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An understanding of interactions within the tumor microenvironment (TME) of classic 
Hodgkin lymphoma (cHL) has helped pave the way to novel immunotherapies that have 
enabled dormant and tumor-tolerant immune cells to be reactivated. The immunosup-
pressive nature of the TME in cHL specifically inhibits the proliferation and activity of 
natural killer (NK) cells, which contributes to tumor immune-escape mechanisms. This 
deficiency of NK cells begins at the tumor site and progresses systemically in patients 
with advanced disease or adverse prognostic factors. Several facets of cHL account 
for this effect on NK cells. Locally, malignant Reed–Sternberg cells and cells from the 
TME express ligands for inhibitory receptors on NK cells, including HLA-E, HLA-G, and 
programmed death-ligand 1. The secretion of chemokines and cytokines, including sol-
uble IL-2 receptor (sCD25), Transforming Growth Factor-β, IL-10, CXCL9, and CXCL10, 
mediates the systemic immunosuppression. This review also discusses the potential 
reversibility of quantitative and functional NK cell deficiencies in cHL that are likely to lead 
to novel treatments.

Keywords: natural killer cells, Hodgkin disease, tumor microenvironment, immunologic cytotoxicity, killer cell 
immunoglobulin-like receptor, interleukin-2, immunotherapy

inTRODUCTiOn

Despite improvements in the therapy of classic Hodgkin lymphoma (cHL), over 1,000 deaths per 
year in North America and 10,000 worldwide result from the failure of effective management (1, 2). 
cHL comprises four histological subtypes and a unique, heterogeneous phenotype (3, 4). Given that 
99% of cHL tumor tissue is composed of inflammatory cells (4), the study of the tumor microenvi-
ronment (TME) and its interactions with antitumor immune cells has gained increasing relevance. 
The most promising recent results in patients with relapsed cancers including cHL have come from 
the use of immunotherapies (5–7), underscoring the notion that tumor-tolerant cytotoxic cells can 
be reactivated to kill cancer cells (8). Most immunotherapeutic advances against refractory and 
relapsed cHL have focused on T-cells, while studies with natural killer (NK) cells remain scanty.

Natural killer cells, as a key component of innate anticancer immunity, deserve further investiga-
tion in the context of the cHL TME (9, 10). Exploring the interactions between NK cells and cHL 
TME that drive NK cell-escape mechanisms will provide a better understanding of the targets needed 
to reverse NK cell anergy, thereby directing treatment strategies.
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iMMUne CeLLS in HL TMe

While only 1% of tumor tissue is composed of malignant Reed–
Sternberg (RS) cells, the remaining 99% of cHL tissue comprises 
the TME and includes numerous inflammatory cells including 
B-cells, T-cells [CD4+ T-helper cells, regulatory T-cells (Tregs), 
and cytotoxic CD8+ T-cells], macrophages, eosinophils, neutro-
phils, plasma cells, dendritic cells, and fibroblasts, all meticulously 
orchestrated by the dysregulated secretion of chemokines and 
cytokines from both TME and RS cells (11).

Many of the cells, including tumor-tolerant Th2 T-helper cells 
and Tregs, are recruited for the growth and survival of RS cells 
(12, 13). Cytokines responsible for the recruitment comprise IL-7, 
IL-10, Transforming Growth Factor-β (TGF-β), and galectin-1, 
known to promote tumor expansion, stimulate the differentiation 
of Tregs, and enhance immunosuppressive interactions between 
RS cells and cytotoxic T- and NK  cells (14–17). Despite the 
dominance of Tregs and Th2 cells, tumor-antagonizing cells, 
including NK cells, CD8+ T-cells, and Th1 T-helper cells, are still 
a part of the TME infiltrate. They are attracted by chemokines 
and cytokines, including CXCL9 (Mig-1), CXCL10 (IP-10), and 
interferon (IFN)-γ (18–20). These antitumor efforts fail, yielding 
to tumor-tolerant cells and disease progression (21).

iMPORTAnCe OF nK CeLLS in THe 
eLiMinATiOn OF CAnCeR CeLLS

Natural killer cell effector functions are tightly controlled by the 
balance between inhibitory and activating signals, as recently 
reviewed (9, 22). Activating receptors include NKG2D, natural 
cytotoxicity receptors (NCRs), DNAM1, and Fcγ-RIIIa CD16, 
among others. Inhibitory signals are mainly mediated by killer  
cell immunoglobulin-like receptors (KIRs), CD96, and the 
immune checkpoint receptors, programmed cell death protein-1 
(PD-1), T-cell immunoreceptor with Ig and ITIM domains 
(TIGIT), T-cell immunoglobulin and mucin-3 (TIM-3), and 
lymphocyte-activation-gene-3 (LAG-3). Not only are activat-
ing and inhibitory receptors important for stimulating NK cell 
cytotoxicity but they also strictly control cytokine and chemokine 
secretions that further drive antitumor reactions (23). In addition 
to stimulation by activating receptors, NK  cell activity can be 
enhanced by certain cytokines, notably IFN-γ, interleukin (IL)-2, 
IL-12, IL-15, IL-18, and IL-21 (24–29).

Two broad subsets of NK  cells displaying different forms 
of anticancer activity are commonly recognized. CD56bright–
CD16negative precursor NK  cells play an immune regulatory 
role via chemokine and cytokine secretions that attract and 
activate antitumor cells from both innate and adaptive arms of 
the immune system, comprising CD8+ T-cells, dendritic cells, 
and Th1 cells (30–32). Cytokines, including IFN-γ, TNF-α, and 
GM-CSF, work individually to recruit, activate, and stimulate 
the proliferation of antitumor immune cells and induce the 
presentation of MHC class II molecules on antigen-presenting 
cells (33). Later stages of NK  cell maturation and activation 
are characterized by a CD56+/dim–CD16bright phenotype, with 
higher cytotoxic capacity through lytic granule exocytosis and 

antibody-dependent cell cytotoxicity (23, 30, 34, 35). More 
recently, these classical categories have been put into question, 
where further activation of CD56+/dim–CD16bright NK  cells has 
demonstrated the functional reversibility of these cells to a 
predominantly IFN-γ-secreting role with lesser cytotoxicity, 
described as CD56bright–CD16low/negative NK  cells. Such a phe-
nomenon has been coined “split anergy” (36, 37). Additional 
phenotypical analysis of tissue-resident NK cells and NK cells 
in peripheral blood and bone marrow has provided insight on 
a broad spectrum of NK cells (38). The differential role of these 
subsets in mediating a regulatory versus cytotoxic function 
against cancer continues to be investigated.

In cHL, the infiltration and activation of NK cells confers a 
favorable prognosis. Naranjo et al. found that a lower number of 
infiltrating activated CD56dim–CD16bright–CD57+ NK cells in cHL 
patients were associated with adverse prognostic factors, includ-
ing the presence of B symptoms and advanced clinical stage (39). 
Nonetheless, NK cells remain largely decreased in cHL TME and 
fail to kill RS cells (40, 41).

cHL inDUCeS A QUAnTiTATive AnD 
QUALiTATive nK CeLL DeFiCienCY

Early studies of biopsies from cHL patients show a significant 
deficiency in NK  cell numbers, with functional impairment in 
cytotoxicity. By looking at the in situ quantification of immune cells 
in cHL-affected lymphoid tissues, Gattringer et al. found NK cell 
density in cHL-affected tissues to be five times less compared to 
that of normal tissues and non-Hodgkin lymphoma (HL)-affected 
tissues, regardless of histological subtype (40). In addition, using 
the chromium release assay to measure cytotoxicity against the 
leukemic cell line K562, others have shown NK cells from spleens 
of cHL patients to be significantly less active than those of healthy 
donors (42). This impairment was amplified when cHL patients 
had B symptoms, suggesting a systemic response.

Concomitantly, a quantitative decrease in peripheral blood 
NK cells in cHL patients has also been observed, without correla-
tion to adverse prognosis or advanced clinical stage (43). More 
importantly, peripheral blood NK cells in cHL patients are less 
cytotoxic, regardless of the stage or histological subtype (44–50).

Most recently, additional details on mechanisms behind the 
functional deficiency of NK cells in cHL patients have emerged. 
Reiners et al. observed feeble cytolysis of cHL-derived NK cells 
against the cHL cell line L428, in contrast to efficient killing by 
healthy donor NK cells (51). They found a significant reduction in 
NKG2D expression on untreated cHL-patient NK cells, without 
changes in other activating receptors or the markers, CD25 and 
CD69.

cHL MeCHAniSMS FOR nK CeLL 
inHiBiTiOn

Several factors contribute to the quantitative and functional 
deficiency of NK cells in cHL, including molecules and surface 
ligands produced and expressed by RS cells and the surround-
ing inflammatory milieu. We address those with evidence that 
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TABLe 1 | NK cell evasion mechanisms in cHL.

Mechanism Source Description

Soluble CD25 RS cells Prevent interaction of IL-2 with IL-2Rs 

IL-10 RS cells, Tregs, 
cells of TME

Repress IL-2 and IFN-γ production

TGF-β RS cells, Tregs, 
cells of TME 

Repress IL-2 and IFN-γ production
Downregulate activating receptors (NKG2D, 
NKp30) and corresponding ligands (MICA, 
ULBP2, ULBP4)

IL-15 RS cells Competition of RS cells and NK cells 

CXCL9, 
CXCL10

RS cells (mainly 
EBV+)

Attract CD56bright–CD16dim NK cells

HLA-G and 
HLA-E

RS cells Bind to inhibitory receptors on NK cells 

Soluble MICA RS cells Endocytosis and degradation of NKG2D 

BAG6/BAT3 RS cells Endocytosis and degradation of NKp30

Rosetting Macrophages, 
Tregs, Th2 
T-helper cells

Physical shield of HRS cells from NK cells

c-FLIP Overexpressed by 
RS cells

NK FasL-mediated apoptosis resistance

FasL RS cells Apoptosis of Fas-expressing NK cells 

PD-L1 RS cells Suppression of NK cell activation

MHC-I RS cells (EBV+) Bind to KIRs, inhibit NK cell activation 

c-FLIP, cellular FLICE-inhibitory protein; cHL, classic Hodgkin’s Lymphoma; EBV, 
Epstein–Barr Virus; FasL, Fas Ligand; IFN-γ, Interferon-gamma; IL, Interleukin; IL-2Rs, 
Interleukin-2 receptors; LAG-3, Lymphocyte-activation-gene-3; NK, Natural Killer 
cells; PD-1, Programmed Cell Death Protein-1; RS, Reed–Sternberg cells; TGF-β, 
Transforming Growth Factor-β; TIM-3, T-cell immunoglobulin and mucin-domain 
containing-3; TME, Tumor Microenvironment; Tregs, regulatory T-cells.
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directly and specifically promotes NK cell dysfunction in cHL as 
summarized in Table 1 and Figure 1.

Cytokines and Chemokines: iL-2, iL-10, 
TGF-β, iL-15, CXCL9, and CXCL10
One significant mechanism of NK  cell evasion that explains 
the persistent failure of NK  cell lysis in cHL is the inhibition 
of IL-2, necessary for NK cell proliferation and activation (24). 
IL-2 is produced mainly by CD4+ T-cells, but also by activated 
CD8+  T-cells, dendritic cells, and NK  cells themselves (52). 
However, IL-2 has been found to be largely absent from cHL TME 
(53–56). Moreover, cHL-patient-derived NK cells are unrespon-
sive to exogenous IL-2 administration. cHL-derived NK cells and 
healthy donor NK  cells fail to respond to IL-2 in the presence 
of cHL-patient serum, while observing expected enhancement 
effects in the absence of the serum (51). These findings can be 
attributed to the production of soluble IL-2Rα (sCD25) by RS 
cells, which bind IL-2 and prevent IL-2 interaction with T- and 
NK  cells (57, 58). The observations are consistent with studies 
showing that higher levels of sCD25 in cHL are associated with 
poorer prognosis and advanced disease (59, 60).

In addition to IL-2, the immunosuppressive cytokines, IL-10 
and TGF-β, are actively secreted by RS and TME cells (61). Both 
favor Treg recruitment and expansion (62) and reduce lympho-
cyte production of IFN-γ (63) involved in attracting NK  cells 

(18). TGF-β can also diminish the expression of NKG2D ligands 
(MICA, ULBP2, and ULBP4) and downregulate activating  
receptors NKG2D and NKp30 (NCR) (64–66). TGF-β has been 
shown to directly mediate the transformation of NK  cells into 
tumor-tolerant type 1 innate lymphoid cells in TME (67). IL-15 
remains a surprising evasion mechanism in cHL due to its 
expected role in the differentiation and survival of NK cells (27). 
Ullrich et al. found that cHL cell lines upregulate IL-15 and corre-
sponding receptors, demonstrating that RS cells utilize IL-15 for 
growth and apoptosis resistance in an autocrine fashion, thereby 
competing with NK cells (68).

CXCL9 and CXCL10 are ligands for CXCR3 and attract 
CXCR3-expressing NK  cells (18, 69). Both chemokines are 
upregulated in cHL tissues and expressed at even higher levels 
in Epstein–Barr Virus (EBV)+ cHL (19, 70). However, because 
CXCR3 expression remains limited mostly to the less cytolytic 
NK cell subset (71), CXCL9 and CXCL10 favor the attraction of 
CD56bright–CD16negative NK cells. TGF-β further increases CXCR3 
expression, enabling an increased attraction of the CD56bright 
subset toward CXCL9 and CXCL10 (72). Although the failure 
of CD56bright–CD16negative NK cells to kill RS cells is not entirely 
understood, recent studies on the genetic and molecular char-
acteristics of RS have provided evidence of intrinsic resistance 
to cytokine-mediated apoptosis. Using flow sorting and exome 
sequencing of primary RS cells, Reichel et  al. demonstrated 
that tumor necrosis factor alpha-induced protein 3, normally 
responsible for inhibiting NFκB survival pathway and mediat-
ing TNF-α-induced apoptosis, is the second most common 
mutation (73).

HLA-G and HLA-e
Reed–Sternberg cells have long been known to lack the expression 
of MHC class I proteins (41, 73), putting them at risk of NK cell 
lysis due to loss of “self ” ligands for inhibitory KIRs. Thus, RS cells 
evade NK cell cytotoxicity by upregulating HLA-G and HLA-E. 
HLA-G is a ligand for the inhibitory receptors, immunoglobulin-
like transcript (ILT) 2, ILT4, and killer immunoglobulin-like 
receptor KIR2DL4 (p49) (74, 75), while HLA-E interacts with 
CD94/NKG2A (76). Notably, HLA-G has been found to stain 
positive in more than 50% of cHL-lymph node specimens (41), 
while HLA-E tests positive in 70 and 62.5% of RS cells and TME 
lymphocytes, respectively (76). HLA-E also correlates with 
advanced clinical stage.

Soluble Ligands
Two NK  cell-activating signals often interrupted in cHL are 
surface receptors NKp30 and NKG2D (51). MICA, ligand for 
NKG2D, and BAG6/BAT3, ligand for NKp30, are only expressed 
on cell surfaces upon stress or damage to alert and activate 
immune cells (77, 78). RS cells overcome this threat by releas-
ing both soluble ligands, predominantly using protein disulfide 
isomerase ERp5, and disintegrins and metalloproteinases 
ADAM10 and ADAM17 (79). In fact, MICA and BAG6/BAT3 
can be significantly elevated in the serum of untreated cHL 
patients (51). Not only are these soluble ligands ineffective in 
activating NKG2D and NKp30 but they also result in receptor 
endocytosis and degradation (80).
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FiGURe 1 | Natural killer cell evasion mechanisms in cHL. The accumulation of NK cell evasion mechanisms in cHL TME explains the persistent failure of NK cell 
infiltration and activity observed in patients. (1) sCD25 blocks IL-2 interaction with IL-2Rs on NK cells. (2) TGF-β and IL-10 repress IL-2 and IFN-γ production and 
downregulate NKG2D expression. (3) IL-15 is used by RS cells for proliferation and survival, diminishing available IL-15 in TME for NK cells. (4) Upregulation of 
CXCL9 and CXCL10 on RS cells attracts CXCR3-expressing CD56bright–CD16dim NK cells, with lower efficacy in RS killing. (5) Interactions of MHC class I molecules, 
HLA-G, and HLA-E with corresponding inhibitory receptors suppress NK cell activity. (6) sMICA and sBAG6/BAT3 lead to NKG2D and NKp30 downregulation, 
respectively. (7) A physical barrier (“Rosetting”) consisting of Th2 T-helper cells, regulatory T cells, and macrophages shields RS cells from NK cells. (8) RS cells avoid 
Fas-mediated apoptosis by overexpressing c-FLIP. Expression of FasL on RS cells leads to apoptosis of Fas-expressing NK cells. (9) Interaction of PD-L1 with the 
cognate receptor PD-1 inhibits NK cell activation. Ligands in cHL for immune checkpoints TIGIT, TIM-3, and LAG-3 remain to be explored. Abbreviations: c-FLIP, 
cellular FLICE-inhibitory protein; cHL, classic Hodgkin Lymphoma; FasL, Fas ligand; IFN-γ, interferon-γ; IL, interleukin; IL-2R, IL-2 receptors; ILT, Immunoglobulin-like 
transcript; KIRs, Killer cell immunoglobulin-like receptor; LAG-3, lymphocyte-activation-gene-3; NK, natural killer; PD-1, Programmed cell death protein-1; PD-L1, 
Programmed death-ligand 1; RS, Reed–Sternberg; s, soluble; TGF-β, Transforming Growth Factor-β; TIGIT, T-cell immunoreceptor with Ig and ITIM domains; TIM-3, 
T-cell immunoglobulin and mucin-3.
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Physical Barriers
Another evasion mechanism is the formation of a protective 
barrier around RS cells using Tregs, Th2 cells, and macrophages, 
termed “rosetting” (81). This rosetting exhibits physical binding 
characteristics that are not easily destroyed. Using immunostain-
ing, Hartmann et al. detected CD4+ T-cell and CD163 macrophage 
rosetting encompassing RS cells to be present in 14 of 15 cHL cases 
examined (82). The maintenance of a close contact between RS 
cells with CD4+ T-cells and CD163 macrophages suggests their 
role in physically shielding malignant cells from NK cell attack.

Fas/Fas ligand (FasL)
Although RS cells largely express extrinsic death receptor Fas, they 
avoid extrinsic apoptosis induced by FasL-expressing NK  cells 
by overexpressing cellular FLICE-inhibitory protein (83). In 
addition, RS cells overexpress FasL in 87% of cases, making them 
capable of inducing apoptosis on Fas-expressing NK cells (84, 85).

immune Checkpoints
A near universal expression of immune checkpoints has been 
demonstrated among TME and RS cells (86, 87). A group of 
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genetic alterations in the loci of PD-1 ligands, PD-L1 and 
PD-L2, were found in 97% of cHL cases (88). Of significance, 
the amplification of locus 9p24.1 correlated with advanced 
clinical stages and worse progression-free survival. PD-1 and 
PD-L1 expression in patient biopsies are also of prognostic sig-
nificance: a high expression of PD-1 and PD-L1 correlated with 
a lower event-free survival, while a high expression of PD-L1 
correlated with a lower overall survival (89). NK  cells and 
CD8+ T-cells in cHL TME can, therefore, be directly inhibited 
upon the expression of PD-1. The development of the anti-
PD-1 monoclonal antibodies, Nivolumab and Pembrolizumab, 
was aimed to prevent such inhibition. A majority of relapsed 
and refractory cHL patients showed responses to treatments 
(65 and 87%, respectively) (89). The role of NK cell-immune 
checkpoints, LAG-3, TIM-3, and TIGIT, remains unknown in 
cHL.

eBv+ cHL
Classic Hodgkin lymphoma cells are infected with EBV in 
approximately 40% of cases (90). EBV+ cHL TME is characterized 
by the predominance of CD8+ T-, Th1, and NK cells, significantly 
contrasting the EBV-negative phenotype. Despite the presence of 
additional cytotoxic cells in EBV+ cHL, this has minimal influence 
on prognosis (91, 92), suggesting effective evasion. EBV induces 
an upregulation of MHC class I molecules in approximately 70% 
of cases, encouraging self-tolerance in NK cells through inhibi-
tory KIRs (41). In addition, EBV+  Tregs secrete twofold more 
IL-10, increasing immunosuppression in TME (92).

THe ReveRSiBiLiTY OF evASiOn 
MeCHAniSMS

Despite numerous evasion mechanisms, observations have been 
made on their reversibility after achieving remission with chemo 
and/or radiotherapy (47, 93). NK cell cytotoxicity is significantly 
diminished at cHL diagnosis, independent of clinical stage. 
This functional deficiency of NK cells normalized 6 weeks after 
completion of the treatment protocol, contrasting with the long-
lasting cellular immune suppression of T-cells. Moreover, the 
failure to respond or the evidence of early relapse does not appear 
to improve NK cell function, suggesting that NK cell activity is a 
biomarker of clinical response and prognosis.

Immune reconstitution after autologous hematopoietic cell 
transplantation (AHCT) for relapsed or refractory cHL also 
demonstrates the reversibility of immune suppression. Patients 
with early recovery (day 15 post AHCT) of the absolute lympho-
cyte count defined as greater than 500 × 109/L in one study, and 
greater than 667 ×  109/L in another, had a significantly higher 
progression-free (in both studies) and overall survival (one 
study) (94, 95). NK cell counts can rapidly return to normal as 
early as 2 weeks post AHCT (96), while T- and B-cells remain 
deficient for months to years. This not only implies early revers-
ibility of NK  cell evasion mechanisms after treatment but also 
highlights the importance of NK cells in preventing relapse early 
after transplant.

POTenTiAL FOR nK-TARGeTeD 
iMMUnOTHeRAPieS in cHL

One approach to reactivate silenced NK  cells in cHL is to 
employ the currently clinically available monoclonal antibodies, 
Nivolumab and Pembrolizumab, to block immune checkpoint 
PD-1 on activated CD4+  and CD8+  T-cells, and NK  cells (97). 
Several other molecules targeting NK cell reactivation are under 
investigation. Heat shock protein-90 inhibitor, BIIB021, is effec-
tive against cHL in preclinical studies in vitro and in vivo (97). 
It acts by directly blocking the NFκB pathway and potentiating 
NK  cell-directed lysis through downregulating MHC class I 
molecules and upregulating NKG2D ligands MICA, MICB, and 
ULBP2. A different approach to NK cell immunotherapy has been 
the study of ADAM10/17 inhibitors. Although still in preclinical 
testing, ADAM10/17 inhibitors have shown high specificity in 
their activity and with high affinity (IC50 40 nM for ADAM10) 
(98, 99). More recently, the tetravalent bispecific CD30/CD16A 
tandem antibody, AFM13, has been developed to boost autolo-
gous NK cells against RS cells (51, 100). A phase I clinical trial 
of relapsed and refractory cHL showed that the drug was safe 
and tolerable, with minimal toxicities (101). Patients receiving 
AFM13 showed an increase in the NK  cell activation marker, 
CD69, after each dose with preliminary evidence of efficacy. A 
phase II trial with AFM13 is currently underway (GHSG-AFM13 
and NCT02321592).

Numerous clinical trials have employed allogeneic NK  cells 
derived from healthy donors with variable outcomes (102). An 
alternative approach is to use an allogeneic permanent, malig-
nant NK  cell line, NK-92, derived from a patient with an NK 
lymphoma. The parental NK-92 line lacks CD16 expression and 
hence cannot engage in antibody-dependent cytotoxicity, and its 
cytolytic activity, lower than for primary NK cells, relies heav-
ily on the activation of the activating receptors NKp30, NKp46, 
and NKG2D, and the absence of most inhibitory KIRs (103). In 
addition, given the malignant origin of NK-92, irradiation prior 
to infusion is required, reducing its cytotoxicity further, includ-
ing IFN-γ secretion, compared with primary NK cells (28, 104, 
105). NK-92 cells nonetheless can kill a variety of cancer cell 
types (104), and the line is a potentially universal, off-the-shelf 
source of readily expanded NK cells with uniform cytotoxicity 
and a high safety profile (106). We recently reported a phase I trial 
of NK-92 in patients with hematological malignancies relapsing 
after hematopoietic cell transplantation and found the treatment 
to be well tolerated and documented several responses, including 
a patient with refractory cHL who has remained in unmaintained 
remission for 11 years after NK-92 infusion (107) by an uncertain 
mechanism.

FUTURe DiReCTiOnS

Not only do 15% of cHL patients fail to achieve long-term remis-
sion (1, 2), but accumulating evidence indicates that significant 
long-term toxicities result from aggressive management with 
chemotherapy and radiotherapy, including an increased risk 
of mortality from solid tumors and cardiovascular disease, as 
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well as increased risks in the development of second cancer and 
diabetes mellitus (108–112). Consequently, studies that explore 
the immunotherapy of NK  cell reactivation to improve long-
term disease-free survival and promote harm reduction warrant 
further investigation.

COnCLUSiOn

Classic Hodgkin lymphoma is characterized by a potent immu-
nosuppressive TME that inhibits NK cells. It is worth noting that 
the quantitative and qualitative NK cell deficiencies exhibited by 
patients with cHL are reversible. Strategies to reactivate NK cell 
function or block the evasive mechanisms displayed by the TME 

need further investigation and are likely to identify new immu-
notherapeutic targets.
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