact crypts lined by normal appearing epithelial cells and goblet cells in the vehicle control group
(A). In the colon hyperplasia control group, the foci of variable grades of hyperplasia and dysplasia
were detected where crypts were enlarged, elongated, crowded, and irregular (straight arrows) lined
by atypical closely packed epithelial cells having stratified hyperchromatic nuclei (crossed arrows),
markedly reduced goblet cells accompanied with multifocal areas of cell proliferation (curved
arrows), and dense inflammatory cell infiltration in lamina propria (arrow head) (B–D). In Free 5FU
[2.5 & 5 mg/kg] treated groups, the crypts were less crowded, showing focal hyperplastic lining with
small areas of cell proliferation (curved arrows) (E,F). In 5FU-PLNs [2.5 mg/kg] treated group, crypts
were relatively straight, less crowded, with very small area of cell proliferation (curved arrow) (G).
In the 5FU-PLNs [5 mg/kg] treated group, crypts were straight, lined by normal appearing epithelial
cells and goblet cells (H) X400. (I) A box plot chart for the median histologic score and quartiles.
Data were analyzed using the Kruskal–Wallis test and Dunn’s test at p < 0.05. *: Versus saline group,
#: Versus colon dysplasia group.

Figure 8 demonstrates the photomicrographs for PAS stained colonic tissue. The saline
group showed intact goblet cell population and preserved mucin content (Figure 8A). Image
analysis and statistical analysis results indicate that the colon dysplasia group exhibited the
most marked reduction of goblet cell area (Figure 8B). Treatment with low dose [2.5 mg/kg]
free 5FU did not show any significant preservation of mucin content (Figure 8C), whereas,
the high dose [5 mg/kg] free 5FU treated groups (Figure 8D) as well as both low and
high doses 5FU-PLNs-treated ones (Figure 8E,F) revealed improved goblet cell population
compared to the colon dysplasia group and 2.5 mg/kg of free 5FU treated group. Panel G
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demonstrates the area% of PAS staining and indicates noticeable decline in PAS staining
in the colon dysplasia group and 2.5 mg/kg of the free 5FU group. Treatment with the
5 mg/kg of free 5FU or both doses of 5FU-PLNs produced significant elevations in PAS
staining area; interestingly the PAS stained area in mice treated with 5 mg/kg of 5FU-PLNs
was greater than that noticed in the mice group treated with an equal dose of free 5FU
(Figure 8G).
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Figure 8. Microscopic pictures of periodic-acid Schiff stained colonic sections. Images show normal
density of goblet cells (arrows) lining the crypts in the saline control group (A). Colon hyperplasia
control group showed marked decrease of goblet cells in dysplastic crypts (B). Mice groups treated
with free 5FU [2.5 or 5 mg/kg] (C,D) showed increased goblet cell density. Density of goblet cells
appeared higher in groups treated with 5FU-PLNs [2.5 mg/kg] (E) and 5FU-PLNs [5 mg/kg] (F)
X400. (G) Area of periodic acid Schiff staining presented as mean ± SDM and compared at p less
than 0.05. *: Versus saline group; #: Versus colon dysplasia group; $: Versus 5FU [2.5 mg/kg] group;
&: Versus 5FU [5 mg/kg] group.
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3.2.3. Immunohistochemical Expression of Ki-67 in Colon Tissue

Microscopic examination of the Ki 67-immunostained colon sections revealed a low
number of stained nuclei in the saline group (Figure 9A), but a greater number was
observed in the colon dysplasia group (Figure 9B,C). Mice treated with 2.5 mg/kg of free
5FU showed a low number of stained nuclei (Figure 9D) while the other treated groups
showed very minor staining (Figure 9E–G). Statistical analysis of the readings obtained
from image analysis highlighted a non-significant decrease in Ki-67 expression in mice
treated with free 5FU (2.5 mg/kg) versus the colon dysplasia group, whereas the other
treatment groups showed significantly lower number of Ki-67 stained nuclei (Figure 9H).
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Figure 9. Microscopic pictures of immunohistochemical staining against Ki-67 of colon sections.
Images for saline group (A), Colon dysplasia control group (B,C), FU [2.5 and 5 mg/kg] treated group
(D,E), 5FU-PLNs [2.5 and 5 mg/kg] treated groups (F,G). Positive expression appears as brown
nuclear staining of surface epithelial cells (arrow heads), crypt lining cells (straight arrows), and
proliferating interstitial cells (curved arrows). Immunohistochemistry counterstained with Mayer’s
hematoxylin X400. (H) Mean number of Ki-67 positive nuclei in experimental groups measured
using VideoTest Morphology® software (Saint-Petersburg, Russia) and presented as mean ± SDM
and compared at p less than 0.05. *: Versus saline group; #: Versus colon hyperplasia control group; $:
Versus 5FU [2.5 mg/kg] group.
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4. Discussion

Colon cancer develops through a slowly progressive, multistep process of mucosal
epithelial cell dysregulation and abnormal proliferation [34]. The earliest findings in colon
carcinogenesis models are characterized by diverse microscopically recognizable mucosal
intraepithelial lesions. Histologically, these lesions display variable features ranging from
mild hyperplasia to severe dysplasia [35,36]. Indeed, the Di-MH model is one of the
most frequently used models of experimental colon carcinogenesis [3,37]. It induces many
morphological and molecular alterations similar to those observed in human sporadic colon
cancer including resemblances in the response to some chemopreventive agents [2,38].

In the current study, administration of the chemical carcinogen Di-MH induced sub-
stantial colonic mucosal hyperplastic and dysplastic changes of various grades. Mucosal
crypts at dysplastic foci showed marked mucin depletion, and high expression of the cell
proliferation marker Ki-67 in crypt lining cells compared to the vehicle control.

In cancer treatment, limited drug bioavailability, development of drug resistance,
and toxic effect on different organs are major obstacles to successful chemotherapy. Nan-
otechnology has been widely used as a promising drug delivery tool that improves the
bioavailability of cancer chemotherapy, intensifying its therapeutic efficacy with reduced
drug resistance and side effects [39]. In the current study, we prepared 5FU-PLNs and inves-
tigated its cytoprotective effect against Di-MH induced colon dysplasia in mice compared
to free 5FU.

Our results showed a significant improvement of colonic mucosal histology in sections
obtained from mice treated with 5FU-PLNs compared to groups treated with free 5FU. The
administration of both doses of 5FU-PLNs significantly decreased the mucosal epithelial
dysregulation and improved the histological score with preservation of crypt uniformity
and absence of epithelial hyperplastic or dysplastic changes. PAS staining also revealed
increased goblet cell population. Additionally, significant reduction of cell proliferation was
indicated by a diminished number of Ki-67 immuno-positive nuclei. The histopathological
changes were mostly attributed to higher chemopreventive efficacy for the PLNs of 5FU.

Superior chemopreventive effect for the 5FU PLNs compared to the free 5FU was
mostly attributed to improved drug targeting (delivery) by PLNs that mediated the sus-
tained release and promoted preferential accumulation of 5FU in the tumor sites. Therefore,
the antitumor effects of 5FU could be improved including proliferation suppression and
apoptosis [40]. An in vitro study showed there was a burst release of 17.22% of FU at
7 h and furthermore, there was a controlled release up to 78.23% for 24 h. The nanoparti-
cles exhibited a biphasic drug release pattern with initial accelerated release followed by
sustained release over seven days [41].

Similarly different nano-formulations of 5FU were successful in enhancing their
efficacy. For example, 5FU formulated in nanoparticles significantly exhibited a growth
inhibitory effect on the examined colon cancer cell line [42]. Moreover, in vitro cytotoxicity
studies using 5FU loaded polycaprolactone nanoparticles revealed greater anti-proliferative
influence than free 5FU on the SW480 colon cancer cell line resisting chemotherapy [43].
One study used a molecularly imprinted nanoform of 5FU and tested its antitumor activity
against Ehrlich solid tumor in mice and documented greater chemopreventive effect
compared to the free form of 5FU [32]. Consequently, the authors concluded that 5FU
loaded nanopreparations is a promising delivery system to target colon cancer [42].

Several studies have used the PLNs technology for formulating chemotherapeutic
agents with positive outcomes. One study evaluated the in vivo efficacy of the doxorubicin-
loaded PLNs formula was measured in a murine model of solid tumor. Assessment
was dependent on measuring the delay in tumor growth in addition to histology and
morphology of tumor and loco-regional distribution [44]. Another study used doxorubicin
in a PLNs system; the authors documented increased uptake and retention in two different
multidrug resistant cell lines compared to the solutions containing free doxorubicin [43].

One research paper utilized multiple layer-by-layer PLNs to improve the FOLFIRINOX
combination, consisting of three chemotherapeutic drugs (5FU, irinotecan or oxaliplatin)
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and folic acid, which was efficient in treating pancreatic cancer patients with minimum side
effects compared with the FOLFIRINOX regimen alone. Moreover, these PLNs showed
higher efficacy than gemcitabine, which is the reference standard medication in this type
of cancer [45].

Furthermore, another research group highlighted that the PLNs formula of doxoru-
bicin enhanced cytotoxicity against breast cancer cells that were characterized by multidrug-
resistance [46]. Another research group synthetized cRGD-directed, NIR-responsive and
robust AuNR/PEG–PCL hybrid NPs for developing preparations containing paclitaxel
or doxorubicin tested for efficacy against xenografts of human glioblastoma U87MG cells
in nude mice. The in vivo pharmacokinetics studies showed that the NPs of doxorubicin
showed longer circulation time, less adverse effects, and lower mortality if compared to
the free form of doxorubicin [47].

In the present study, the colon cancer group showed a non-significant decrease in
p53 and caspase 3 gene expression levels than the saline group. This finding might be
related to the pattern of chemical induction of the colon dysplasia and gene expression
was assessed at the dysplastic stage before establishment of a solid tumor. In agreement
with our results, it was demonstrated that alterations of p53 gene expression in colon
carcinogenesis occurred only at the late stages in the animal model [48].

In the current study, the p53 and caspase 3 genes were significantly overexpressed
in the 5FU and 5FU-PLNs treated groups and the level of expression was proportional to
the drug dosage. The gene overexpression appeared to be induced by 5FU as it might be
capable of activating p53 expression by some proposed mechanisms such as incorporation
of its metabolites into RNA and DNA as well as inhibition of thymidilate synthase [49]. The
elevated p53 levels induced the proapoptotic B-cell lymphoma-2 (bcl-2) family expression.
This is known to stimulate the release of cytochrome c from the mitochondria that eventu-
ally results in caspase 3 activation. In addition, activated p53 upregulates the expression of
some death receptors, subsequently activating caspase 3 and inducing apoptosis [50,51].

In accordance, Cheng et al. [52] demonstrated higher expression of both p53 and
caspase 3 mRNAs in 5FU, chitosan magnetics/5FU, and galactosylated chitosan-5FU
nanoparticle treated groups of hepatocellular carcinoma in an orthotropic mouse model.
Upregulation of p53 was found also in the fibrosarcoma skin tissues treated by 5FU NPs
and 5FU [53]. Additionally, Abdel Latif et al. [49] found that 5FU increased the expression
of the p53 gene in N-methylnitrosourea-induced colon cancer in rats. Moreover, several
in vitro studies demonstrated the effectiveness of 5FU co-treatments in increasing p53 and
caspase 3 protein expressions and activity [54–57].

The release profile of pure drug was higher than that entrapped in PLNs. This is
because of the presence of PLGA and drug encapsulated in nanoparticles had a better
influence on controlled release for a longer period of time, and can be confirmed by different
studies that illustrated that the formulation of 5FU into polymeric nanoparticles had a
better release profile than free drug, which suffers from rapid clearance from the body. In
the case of the free drug, higher doses at short intervals are required to compensate the
quick elimination and to maintain a steady state concentration to attain pharmacological
activity. In the case of nanoformulation, the release of the drug does not demonstrate early
burst release designating a complete encapsulation into the carrier matrix and absence
of any superficial amount of unbound free nanoparticles. This is followed by sustained
release and agrees with several previous reports [32,52,58,59].

It was previously documented that chemotherapeutic agents prepared in nanoformu-
lations had stronger antitumor activity in several models of cancer. Utilizing a nanodrug
delivery system was invented for anti-cancer drug transportation to colon cancer cells,
while lessening unintended distribution for the drug in normal tissues [60,61]. NPs may
help protect chemotherapeutic medications from first-pass metabolism, gastric and intesti-
nal enzyme degradation; this results in an increased amount of the available drug for local
delivery to the colon [62]. The limitation of the current work is the lack of in vivo toxicity
study to determine the relative safety of 5FU PLNs compared to free 5FU.
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Therefore, the current results highlight an attractive platform for in vivo oral chemother-
apy targeting colon cancers. More studies are warranted to test the current formula of
5FU in other murine models of colon cancer to determine the toxicity and the degree of
suitability to be tested in human studies in colon cancer patients.
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