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Analogies of the classical Euler top 
with a rotor to spin squeezing and 
quantum phase transitions in a 
generalized Lipkin-Meshkov-Glick 
model
Tomáš Opatrný   1, Lukáš Richterek1 & Martin Opatrný1,2

We show that the classical model of Euler top (freely rotating, generally asymmetric rigid body), 
possibly supplemented with a rotor, corresponds to a generalized Lipkin-Meshkov-Glick (LMG) model 
describing phenomena of various branches of quantum physics. Classical effects such as free precession 
of a symmetric top, Feynman’s wobbling plate, tennis-racket instability and the Dzhanibekov effect, 
attitude control of satellites by momentum wheels, or twisting somersault dynamics, have their 
counterparts in quantum effects that include spin squeezing by one-axis twisting and two-axis 
countertwisting, transitions between the Josephson and Rabi regimes of a Bose-Einstein condensate 
in a double-well potential, and other quantum critical phenomena. The parallels enable us to expand 
the range of explored quantum phase transitions in the generalized LMG model, as well as to present a 
classical analogy of the recently proposed LMG Floquet time crystal.

“The same equations have the same solutions” is a well known Feynman’s quote from his lecture on electrostatic 
analogs1. Taking advantage of known solutions of Maxwell’s equations, Feynman shows how to apply them for 
solving problems of heat transport, neutron diffusion, fluid dynamics, and photometry. The message is that ana-
logs are powerful tools that allow the exchange of know-how between different branches of physics. Here we fol-
low this approach and focus on quantum analogs of the Euler dynamical equations, initially introduced to study 
rotations of rigid bodies. We show that already the simplest version of Euler equations describing a free spinning 
top is relevant to the quantum mechanical problem of spin squeezing2,3, i.e., noise suppression important for 
improving precision of atomic clocks and measuring devices4–6. These effects have their classical counterparts in 
dynamics of wobbling plates7–9, tennis racket instability10,11 or the Dzhanibekov effect12. If a freely spinning rotor 
with its axis fixed with respect to the top is added, plethora of new phenomena occur with analogies across diverse 
fields. In the quantum case one can observe features of the Lipkin-Meshkov-Glick (LMG) model of nuclear 
physics13 with various critical phenomena14 including quantum phase transitions with their generalization to 
excited state quantum phase transitions15,16, self-trapping of Bose-Einstein condensates in potential wells17,18, or 
twist-and-turn scenario of spin squeezing19. These quantum phenomena correspond to purely classical effects 
such as satellite stabilization by momentum wheels20,21 or motion of an athlete executing a twisted somersault22,23.

Taking advantage of these analogies, we introduce new types of excited state quantum phase transitions in a 
generalized LMG model that correspond to different kinds of motion in rigid body dynamics. As another appli-
cation we propose a classical version of the recently introduced LMG Floquet time crystal24.

General features of the dynamics
Classical model.  Evolution of the angular momentum 

→
L  of a rigid body is governed by the equation 

→
=

→
d L dt M/ , where 

→
M  is the torque. Assume that the torque stems from a rotor whose axis is fixed with respect 
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to the rigid body as in Fig. 1. In the rotating coordinate system with axes fixed along the principal axes of the rigid 
body the evolution of the angular momentum vector ω→ is given by
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where the indexes j, k, l form an even permutation of 1, 2, 3, Lk = Ikωk, and I1,2,3 are the principal moments of iner-
tia (see the Supplementary material for detailed derivation). These are the well known Euler dynamical equations 
which for 

→
=K 0 correspond to a free top, and here the special case corresponds to the torque coming from the 

rotor. It is suitable to work with the total angular momentum 
→

≡
→
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As can be checked, the evolution equations conserve the kinetic energy of the rigid body and the magnitude 
of the total angular momentum, i.e., =E 0body  and =J 02 , where
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Thus, the trajectories in the angular momentum space are intersections of the energy ellipsoid Ebody = const and 
the total angular momentum sphere J = const, their centers being displaced by 

→
K . This geometric interpretation 

is especially helpful for finding stationary angular momenta and determining their stability.

Quantum model.  Assume two bosonic modes described by annihilation operators â and b̂ with total number 
of particles N. These operators commute as = =ˆ ˆ ˆ ˆ† †

a a b b[ , ] [ , ] 1 and the remaining commutators vanish. One can 
introduce operator 

→̂
J  with components defined as = +ˆ ˆ ˆ ˆ ˆ† †
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, 
with = +ˆ ˆ ˆ ˆ† †

N a a b b. These operators satisfy the angular momentum commutation relations =ˆ ˆ ˆJ J iJ[ , ]x y z , 
=ˆ ˆ ˆJ J iJ[ , ]y z x, and =ˆ ˆ ˆJ J iJ[ , ]z x y. Assume a general quadratic Hamiltonian in the form χ= ∑ + ∑ Ωˆ ˆ ˆ ˆH J J Jk l kl k l k k k, , 

where the indexes k, l run through x, y, z, and we put ħ = 1. As shown in ref.25, the quantities χkl = χlk can be treated 
as components of a twisting tensor χ. By a suitable rotation of the coordinate system, the twisting tensor can be cast 
into diagonal form such that the Hamiltonian is

∑ χ= + Ω
=

ˆ ˆ ˆH J J( ),
(4)k

k k k k
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where χk are the eigenvalues of the twisting tensor. The Heisenberg evolution equations =ˆ ˆ ˆidA dt A H/ [ , ] then 
yield
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Correspondence of the models.  Equations (2) and (5) have the same structure, except for (2) being clas-
sical equations whereas (5) are operator equations with symmetrized products of operators. Thus, both models 
yield analogous predictions. The two sets of equations correspond to each other provided we make the change
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Figure 1.  Examples of rigid bodies with a rotor. (a) Symmetric top, coaxial rotor; (b) symmetric top, 
perpendicular rotor; (c) asymmetric top, rotor with axis along one of the principal axes; (d) asymmetric top, 
general orientation of the rotor.
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Note that the dimension of the quantities is set by our choice ħ = 1; to have the usual dimensionality, the rela-
tion between χk and Ik would be changed to χ ↔ − I/(2 )k k .

Since in Eq. (5) only the differences between the twisting tensor eigenvalues occur, the dynamics are not 
changed if a constant is added to all eigenvalues of χ, i.e., χk → χk + χ0. This transformation just shifts the 
Hamiltonian by a constant χ Ĵ0

2
. The same holds in the classical dynamics if the moments of inertia and the angu-

lar momentum of the rotor are modified as

→ + →
+I I I

K K1 1 1 ,
1 (7)k k

k
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with I0 independent of k. As a consequence, for any quantum system described by twisting tensor χ and frequency 
vector Ω

→
, one can find a classical rigid body characterized by tensor of inertia I supplemented with a rotor with 

angular momentum 
→
K  such that the combined system has the same dynamics.

Lipkin-Meshkov-Glick model.  In 1965 Lipkin, Meshkov and Glick formulated a toy model of multiparticle 
interaction that can be, under certain conditions, solved exactly, and thus serve as a basis for testing various 
approximation methods13. Although the original motivation was in modeling energy spectra of atomic nuclei, the 
scheme turned out to be useful for studying interesting phenomena in more general systems. The LMG 
Hamiltonian has the form ε= + − + +ˆ ˆ ˆ ˆ ˆ ˆH J V J J W J J( ) ( )3 1

2
2
2

1
2

2
2

, where ε, V and W are real parameters. The 
quadratic part of the Hamiltonian corresponds to the diagonal twisting tensor χ with χ1 = W + V, χ2 = W − V 
and χ3 = 0. Since any multiple of a unit tensor can be added to χ without changing the dynamics, any diagonal χ 
can be expressed in a form corresponding to the quadratic part of the LMG Hamiltonian. In particular, for a 
diagonal χ with terms χ1,χ2,χ3, by subtracting χ3 from all the diagonal terms, one gets the LMG parameters 
W = (χ1 + χ2)/2 − χ3 and V = (χ1 − χ2)/2. Since for general quadratic Hamiltonians the labeling of principal axes 
1, 2, 3 is arbitrary, any quadratic Hamiltonian with the linear part parallel to one of the principal axes is equivalent 
to the LMG Hamiltonian. Thus, in the classical analogy, the LMG model corresponds to a freely rotating rigid 
body supplemented with a rotor with its rotational axis fixed along one of the principal axes of the body as in 
Fig. 1(a–c). The special case of V = 0 corresponds to a symmetrical top with a coaxial rotor as in Fig. 1(a), whereas 
for V = W the LMG model corresponds to a symmetric top with a perpendicular rotor as in Fig. 1(b).

Free symmetric top, Feynman’s plate, and spin squeezing by one-axis twisting
As the simplest model, consider a symmetric top with I1 = I2 ≠ I3 with no rotor, i.e., Kk = 0. Equation (1) then 
simplify to
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Solutions of Eq. (8) describe regular precession of the top as ω = Ω
∼A tcos1 , ω = Ω

∼A tsin2 , where the amplitude 
is ω ω= +A 1

2
2
2. Thus, in the frame fixed with the body, the axis of rotation circles with frequency Ω∼ around the 

symmetry axis of the top. For ωA 3, i.e., for small angles between the rotation axis and the symmetry axis, an 
external observer sees the top wobbling with frequency ω + Ω

∼
3 . Two extreme cases of the mass distribution in the 

top correspond to a flat, plate-like top with I3 → 2I1, and a rod-like top with I3 → 0. The plate-like top has ωΩ →
∼

3 
so that the wobbling frequency is ≈2ω3, and the rod-like top has ωΩ → −

∼
3 so that the wobbling frequency tends 

to zero (one can see that when throwing up a spinning pencil).
Feynman in his book “Surely, You Are Joking, Mr. Feynman!”7 tells a story: “ I was in the [Cornell] cafeteria 

and some guy, fooling around, throws a plate in the air. As the plate went up in the air I saw it wobble, and I noticed 
the red medallion of Cornell on the plate going around. It was pretty obvious to me that the medallion went around 
faster than the wobbling. I had nothing to do, so I start to figure out the motion of the rotating plate. I discover that 
when the angle is very slight, the medallion rotates twice as fast as the wobble rate–two to one. It came out of a com-
plicated equation!” Feynman was surely joking when telling this story to R. Leighton who collected Feynman’s 
memories, because the situation is just opposite: the wobbling is twice as fast as the rotation. This follows from the 
above arguments, and was clearly explained in notes8,9 published after Feynman’s book.

In quantum domain, Hamiltonian (4) reduces to

χ=ˆ ˆH J (10)OAT 3
2

with χ ↔ −I I1/(2 ) 1/(2 )1 3 . This Hamiltonian corresponds to the one-axis twisting (OAT) scenario of spin 
squeezing first proposed theoretically by Kitagawa and Ueda2: the Bloch sphere is twisted around axis J3. For states 
near the equator of the Bloch sphere with J3 ≈ 0, Hamiltonian (10) squeezes the uncertainty area such that noise 
in some quantum variable decreases and increases in another.

A careful observer could see the OAT squeezing in the classical motion, as well. When the top is spun around 
an axis lying in the symmetry plane, ω3 = 0, then Ω =

∼ 0 and the rotational axis keeps its orientation. If the rota-
tional axis is oriented slightly off the symmetry plane, it slowly precesses with a speed proportional to its deviation 
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of the plane. If the initial orientations are randomly scattered around an axis in the plane of the top, after some 
time, the directions of the rotation become squeezed from one side and stretched perpendicularly.

Free asymmetric top, tennis-racket instability, and two-axis countertwisting
Assume a rigid body with the principal moments of inertia I1 < I3 < I2. The classical motion is described by Eqs (1) 
and (2) with Kk = 0. As is well known, rotations around the two extreme principal axes 1 and 2 are stable, whereas 
rotation around the intermediate principal axis 3 is unstable. The dynamics was studied in detail in10–12. One can 
observe this behavior when throwing up a spinning tennis racket: the rotations are stable if the axis of rotation 
is along the handle (smallest moment of inertia) or perpendicular to the plane of the head of the racket (biggest 
moment of inertia), and unstable if the axis of rotation is in the plane of the head of the racket, perpendicular to 
the handle (intermediate moment of inertia). If the initial angular velocity direction is slightly off the stable axis, 
the rotation axis precesses around it, but if it is slightly off the unstable axis, it diverges away. Typically on Earth, 
one cannot observe the free spinning body for a long period. However, the effect is spectacular in zero gravity 
conditions, provided that the initial angular velocity direction is very close to the unstable axis. As the result, one 
can see the “Dzhanibekov effect” named after Russian cosmonaut Vladimir Dzhanibekov who observed it while 
in space in 198512.

In quantum domain the corresponding Hamiltonian can be cast into the form

ˆ ˆ ˆχ χ= −+ −H J J (11)2
2

1
2

with χ+ = 1/(2I3 )− 1/(2I2) and χ− = 1/(2I1) − 1/(2I3). In the special case of I3 = 2I1I2/(I1 + I2) the Hamiltonian of 
(11) takes the form

χ= −ˆ ˆ ˆH J J( ) (12)TACT 2
2

1
2

with χ = (I2 − I1)/(4I1I2). Hamiltonian (12) corresponds to the two-axis countertwisting (TACT) scenario of spin 
squeezing2: the Bloch sphere is twisted in one sense around J1 and in the opposite sense around J2. Spin states ini-
tially polarized along J3 become squeezed as the uncertainty circle is stretched in one direction and compressed 
in the other.

Symmetric top with a coaxial rotor, spin twisting with coaxial rotation
Adding a rotor to the top or a linear term to the Hamiltonian makes the dynamics richer. Consider Hamiltonian 
in the form

χ= + Ωˆ ˆ ˆH J J (13)3
2

3

which corresponds to the LMG with V = 0, ε = Ω and W = −χ. Since the Hamiltonian is a function of Ĵ3, its eigen-
functions are Dicke states with sharp values of J3. The dynamics are split into two possible phases: dominant 
rotation with 2J|χ| < |Ω|, and dominant nonlinearity with 2J|χ| > |Ω|. In the case of dominant rotation the eigen-
states corresponding to the extreme eigenvalues of Ĥ coincide with the eigenstates corresponding to the extreme 
eigenvalues of Ĵ3. In case of dominant nonlinearity either the ground or the highest excited state of Ĥ is one of the 
intermediate Dicke states.

In classical dynamics the situation corresponds to a symmetric top, I1 = I2 ≠ I3, with a coaxial rotor, 
K1 = K2 = 0 ≠ K3 ≡ K, as in Fig. 1(a). The equations of motion and their solution have the same form as those of a 
free symmetric top, Eq. (8), but the precession frequency is changed to
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Similarly to the quantum case, the dynamics are split into two regimes with dominant rotation 
|K|/J > |1 − I3/I1|, and dominant nonlinearity |K|/J < |1 − I3/I1|. As an example, consider a plate with I1 = I2 = I3/2. 
In this case Eq. (14) yields ωΩ = +

∼ K I2 /3 3. Choosing ω= −K I1
2 3 3 leads to Ω =

∼ 0 so that the wobble frequency 
is equal to the rotation frequency, ω ω+ Ω =

∼
3 3. As another example choose ω= −K I3

4 3 3. This leads to 
ωΩ = −

∼ /23  so that the wobble frequency of a plate is half the rotation frequency, ω ω+ Ω =
∼ /23 3 . Thus, with a 

little cheating of adding a properly spinning rotor, one can force a plate to behave exactly as described in 
Feynman’s cafeteria story7.

Symmetric top with a perpendicular axis rotor, twist-and-turn Hamiltonian
Let the Hamiltonian have the form

χ= + Ω .ˆ ˆ ˆH J J (15)1
2

3

The corresponding evolution is twisting around axis J1 and simultaneous rotation about the perpendicular 
axis J3 (also called “twist-and-turn” dynamics19). As in the preceding case there are two distinct regimes: that 
with dominant rotation |Ω| > 2J|χ| called “Rabi regime”, and that with dominant twisting |Ω| < 2J|χ| called 
“Josephson regime” (see Fig. 2). In the Rabi regime, the Hamiltonian is nondegenerate, with a single maximum 
and a single minimum on the Bloch sphere. For 2Jχ = ±Ω a quantum phase transition occurs with the energy 
maximum or minimum being split into two, so that in the Josephson regime a saddle point on the Bloch sphere 
occurs. Physically the dynamices corresponds, e.g., to coherent atomic tunneling between two zero-temperature 
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Bose-Einstein condensates confined in a double-well trap17, or to evolution of a two-component condensate18. In 
the Josephson regime, the condensate can be “self-trapped” in one of the wells17.

In classical dynamics the model corresponds to a symmetrical top with a perpendicular rotor such as in 
Fig. 1(b). The “Rabi oscillations” occur in the case with dominant rotor angular momentum, |K3|/J > |1 − I3/I1|: 
the rotational axis of the top circles around the axis of the rotor. If the axis of the body rotation is along the 
rotor axis, its direction is fixed and stable for both co-rotational and counter-rotational orientations. In the 
“self trapping” or “Josephson” regime, the angular momentum of the top is dominant, |K3|/J < |1 − I3/I1|. In 
this case, the counter-rotation becomes unstable: the direction opposite to the rotation of the rotor becomes 
located on a separatrix dividing the 4π sphere of rotational axis orientations into three regions (see Fig. 2(a–c) 
for visualization). In one region the rotational axis circles around the direction of the rotor, in the two other 
regions the rotational axis circles around a direction pointing between the rotor axis and the symmetry axis 
of the top.

Excited quantum phase transitions in generalized LMG
Features of the LMG Hamiltonian have been widely explored, especially with focus on quantum phase transi-
tions and related critical phenomena26–32. The concept of quantum phase transition typically refers to closing 
the gap between the ground and the first excited state by varying a system parameter. Recently the concept 
has been generalized to excited state quantum phase transitions (ESQPT)15,16, where the variation of param-
eters leads to sudden emergence of singularities in the energy spectrum. These effects can be related to the 
Hamiltonian map on the Bloch sphere (see Figs 2 and 3): a discontinuity in the energy spectrum corresponds 
to a local minimum or maximum of energy on the sphere, and a peak in the energy spectrum corresponds to a 
saddle point of energy.

Stationary angular momenta and their stability.  Even though the possibility to generalize LMG to 
arbitrary directions of the linear term was briefly mentioned in33, we are not aware of any systematic study of 
such a model. Here we classify phases in the generalized LMG given by Hamiltonian (4) by identifying the sta-
tionary angular momenta and finding their stability in the limit N → ∞ (so called thermodynamic limit). In 
the angular momentum space, stationary values correspond to the points where the constant energy ellipsoid 

Figure 2.  Angular momentum trajectories for a symmetric top with a perpendicular axis rotor, or a twist-and-
turn Hamiltonian (15). The parameters are Ω/(χJ) = 0.2 (a), 1 (b), 1.7 (c), and 2 (d). Panels (a–c) correspond 
to the Josephson regime with the blue area representing “self-trapped” states. Panel (d) corresponds to the 
boundary between the Josephson and Rabi regimes where one unstable and two stable stationary points merge, 
leaving behind one stable stationary point for Ω/(χJ) > 2.

Figure 3.  Angular momentum trajectories for an asymmetric top with a rotor along the middle axis. The 
twisting parameters of the corresponding quantum Hamiltonian are χ3 = 0, and χ1 = −10χ2. (a) Ω3 = 0 (i.e., no 
rotor), (b) |Ω3| = 1.7J|χ2|, (c) |Ω3| = 2J|χ2| (critical value for disappearing the saddle point along +J3), and (d) 
|Ω3| = 2J|χ1| (critical value for disappearing the saddle point along −J3).
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touches the constant total-angular-momentum sphere. This occurs where the gradient of energy and the gradi-
ent of the squared total momentum of Eq. (3) are colinear, grad Ebody = λ grad J2 for some λ. Eliminating λ and 
expressing in the vector equation the components J1,2 by means of J3 as J1 = I3K1J3/[(I3 − I1)J3 + I1K3], J2 = I3K2J3/
[(I3 − I2)J3 + I2K3], which, when used in Eq. (3), leads to the polynomial equation for J3,

∑ =
=

a J 0,
(16)n

n
n

0

6

3

where the coefficients an are functions of I1,2,3 and K1,2,3 (or, equivalently, χ1,2,3 and Ω1,2,3) and J, and are 
expressed in the Supplementary material. Equation (16) has up to 6 real roots which, together with the above 
mentioned relations between components of 

→
J , specify the stationary values of angular momenta. The sta-

bility of a given stationary point can be found from the relation between the radii curvatures of the energy 
ellipsoid and the angular momentum sphere at the contact point (see the Supplementary material for 
details).

Special case: phase transitions in the original LMG.  Consider first the special situation with 
Ω1 = Ω2 = 0 (or equivalently K1 = K2 = 0). This allow us to find the ESQPT of the LMG model studied else-
where26–32 by the new method. To simplify the analysis, assume that χ1,2,3 > 0 (one can always achieve this by a 
suitable additive constant), and suppose that χ1,2 ≠ χ3. In this case Eq. (16) can be factorized as
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One can see that the stationary angular momenta are always those with J3 = ±J (and thus J1,2 = 0), and depend-
ing on the magnitude of Ω3 (or K3), also the vectors with J3 = Ω3/[2(χ1,2 − χ3)]; the existence of the latter cases 
depends on whether the resulting J3 fulfills the condition |J3| < J. Thus, the stationary angular momenta are
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Stationary vectors →Ji ii,  occur always, whereas →Jiii iv,  occur when |Ω3| < 2|χ1 − χ3|J, and →Jv vi,  occur when 
|Ω3| < 2|χ2 − χ3|J.

Energies of the stationary points are obtained from the Hamiltonian, Eq. (4), by substituting values of 
→

−Ji vi for 
operators 

→̂
J . The results correspond to the singular points of the energy spectrum in the limit N → ∞. We get

χ= ± ΩE J J, (19)i ii, 3
2

3

χ
χ χ

χ χ= +
Ω
−

|Ω |
< | − |E J

J4( )
, 2 ,

(20)
iii iv, 1

2 3
2

1 3

3
1 3

χ
χ χ

χ χ= +
Ω
−

|Ω |
< | − |.E J

J4( )
, 2

(21)
v vi, 2

2 3
2

2 3

3
2 3

The stability is determined by means of the geomteric considerations in the preceding subsection. The results 
are shown in Fig. 4(a–c). In Fig. 4(d–f) we show spectra of the corresponding quantum Hamiltonians for com-
parison: one can see a match between the classical stationary points and the singularities of the quantum spectra 
(the match is not perfect since a relatively small number N was used to make the lines of energy eigenvalues 
visible).

As a specific example, consider stabilization of rotation of a tennis racket around the middle principal axis 
by a rotor as in Fig. 1(c). The situation corresponds to Fig. 4(c), and the transition is visualized using the Bloch 
sphere in Fig. 3. With no rotor (Fig. 3(a)), the sphere consists of two pairs of “self-trapped” regions where motion 
of the angular momenta encircle the stable directions ±J1 and ±J2. These regions are separated by a line called 
separatrix, going through the unstable stationary angular momenta ±J3. Adding the rotor with some small angu-
lar momentum K3, the separatrix splits into two (Fig. 3(b)). A new region between the separatrices emerges as 
a stripe of trajectories encircling the sphere. With increasing |K3|, the stripe becomes wider and the stable fixed 
points move towards the unstable points. With a critical value of |K3|, one pair of stable points merge with one 
unstable point, resulting in a stable point (Fig. 3(c)). This is a new phase in which the racket co-rotating with the 
rotor around the intermediate principal axis becomes stable, although counter-rotation is still unstable. With 
further increasing |K3|, the remaining pair of stable points approach the unstable point till they merge (Fig. 3(d)). 
For |K3| above this second critical value the system is in phase that has only two stationary angular momenta, 
both stable.
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Figure 4.  Panels (a–c): Energies of the stationary angular momenta of the original LMG. Full line corresponds 
to stable, dashed line to unstable values of 

→
−Ji vi. Roman numbers I–IV refer to zones specified in ref.32. The 

twisting tensor eigenvalues are (in arbitrary units): (a) χ1 = 4, χ2 = 3, χ3 = 2, (b) χ1 = 0.25, χ2 = 1, χ3 = 2, (c) 
χ1 = 1, χ2 = 4, χ3 = 2. Panels (d–f): Eigenvalues of the Hamiltonian (4) with Ω1,2 = 0 and the values of χ1,2,3 equal 
to those of panels (a–c). The number of particles is N = 40.

Figure 5.  As in Fig. 4, panels (a–c) show energies of the stationary angular momenta and panels (d–f) 
eigenvalues of the corresponding quantum Hamiltonian (4); in this case, however, Ω

→
 is not along one of 

the principal directions of χ. The twisting tensor eigenvalues are (in arbitrary units) χ1 = 4, χ2 = 3, χ3 = 2, 
the ratio of components of vector Ω

→
 are Ω1: Ω2: Ω3 as follows, (a,d) 2:1:1, (b,e) 1:2:0, (c,f) 2:0:1.
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Phase transitions for general quadratic Hamiltonians.  For general values of Ω
→

 one can factorize Eq. 
(16) numerically, the results being in Fig. 5(a–c). Panels (d–f) of Fig. 5 show eigenvalues of the corresponding 
quantum Hamiltonian. The general features are as follows. Starting at Ω

→
=

→0 , the system has three pairs of 
degenerate stationary angular momenta with energies χ1,2,3J2. Ramping up | Ω

→
|, the degeneracy is lifted for those 

stationary angular momenta in whose direction Ω
→

 has a nonzero component. In Fig. 5(a,d) this is the case for all 
three components. In Fig. 5(b,c,e,f) one component of Ω

→
 vanishes and the degeneracy of the corresponding 

energy remains (note that in the original LMG model in Fig. 4 two components vanish so that only one degener-
acy is lifted).

One can see that for a general direction, two critical values of Ω occur: at each of them, one of the local 
extrema of energy merges with one of the saddle points and these two stationary points disappear. Thus, it is 
natural to distinguish three generic phases of the generalized LMG system, according to the number of saddle 
points of energy on the angular momentum sphere: those with zero, one, and two saddle points. In case of various 
symmetries, more detailed classification may be relevant. In particular, considering the original LMG model in32, 
two zones were identified within the phase with two saddle points: zone III in which the saddles have different 
energies, and zone IV with energy degenerate saddles and lifted degeneracy of either energy minima or maxima.

Other special cases can be found in the generalized LMG model if Ω
→

 is confined to a plane perpendicular to 
one of the principal directions of tensor χ. In particular, in the phase with a single saddle point, one of the energy 
extrema may become degenerate—this is the case of Fig. 5(b,e) (note that in the original LMG, both energy 
extrema are degenerate in zone II in which a single saddle occurs). In the phase with two saddle points, one of the 
energy extrema may become degenerate (Fig. 5(b,e)), or the saddle points can be degenerate (Fig. 5(c,f)). These 
cases can be considered as new sub-phases in the generalized LMG model.

Floquet time crystals
The concept of time crystals was introduced by F. Wilczek34, referring to processes in which spontaneous break-
ing of time symmetry occurs, in analogy to broken spatial symmetry in usual crystals. Interesting phenomena 
were predicted for systems with periodic driving as so called “Floquet time crystals” (FTCs)35, whose experi-
mental observations have recently been reported36,37. In the FTCs, the external driving has period τ and thus the 
Hamiltonian has a discrete time symmetry. Yet, under certain conditions the system behavior breaks this time 
symmetry and periodic phenomena occur in times corresponding to a multiple of τ, i.e., nτ. Disorder-induced 
many-body-localization has been considered to be an important feature of FTCs35. Nevertheless, several mod-
els of “clean” FTCs in systems without disorder have been recently proposed, among them a FTC in the LMG 
model24. Here the system is initialized in one of the degenerate energy extremal states. Then, a kick rotates the 
system around the axis of the LMG linear term by π. As a result, the system swaps to the other degenerate state. 
If the kicks occur with period τ and the system is initially close to one of the local energy extrema, oscillations of 
some physical quantities may occur with period 2τ. In thermodynamic limit (N → ∞), the scheme24 is described 
by a set of classical dynamical equations that in some parameter intervals yield chaotic motion whereas in others 
regular motion 2τ prevails, demonstrating robustness of the phenomenon.

Our model offers a classical realization of the LMG FTC24: assume a plate-like symmetric top with I2 = I3 ≡ I0, 
and I1 = 2I0, with a perpendicular rotor with angular momentum K1,2 = 0, K3 ≠ 0 as in Fig. 6(a). Two stable sta-
tionary angular momenta occur at 

→
±J  with = ± −J J K41

2
3
2, J2 = 0, and J3 = 2K3 for any J > 2|K3|. Assume that 

the system is prepared near one of these stationary points, say →+J  with = + −J J K41
2

3
2. To swap the stationary 

states, the body is reshaped, changing its moments of inertia to I1 = I2 so as to rotate around J3; the reshaping 
happens much faster than the precession. Consider first reshaping to spherical symmetry with I1 = I2 = I3, then 
according to Eq. (14) the rotational axis precesses with angular velocity Ω =

∼ K I/3 3 and after time τswap = πI3/K3 the 

Figure 6.  Reshaping a body in the mechanical analogue of the LMG Floquet time crystal. The body starts as a 
symmetric top with a perpendicular rotor, having two degenerate stable rotational states with angular momenta 
→

±J . (a) The body is then reshaped (b) to take a form of a symmetric top with a coaxial rotor (c) so that the 
original angular momenta 

→
±J  precess around the body axis. After swapping 

→
±J , the body is reshaped (d) back to 

the original form (a).
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angular momentum swaps to = − −J J K41
2

3
2. Then, the body reshapes back and continues motion with the 

rotational axis near the new stationary direction 
→

−J . Assume the body is left to evolve, changing periodically its 
shape from a symmetric top with perpendicular rotor for time τ0 to a symmetric top with a coaxial rotor for time 
τswap. The driving period is τ = τ0 + τswap, however, the system returns to the initial stationary angular momentum 
with period 2τ, as in a FTC. This behavior is rather stable with respect to variation of system parameters.

To study instabilities induced by nonlinear dynamics as in24, we consider also reshaping to forms deviating 
from spherical symmetry, e.g., to I1 = I2 = I0 and I3 = 2I0, see Fig. 6(b–d). The rotational axis then precesses with 
state-dependent angular velocity Ω = +

∼ K J I( )/23 3 0 and the perfect swap after τswap = 2πI0/(3K3) is only achieved 
for states with J3 = 2K3. As checked numerically, there are intervals of initial values of J1,2,3 and of times τ0 and 
τswap, for which regular motion corresponding to a FTC is observed (see Fig. 7), whereas for other values chaotic 
behavior occurs.

We can see that LMG model in thermodynamic limit corresponds to a low-degree-of-freedom classical sys-
tem. This suggests that the transitions between FTC and chaotic behavior in LMG are of similar nature as tran-
sitions between regular and chaotic motion in, e.g., driven undamped pendulum, rather than stemming from 
many-body dynamics.

Conclusion
Analogies between the rigid bod dynamics and quantum evolution of collective spins allow us to have simple 
physical pictures of quantum phenomena such as spin squeezing by OAT or by TACT scenarios, or quantum 
phase transitions in the LMG model. Although thermodynamic limit of the LMG has been widely studied, there 
has been no classical interpretation proposed so far. Here, by allowing for arbitrary orientation of the rotor axis in 
the classical domain one can study a generalized LMG model in the quantum domain, predicting new scenarios 
of quantum phase transitions. These could be observed once a full TACT scheme is implemented (e.g., using the 
recent proposals38–40) with additional suitable linear terms. Vice versa, the LMG Floquet time crystal proposed in 
the quantum domain24 finds its classical counterpart in a periodically reshaped Euler top.

Feynman concludes his wobbling-plate story with enthusiasm7: “I went on to work out equations of wobbles. 
Then I thought about how electron orbits start to move in relativity. Then there’s the Dirac Equation in electrody-
namics. And then quantum electrodynamics. […] It was effortless. It was easy to play with these things. It was like 
uncorking a bottle: Everything flowed out effortlessly. I almost tried to resist it! There was no importance to what I 
was doing, but ultimately there was. The diagrams and the whole business that I got the Nobel Prize for came from 
that piddling around with the wobbling plate.” We believe that enthusiasm for physics of wobbling plates is worth 
sharing and encourage the reader to look for more analogies in the quantum world.
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