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Phenomics and chlorophyll fluorescence can help us to understand the various stresses a plant may undergo. In this research
work, we observe the image-based morphological changes in the wheat canopy. These changes are monitored by capturing the
maximum area of wheat canopy image that has maximum photosynthetic activity (chlorophyll fluorescence signals). The
proposed algorithm presented here has three stages: (i) first, derivation of dynamic threshold value by curve fitting of data to
eliminate the pixels of low-intensity value, (ii) second, extraction and segmentation of thresholded region by application of
histogram-based K-means algorithm iteratively (this scheme of the algorithm is referred to as the curve fit K-means (CfitK-
means) algorithm); and (iii) third, computation of 23 grey level cooccurrence matrix (GLCM) texture features (traits) from the
wheat images has been done. These features help to do statistical analysis and infer agronomical insights. The analysis consists
of correlation, factor, and agglomerative clustering to identify water stress indicators. A public repository of wheat canopy
images was used that had normal and water stress response chlorophyll fluorescence images. The analysis of the feature dataset
shows that all 23 features are proved fruitful in studying the changes in the shape and structure of wheat canopy due to water
stress. The best segmentation algorithm was confirmed by doing exhaustive comparisons of seven segmentation algorithms.
The comparisons showed that the best algorithm is CfitK-means as it has a maximum IoU score value of 95.75.

1. Introduction

Wheat is one of the essential staple food grains of the human
race. As per Indian statistics, 80 percent of water is
consumed by just three major crops—rice, wheat, and sugar-
cane. However, due to an exponential increase in the human
population, its consumption has been increased to 10-fold
[1]. At the same time, climatic changes are creating unex-
pected changes in the pattern of rains, leading to various
kinds of abiotic stresses, predominantly in wheat crops.
Due to these two main reasons, technological advancements
are required to cope with such situations. The marker-
assisted selection (MAS) method [2] has brought much
confidence in current researchers to overcome the challenges
of pest attacks and other stresses such as drought [3]. This
technique primarily involves finding linkages between

underline genes by identifying traits or modifying traits
[4]. Most of these techniques are based on protein-based
markers and require sophisticated spectrometry equipment
[5]. However, certain traits can be understood with the help
of three phenomena: reflectance, absorption, and emittance,
that occur naturally in all plants [6]. The current record on
the advancements in agriculture instrumentation shows that
all these phenomena can be captured with the help of imag-
ing sensors [7]. It has been found that the best way to quan-
tify water stress in plants is by measuring the reemittance of
light from the plant surface. Empirical observations show
that when the plant changes its photochemistry, it emits a
chlorophyll fluorescence signal which falls under the range
of 680 nm to 800nm as a by-product of photosynthesis [8].
These fluorescence wave signals are recorded with the help
of imaging devices, where reemitted light can be realised as
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a digital image, and mathematical analysis 4can be done for
quantification of photosynthetic activity and water stress in a
nondestructive manner [9, 10].

Many researchers are utilizing high-resolution imagery
[11] for doing germplasm evaluation [12], and various
corroborating yields and trials have been done under differ-
ent environments. The primary application includes observ-
ing physical damages. Satellite imagery is also helpful in
predicting disease outbreaks in plants. A similar work can
be done with UAVs and aerial vehicles such as parachutes,
fixed-wing systems [13], rotocopters [14], and blimps [15].
The phenotyping of plants is also done with the help of
ground-based vehicles fitted with an array of sensors for
imaging crops at various stages of the lifecycle of crops [6].
It is a well-established fact that photosynthesis directly
relates to the presence of water content in the plant material
[16, 17]. In the next section, the various methods that help
understand the interaction among the variables involved in
photosynthesis activity, considering both normal and water
scarcity conditions, have been discussed.

2. Review

Many plants undergo significant changes in the structure
and development of their organs due to changes in environ-
mental conditions [18]. The changes in the plant physiology
in response to some stress or light conditions can be tracked
using image processing methods [19, 20]. The images can
capture chlorophyll concentration levels by capturing chlo-
rophyll fluorescence signals. Hence, this current section
discusses the various methods and procedures used for con-
structing Agronomical Insight Model (AIM) to deeply
understand biological systems. These models in context to
crop breeding domains help to investigate the behaviour of
different plant response variables using various algorithms,
which in turn attempt to identify the reasons due to which
a particular event or a process occurred in a plant [21]. It
involves two kinds of variables, the first category of variables
are those variables due to which a particular phenomenon
may occur, such variables are categorized as “cause
variables,” and the second category of variables are those
variables that are impacted due to these cause variables cate-
gorised as “effect variables.” Mathematically, “effect vari-
ables” is a kind of composite variable from which
inferences can be drawn about the leading cause of a partic-
ular phenomenon, e.g., the plant’s response under water
scarcity. For deeper analysis and automation, many of the
researchers are using either statistical analysis or machine
learning as a way of finding data patterns and relationships
among the variables [22].

Training manuals and books [23] in the context of
modelling the behaviour of variables show that there are
primarily four steps in designing the Agronomical Insight
Model (AIM); in the first step, variables involved in phe-
nomena are identified. In the second step, the ranking of
the factors is done so that relevant and statistically signifi-
cant variables can be sorted out. The third step is the classi-
fication or grouping of the factors involved in the
phenomena. The last step is to find appropriate algorithms

or equations for mapping various variables. This helps to
find the impact of which variables a particular behaviour
of variables changes in a system. In addition to these steps,
many researchers are taking the help of domain experts or
using a simulated model to understand the various interplays
of the components of a system under observation. Many stat-
isticians [24] further suggest that to identify correct contribut-
ing factors such as latent/hidden/internal variables and into a
category known as “explicit variables” (a variable whose
behaviour is already observable and is measurable).

In the second step for building an AIM model, many
authors use different sorting algorithms to rank or find the
importance of these variables. The current literature shows
the most common methods used for this are importance
ranking [25], Boruta analysis, factor analysis [26], principal
component analysis [27], independent component analysis,
correlation methods [28], and maximum likelihood method.
All these methods do either an exploratory analysis of the
variables or confirmatory factor analysis to find the behav-
iour and degree of association between the multiple vari-
ables, which in turn helps to establish grouping of the
measured variables [29]. One of the popular methods used
as an alternative to factor analysis is SEM (structural equa-
tion modelling) approach that helps to understand the plant
response variables. Using these methods, the researchers
build a consensus on how to group the cause-and-effect
variables as per the plant’s responses to the stimuli.

Oinam and Mehta [30] have done correlation, path, and
regression analysis of the genomes variables of wheat bread
variety. This study tries to understand the behaviour of
genome traits under drought and normal irrigation condi-
tions. Fouad have constructed ten regression models for
finding out which trait can explain the behaviour of other
traits under drought and normal conditions. Correlation
analysis is conducted on various agronomical features uti-
lized in the study, and it was found that grain weight directly
affects the grain yield under irrigation and drought condi-
tions [31]. A research work has claimed that a model con-
sisting of three variables, which include “no. of grains per
spike, no. of spike per plant, and hundred-gram weight”
which are best predictors of yield; this model was identified
by using stepwise regression. This argument has been
further reinforced by the R2 value (0.93). In [32], Li et al.
have worked on morphological and phenological trait classi-
fication of the wheat plant by using the concept of transfer
learning to build the classifiers. The pretrained model used
for this study is known as “ImageNet.” They trained the net-
work as “Wheat Net.” The proposed system achieved a high
level of accuracy (98%) for classifying the trait change that
occurs moving from different stages (vegetative to flowering).
A superpixel algorithm has been used for segmentation and
developed the dataset of Tamura and GLCM features. These
features were subjected to a support vector machine algo-
rithm to resolve the three-class classification problem. They
claimed an accuracy of 98.97% with the SVM classifier [33].

Boussakouran et al. worked on six different wheat varie-
ties released between 1984 and 2007 [34]. All these varieties
were grown under two kinds of water regimes: irrigated and
rain-fed. Multiple morphological traits have been used for
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mapping the behaviour under these two irrigation condi-
tions. The correlation analysis between morphological attri-
butes such as green leaf area, spike area, spike length, flag
leaf length, and flag leaf area has been performed. Later on,
a stepwise regression analysis was applied to develop a stress
susceptibility index. It was also found that the green leaf area
was positively correlated to flag leaf length in the rain-fed
area. However, there was a negative relationship between
the grain filling period and days from sowing. Peymaninia
et al. [35] have done a correlation analysis of morphological
features of 12 bread wheat varieties genotypes. The main
variables studied under this research work include biological
yield, spike length, spike weight, number of grains per spike,
fo, fm, fv, and fv/fm (ratio of fluorescence fv (variable fluo-
rescence) to fm (maximum fluorescence)). Peymaninia
et al. [35] found that spike length had the most positive
direct effect on yield under drought conditions.

The paper [36] discusses the physiological and biochem-
ical responses of the plant and underwater stress with the
help of diagrams and illustrations. The most predominant
factors impacted by the induced drought stress are relative
water content (RWC), photosynthetic rate, and uptake of
nutrients, which can be reflected by visually distinct changes
in the plant’s color and texture. From this review, it can be
concluded that most researchers’ primary focus is to build
models that would help them predict or map the yield of a
particular crop. Little work has been reported in context to
understanding the behaviour of variables among themselves
irrespective of yield. Multiple studies track morphological
features, physiological features, features related to gaseous
states, photosynthetic activity rate under water stress, and
controlled conditions. The traits are tracked using different
imaging modalities, i.e., thermal imaging [37] infrared imag-
ing, visible-light imaging, tomography, NIR (near-infrared)
imaging, and chlorophyll fluorescence imaging [38].
Research also gives evidence that the leaf area, grain size,
no. of grains per spike, spike length, etc. are impacted due
to water stress, and at the same time, these variables, when
tracked through image processing techniques, are required
to be mapped with mathematical functions. These mathe-
matical functions compute either statistical values or values
that are computed with an algorithm such as Tamura and
GLCM features [39].

In the summary of the literature review, it can be said
that little work has been found where the plant traits
extracted from images are mathematically modelled. In this
research work, an attempt has been made to understand
the various aspects of wheat canopy changes when there is
a stress stimulus such as water stress.

3. Materials and Methods

This research initiative is aimed at analysing image-based
indicators of wheat plants that have some agronomical rela-
tionship to draw inferences among them. These indicators
are traits in an agronomic sense that indicates the reaction
of the plant under water stress. For this reason, a publicly
available image dataset has been used as it has instances of
water-stressed and controlled wheat plant images [40]. The

dataset contains chlorophyll fluorescence images of Raj
3765 varieties of wheat [41]. There are a set of 24 images
each (control and drought) experiment captured for 60 days.
RGB image dataset having (720 × 2) instances of both con-
trol and drought with the resolution of 72 dpi. After feature
extraction, a feature dataset was created and deposited with
the public repository to maintain the reproducibility of this
work. The dataset and code used for building a statistic
model are publicly available [42, 43]. The images were cap-
tured using an indoor laboratory facility with the help of a
chlorophyll fluorescence-based camera. Most of the images
in this dataset do not require additional transformation
except that the images need to have the same aspect ratio
and the same size (1388 ðwidthÞ × 1038 ðfrequencyÞ).

3.1. Proposed Technique. In the context of this research,
color features, texture, and shape features are important for
understanding the agronomic implications of CF images.
Preliminary color analysis of the images shows that all the
three channels of the image have almost similar intensity
levels at respective timelines of PSII activity. Since the
amount of photosynthesis activity is dependent upon how
we interpret the pixel values, it will not be prudent to track
just color intensities. As color analysis only gives information
concerning the frequency and wavelength of the light passing
through the plant body. Texture analysis through experimen-
tation proved a better indicator of morphological or shape
changes in the wheat canopy as compared to color analysis.

Hence, the texture features will be extracted after the
pre-processing (thresholding and segmentation of the wheat
canopy images). Since the dataset will have texture features
extracted for both control and water-stressed wheat plants,
the relationship among the GLCM variables will represent
both conditions. The GLCM features of each image were
extracted by using a GLCM matrix of 9 ∗ 9 and processed
with the quantization level of 3. The relationships between
the variables are identified using correlation, factor analysis,
and clustering analysis methods [44]. The implementation
process has been shown in (see Figure 1).

The proposed technique works in the following three
phases:

(1) Phase 1: segmentation—new curve fit K-means
segmentation technique has been proposed (see
Figure 2)

(2) Phase 2: feature extraction—GLCM texture features
are extracted from the segmented image

(3) Phase 3: Agronomical Insight Modelling (AIM) was
done using correlation, factor, and cluster analysis
to identify the variables that hang together for water
stress identification

3.1.1. Segmentation of Wheat Canopy. In the context of our
research work, predominantly few images require some con-
trast enhancement, removal of artefacts, RGB to grayscale
transformation, and aspect ratio correction. As per the
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problem undertaken here, the dataset consists of the traits or
features that can indicate a change in the wheat canopy
when water stress influence the growth of the wheat plant
[45]. To extract such traits [46], seven segmentation algo-
rithms were employed. Later on, the output was put under
a rigorous validation process for assuring that the best
clustering-based segmentation algorithm is constructed for
wheat canopy segmentation.

The current literature has copious shreds of evidence in
making most of the segmentation algorithms automatic; it
is necessary to select the threshold “T” automatically. For
this, researchers have employed multiple ways to compute
the intensity threshold for their algorithms. Few authors
have used the histogram shape, where the peaks, valleys,
and intervals of the histogram provide hints for finding the
thresholds to segment the objects embodied in the image
[32]. Other sets of researchers have used clustering-based
methods, in which the grey-level samples are clustered in
two parts as background and foreground (object), or alter-
nately modelled as a mixture of two Gaussians. Then,
entropy-based methods use the entropy of the foreground
and background regions to segment objects; furthermore,

the cross-entropy between the original and binarised image
is computed for reliable segmentation. Object attribute-
based segmentation methods search for a measure of simi-
larity between the grey-level and the binarised image pixels
for realising the segments, fuzzy shape similarity, and edge
cross-intersect [5, 6]. Few researchers have worked on spa-
tial methods. These methods use a higher-order probability
distribution or correlation between pixels to segment the
objects. Local methods adapt the threshold value (T) for
each pixel to the local image characteristics. A different T
is selected for each pixel block in an image in these methods.

Further, data from the segmentation experiments reveal
that the automatic threshold works best when an excellent
background to foreground contrast ratio exists; i.e., image
is captured under good lightening conditions with minimal
noise. In the context of the problem undertaken and from
the initial analysis, it becomes clear that the difference
between the foreground and background is negligible. The
difference further gets reduced to a minimal value when
initially Global Static Thresholding (GST) is applied. By con-
sidering these facts, each image was passed through Global
Static Thresholding (GST), where threshold value was
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Figure 1: Flow chart of study methodology.
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computed using linear curve fitting as shown in Equation
(1), followed by the K-means segmentation algorithm,
feature extraction, and feature analysis. The various steps
used in the proposed technique are as follows:

3.1.2. Step 1: Threshold Calculation. The visual inspection of
the CF (chlorophyll fluorescence) image dataset shows that
there are possibly three types of clusters that can be found
in the CF images. The first one is the background
(pixel intensity == 0), the second is the wheat canopy, and
the third one is the pot in which the wheat plant is grown.
Hence, to extract only that part of the image that represents
“photosynthetic activity,” there is a need to remove the pot
in which the wheat plant is grown. The histogram analysis
of the images as per the timeline shows that initially the
pixels have low intensity, and by the end of the timeline,
pixel intensity increases and in between in some cases, the
pot is visible as in the images. The appearance of the pot is
more in the case of the water-stressed images. Using the
hit and trial method, it was found that elimination of
unwanted pixels can be done using a dynamic range (11 to
17). In this way, reconstruction of the image represents a
photosynthetic activity that can be done without those
pixels. When pixels below 17 are removed, they also helped
in removing the pot in which the wheat plant had been
grown by allowing us to focus on the canopy itself for effi-
cient analysis. To automate the process, an unsupervised
clustering algorithm was found to be the best, provided the
algorithm knows how to eliminate and cluster the image into
foreground and background. Hence, the algorithm has two
phases. In the first phase, removal of unwanted pixels is
done using a segmentation algorithm that computes the
pixel elimination threshold using the three-degree curve fit-
ting method as shown in (see Figure 2), a mathematical
function is constructed using

Threshold xð Þ = p1x
3 + p2x

2 + p3x + p4, ð1Þ

where p1 = 2:273e − 08 ð2:142e − 08, 2:403e − 08Þ, p2 = −
4:118e − 05 ð−4:353e − 05,−3:882e − 05Þ, p3 = 0:01699 ð
0:01579, 0:0182 Þ, and p4 = 11:95 ð11:79, 12:12Þ are coeffi-
cients, with 95% of confidence bounds and x is an indepen-
dent variable (threshold values found using the hit and trial
method). The mathematical expression has been derived
using the dataset consisting of 1188 records of thresholds
values found using the hit and trial method. The selection
of the mathematical equation has been done when SSE
(sum of square error = 622:1, the R2 value was 0.956, the
adjusted R2 was 0.9554, and the RMSE value was 0.7249).

In the second phase, maximization of the photosyn-
thetic area is done. After thresholding K-means cluster-
ing algorithm with K = 2 (i.e., background and wheat
canopy clusters) has been applied iteratively for cluster-
ing. For the clustering process, at the same time, compute
the initial means/centroids by using values from the histo-
gram analysis.

Histogram means½ � =mean histogram data > cutoff½ �, bin = 255ð Þð Þ,
ð2Þ

intial mean0½ � =mean histogram meansð Þ, ð3Þ

intial mean1½ � =min histogram meansð Þ: ð4Þ
The algorithm does not randomly choose centroids; the

centroids are provided using Equations (2)–(4). This is the
K-means working process which starts iterations with intelli-
gent guesses and then assigns each observation to its closest
centroid, based on the Euclidean distance between the pixel
and the centroid. For each of the K clusters (in our case, it
is fixed at 2), update the cluster centroid by calculating the
new mean values of all the data points in the cluster. The cen-
troid of a K th cluster is a vector of length “p” containing the
means of all variables for the observations in the Kth cluster;
p is the number of variables. Iteratively minimize the total
within the sum of squares. The images are normalized before
the execution of the algorithm is done. That is, iterate steps 3
and 4 until the cluster assignments stop changing or the
maximum number of iterations is reached.

The pseudocode of the K-means clustering algorithm is
as follows:

(1) Specify the number of clusters K = 2 and
iterations = 20

(2) Initialize centroids by first shuffling the dataset and
then randomly selecting K data points for the
centroids without replacement

(3) Keep iterating steps (iii) to (vi) until there is no
change to the centroids; i.e., the assignment of data
points to clusters is not changing

(4) Compute the sum of the squared distance between
data points and all centroids

(5) Assign each data point to the closest cluster
(centroid)

(6) Compute the centroids for the clusters by taking the
average of all data points that belong to each cluster.
After getting the optimum canopy region, it is passed
to the feature extraction algorithm

3.2. Segmentation Results and Discussion. For qualitative
comparison of the proposed methodology, the segmentation
results on the input image (see Figure 3) using seven seg-
mentation algorithms, namely, Global Static Thresholding
(GST) (see Figure 4), Global Automatic Thresholding
(GAT) (see Figure 5), K-means based on four mean values
(see Figure 6), Watershed (see Figure 7), mean shift (over-
head of running mean shift is high and does not give signif-
icant output), convolution gradient filters (see Figure 8), and
curve fit‐based thresholding + K‐means algorithm named as
CFitK-means (see Figure 9) have been shown. A closer look
at the output images demonstrates the superiority of the
proposed CFitK-means method as compared to other
methods (see Figure 9).
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To analyse the accuracy of the proposed segmentation
process, a random sampling method has been applied and
mutually exclusive sets of images were created. The mini-
mum sample size taken was 25 and the maximum was 100.

(1) The ground truth or valid segmented images were
decided by visual inspection and a separate set of
such images was created for running evaluation tests.
The intersection (IoU) between the target (valid

segmented image) and predicted (segmented image
by different algorithms) was computed using the
following equation:

IoU score =
target ∩ prediction
target ∪ prediction

ð5Þ

(2) The IoU values are computed using different sample
sizes, and average values for each sample evaluation
round were computed. Table 1 gives the IoU values
computed using Equation (5) for all the algorithms
that are competing with each other in terms of accu-
racy for wheat canopy extraction. The results of the
mean shift, watershed, Sobel, canny, and Prewitt
algorithms were ignored, as visually it was abun-
dantly clear that the segmented output was not satis-
factory. An average IoU score above 0.5 cut-offs was
considered an acceptable result for completing the
segmentation process. Four evaluations were done
against the ground truth/valid segmented image
dataset as shown in (Table 1)

It can be observed from the boxplot (see Figure 10) that
the CFitK-means algorithm has the maximum IoU score.
This means that this hybrid segmentation algorithm gives a
maximum number of valid segmented images as per the
ground truth set of images. In each mutually exclusive
random sample of evaluations, the number of correctly
segmented images is highest for this segmented algorithm.

3.3. Image-Based Phenomics Trait Extraction. The current
literature [47, 48] gives many pieces of documentary evi-
dence that the texture features of images can be represented
as characteristics of the objects embodied in the images.
Many researchers point out that texture features can provide
better information as compared to color features. In this
research work, the GLCM features aided us to extract infor-
mation on the variations of the morphology that occur when
the plant is responding to stress or stimuli. Therefore, by
using the GLCM algorithm on the canopy images obtained
from the previous step, twenty-three features were extracted
and 1188 instances were created. The description of all these
features is given in (Table 2).

Figure 3: Segmentation algorithm used: none (input image from
which wheat canopy will be extracted); description: original image
to be segmented.

Figure 4: Segmentation algorithm used: Global Static Thresholding
(fixed value); description: some pixel values lost membership in the
final segmented image.

Figure 5: Segmentation algorithm used: Global Automatic
Thresholding (Otsu); description: pixel membership loss is there
but less than that of the static thresholding method.

Figure 6: Segmentation algorithm used: K-means based on 4 mean
values (Otsu); description: pixel membership loss is there but less
than that of the static thresholding method.

Figure 7: Segmentation algorithm used: watershed; description: the
watershed algorithm failed to identify the boundaries properly.
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Pði, jÞ is the cooccurrence matrix, and Ng is the no. of
grey levels.

p i, jð Þ = P i, jð Þ
∑P i, jð Þ is the normalized cooccurrencematrix,

ð6Þ

px ið Þ = 〠
Ng

j=1
P i, jð Þare themarginal row probabilities, ð7Þ

py ið Þ = 〠
Ng

i=1
P i, jð Þare themarginal column probabilities, ð8Þ

μx = 〠
Ng

j=1
p i, jð Þ is themean grey level intensity of px, ð9Þ

μy = 〠
Ng

i=1
p i, jð Þis themean grey level intensity of py, ð10Þ

σ2x = 〠
Ng

i=1
i − μxð Þ2px ið Þis the variance of px , ð11Þ

σ2y = 〠
Ng

j=1
i − μy

� �2
py jð Þis the variance of py , ð12Þ

px+y kð Þ = 〠
Ng

i=1
〠
Ng

j=1
p i + jð Þ, where i + j = k, k = 2, 3,⋯, 2Ng,

ð13Þ

px−y kð Þ = 〠
Ng

i=1
〠
Ng

j=1
p i − jð Þ, where i – jj j = k, k = 0, 1,⋯,Ng – 1,

ð14Þ

μx+y = 〠
2Ng

k=2
k:px+y kð Þ, ð15Þ

μx+y = 〠
2Ng

k=2
k:px+y kð Þ, ð16Þ

HX = −〠
Ng

i=1
px ið Þ log2 px ið Þ+∈ð Þ, ð17Þ

HY = −〠
Ng

j=1
py jð Þ log2 py jð Þ+∈

� �
, ð18Þ

HXY = −〠
Ng

i=1
〠
Ng

j=1
p i, jð Þ log2 p i, jð Þ+∈ð Þ, ð19Þ

HXY1 = −〠
Ng

i=1
〠
Ng

j=1
p i, jð Þ log2 px ið Þpy jð Þ+∈

� �
, ð20Þ

HXY2 = −〠
Ng

i=1
〠
Ng

j=1
px ið Þpy jð Þ log2 px ið Þpy jð Þ+∈

� �
: ð21Þ

Equations (7)–(21) give mathematical explanations of
the notations used in (Table 2). Further for obtaining agro-
nomical inferences and insights from image-based metrics,

Figure 8: Segmentation algorithm used: convolution gradient filters (Sobel, Prewitt, Canny); description: nonsmooth edges for all the three
operators.

Figure 9: Segmentation algorithm used: CfitK-means; description:
best results.
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multiple statistical methods are explained in the coming
sections. To find which image-based metrics can give a
crystal-clear indication of water stress correlation analysis,
factor analysis and cluster analysis are given. The correlation
analysis will help us to eliminate those variables that do not
give any hint about agronomical structural variation in the
wheat canopy. The factor analysis will identify “groups of
variables” that give statistically significant evidence of
changes in plants due to stress. For a deeper understanding
of the behaviour of the groups and validation of the groups
identified, cluster analysis will also be done.

3.4. Understanding the Image-Based Traits of Wheat Canopy.
For building Agronomical Insight Models (AIM) models for
wheat water stress identification, in this work, correlation
analysis, cluster, and factor analysis have been used for the
exploratory study of all the variables. Applying the factor
loading analysis method can only be done if the dataset is
suitable for it. Hence, first sampling adequacy was checked
with the help of the Kaiser-Meyer-Olkin (KMO) test. It
was found that the KMO value was 0.86, and from its value,
it can be interpreted that sampling is adequate. The follow-
ing method to find the suitability of the data was Bartlett’s
test of sphericity. This statistical test checks the premise that
an identity matrix is the correlation matrix of the data
exhibits and that they are sufficiently unrelated, thus unsuit-
able for structure detection. In this test, however, our dataset
failed, and it was also found that some eigenvalues are also
coming negative. Hence, the process of factor analysis was
dropped for further analysis, and clustering analysis was
adopted. The clustering method and its outcomes are
explained in the next section. Hence, in this section, an
attempt has been made to apply (i) correlation analysis, (ii)
factor, and (iii) cluster analysis to map the variable’s behav-

iour to find variables that “hang together” (i.e., have a strong
association with each other). In terms of agronomical sense,
it will help us find variables that respond somehow when
there is stress or stimuli.

3.5. Correlation Analysis of Wheat Canopy Traits. The corre-
lation analysis is a process that helps to identify all the pairs
of variables/traits that hold some degree of association with
other variables. A summary of the results obtained from all
three methods (Spearman, Kendall, and Pearson) is shown
in Table 3. For maintaining the readability of the paper,
repetitive information regarding values of different correla-
tion methods is omitted. The table categorizes the variables
based on their correlation ranges. Since correlation gives
an idea of how strong and weak the relationship is between
the variables, a lower correlation value implies that the two
variables slightly impact each other.

A change in one variable does not impact the values of
other variables numerically. Higher values of correlation
imply that variables are firmly attached to others. From
(Table 3), it has been observed that variables such as “autoc,”
“contr,” “cprom,” “cshad,” “dissi,” “energy, “entro,”
“homom,” “homop,” “maxpr,” “sosvh,” “savgh,” “svarh,”
“senth,” “dvarh,” “denth,” “homom.1,” and “indnc” are in
the medium and high correlation categories. This means that
all these twenty variables have some degree of association
and impact each other directly or indirectly.

3.6. Factor Loading Analysis of Wheat Plant Traits. The
application of factor analysis methods can only be made if
the dataset is suitable. Hence, first sampling adequacy was
checked with the help of the Kaiser-Meyer-Olkin (KMO)
test. It was found that the KMO value was 0.86, and from
its value, it can be interpreted that sampling is adequate.
The method used to find the suitability of the data was
Bartlett’s test of sphericity. This statistical test checks the
premise that an identity matrix is the correlation matrix of
the data exhibits and that they are sufficiently unrelated, thus
unsuitable for structure detection. In this test, however, our
dataset failed, and it was also found that some eigenvalues
are also coming negative. Hence, the process of factor anal-
ysis was dropped for further analysis, and clustering analysis
was adopted. The clustering method and its outcomes are
explained in the next section.

3.7. Clustering Analysis of Wheat Plant Traits. With the help
of agglomerative clustering as shown in (Table 4), an
attempt has been made to find a group of variables with
some linkages as shown in (Table 5). Linkage implies that

Table 1: Performance evaluation of segmentation algorithms in terms of IoU (intersection over union) score.

Algorithm
Sample size

Average IoU score
25 50 75 100

Global Static Thresholding (GST) 20 40 67 88 84.3

Global Automatic Thresholding (GAT) 19 33 60 76 74.5

K-means clustering 22 46 70 92 91.3

CFitK-means 24 48 72 95 95.75

80

60

40

20

GST GAT Kmeans Cfit-Kmeans

Comparative analysis of segmentation algorithms

Figure 10: IoU score comparison for performance.
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Table 2: Description of glcm metrics that define wheat canopy morphology.

GLCM features Formulae used Agronomical implications

Autocorrelation (autoc):
[49–52]

〠
Ng

i=1
〠
Ng

j=1
i, jð Þp i, jð Þ

It helps to find how consistent the pattern is in an image matrix in terms
of coarseness. Its value ranges from 0 to 1, and 1 conveys maximum

coarseness. If there is high coarseness this means the canopy structure is
having less density.

Contrast: (contr) [49–52] 〠
Ng

i=1
〠
Ng

j=1
i − jð Þ2p i, jð Þ

This indicates the difference between the highest and lowest intensity
pixels in an image. High contrast means that there is a huge difference
between different parts of the object which will aid as a useful tool for

canopy segmentation.

Correlation (corrm): [49–52] ∑
Ng

i ∑
Ng

j i − μð Þ j − μð Þp i, jð Þ
σ2

Measures the joint probability of pairs of pixels under observation. This
means the pixels within the structure of the canopy have some kind of
association with each other in case there is some kind of correlation.

Correlation (corrp): [49–52] ∑
Ng

i ∑
Ng

j i, jð Þp i, jð Þ − μ2

σ2
Measures the association of pairs of pixels under observation.

Cluster prominence: (cprom)
[49–52]

〠
Ng

i=1
〠
Ng

j=1
i − μð Þ + j − μð Þð Þ4p i, jð Þ

Helps to measure the symmetry in the image matrix. If there is a high
level of asymmetry in the canopy, it may be an indication of a shunted

growth in the plant due to stress.

Cluster shade (cshad) [49–52] 〠
Ng

i=1
〠
Ng

j=1
i − μð Þ + j − μð Þð Þ3p i, jð Þ

Helps to measure skewness which is an indication of asymmetry. A high
level of asymmetry implies that there is some problem in the growth of

the plant due to which symmetrical canopy is not there.

Dissimilarity (Dissi) [49–52] 〠
Ng

i=1
〠
Ng

j=1
i − jj j:p i, jð j Measure the mean difference between the pixels. It helps infer the level

of similarity and homogeneity of the canopy structure.

Energy: (Energ) [49–52] 〠
Ng

i=1
〠
Ng

j=1
p i, jð Þ2 Helps to measure the uniformity in the image matrix. There are no

significant changes in the canopy morphology.

Entropy: (Entro) [49–52] −〠
Ng

i=1
〠
Ng

j=1
p i, jð Þ log2p i, jð Þ Helps to measure the degree of randomness. High randomness implies

that there are a lot of changes occurring in the canopy structure.

Homogeneity: Homom (inverse
difference moment) [49–52]

〠
Ng

i=1
〠
Ng

j=1

1
1 + i − jð Þ2 p i, jð Þ Measures homogeneity at the local level. There are not many changes

occurring in the canopy due to any stimuli.

Homogeneity: (Homop)
inverse difference [49–52]

〠
Ng

i=1
〠
Ng

j=1

p i, jð Þ
1 + i − jj j Measures the closeness of the pixels and the similarity between them.

Maximum probability (Maxpr)
[49–52]

MAX
i,j

p i, jð Þ Maxpr is a glcm metric that gives the max probability of finding pixels of
interest for finding textures.

Sum of squares (sosvh):
[49–52]

〠
Ng

i=1
〠
Ng

j=1
1 − μð Þ2p i, jð Þ

Helps to measure the mean/average shift between the pixels. High
variance means there are a lot of changes occurring in the morphological

structure.

Sum average (savgh) [49–52] 〠
2Ng

k=2
px+y kð Þk

Helps to measure the average distribution of the gray levels. A high level
of distribution of grey level means that the canopy is undergoing a high

level of morphological changes.

Sum variance (svarh) [49–52] 〠
2Ng

k=2
k − μx+y

� �2
px+y kð Þ Helps to measure pixel distributions in terms of dispersion.

Sum entropy (senth) [49–52] 〠
2Ng

k=2
px+y kð Þ log2 px+y+∈

� � Helps to measures the disorder related to the gray level sum distribution
of the image

Difference variance (Dvarh)
[49–52]

〠
Ng−1

k=0
k − μx−y

� �2
px−y kð Þ It helps to measure the heterogeneity level in the image. A low level of

heterogeneity means images having similar patterns of pixels.

Difference entropy (Denth)
[49–52]

− 〠
Ng−1

k=0
px−y kð Þ log2 px−y kð Þ+∈

� � It measures the disorder related to the gray level difference distribution
of the image
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there is some homogeneity between variables in question.
An association between multiple variables (clusters/groups)
represents phenomena associated with specific plant behav-
iour abstracted from image-based features.

Our research work uses GLCM texture metrics to repre-
sent plant behaviour under water stress and normal condi-
tions. Table 4 is a numerical summary of the steps taken
by the clustering algorithm for building clusters. It displays
information regarding “stage no.” which tells the progress
as the iteration occurs; “Cluster combined” as the iteration
process passes through different stages the clusters get reor-
ganised; this information is also available in Table 4, and
“coefficients” are the value coefficients indicating the degree
of similarity between the clusters. It is an iterative bottom-up
process of finding clusters or groups.

The algorithm implemented here in the problem under-
taken uses the nearest neighbour method to find similar data
points/attributes/features. The dataset was first normalised
to maintain the uniform scale of values. The coefficient
column indicates the distance between the two clusters (or
cases) joined at each stage. The distance is computed using

the squared Euclidean distance formula. The values of coef-
ficients depend on the proximity measure and linkage
method used in the cluster analysis. It can be observed from
the agglomeration schedule that the values of the coefficients
remain relatively small until stage 18 as given in (Table 4),
which implies that the similarity between the clusters
formed is relatively high.

However, from stage 18, the similarity coefficients start
changing to higher values till the values reach 257.481,
which is stage 18. After this stage, there is substantial change
till the coefficient value reaches 443. In the next stage, it can
be observed that the coefficient value becomes huge (2099).
From (Table 4), it can further be observed that there are
three stages at which the algorithms have taken a chance
to merge into three different clusters. When clusters are
joined, they are subsequently given membership based on
the minimum value of the two in terms of distance com-
puted by algorithms as shown in (Table 5). To validate the
membership of the variables concerning different clusters/
groups, different distance measures and clustering methods
were applied to find the stability of the solution, and the

Table 2: Continued.

GLCM features Formulae used Agronomical implications

Information measure of
correlation1 (inf1h) [49–52]

HXY −HXY1
max HX, HYf g

Helps to measure the joint probability in terms of correlation and
information it contains. A high value of information measure of

correlation means the pixels are highly related to each other in terms of
pattern.

Information measure of
correlation2 (inf2h) [49–52]

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−2 HXY2−HXYð Þ

p Helps to measure dependency between the pixels. Higher dependency
between pixels implies that if one of the pixels changes it will impact the
other pixel and would bring significant changes in the texture of the

canopy.

Inverse difference (INV) is
homom (Homom.1) [49–52]

〠
Ng

i=1
〠
Ng

j=1

p i, jð Þ
1 + i − jj j

Helps to measure local homogeneity. Indirectly help to monitor the
canopy structure.

Inverse difference normalized
(INN) [49–52]

〠
Ng

i=1
〠
Ng

j=1

p i, jð Þ
1 + i − jj j/Ng

� � Helps to measure the difference between neighbouring pixel using
normalized values.

Inverse difference moment
normalized (idmnc) [49–52]

〠
Ng

i=1
〠
Ng

j=1

p i, jð Þ
1 + i − jj j2/Ng

� � It computes the difference between the neighbouring intensity values
that are normalized by the total number of discrete intensity values.

Table 3: Classification of glcm factors based on correlation ranges.

Correlation
relationship

Correlation
range

GLCM factors as per correlation

A (negative
correlation)

-1 to 0.09
[“autocor,” “contr,” “ corrm,” “corrp,” “cprom,” “cshad,” “dissi,” “energ,” “entro,” “homom,” “homop,”
“maxpr,” “sosvh,” “savgh,” “svarh,” “senth,” “dvarh,” “denth,” “inf1h,” “inf2h,” “homom.1,” “indnc,”

“idmnc”]

B (low
correlation)

0 to 0.49
[“autoc,” “contr,” “corrm,” “corrp,” “cprom,” “cshad,” “dissi,” “entro,” “sosvh,” “savgh,” “svarh,”

“senth,” “dvarh,” “denth,” “inf1h,” “inf2h,” “ idmnc”]

C (medium
correlation)

0.5 to 0.89
[“autoc,” “contr,” “cprom,” “cshad,” “dissi,” “energ,” “entro,” “homom,” “homop,” “maxpr,” “sosvh,”

“savgh,” “svarh,” “senth,” “dvarh,” “denth,” “inf2h,” “homom1,” “indnc”]

D (high
correlation)

0.9 to 1.00
[“autoc,” “contr,” “corrm,” “corrp,” “cprom,” “cshad,” “dissi,” “energ,” “entro,” “homom,” “homop,”

“maxpr,” “sosvh,” “savgh,” “svarh,” “senth,” “dvarh,” “denth,” “homom.1,” “indnc”]
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following output was realised based on the data points/attri-
butes/features.

Table 5 gives the outcome of the clustering process. It
can be observed from Table 5 that it has formed three groups
of indicators. The selection of the three groups was based on
prior knowledge about the nature of GLCM metrics. The
prior information was derived from the mathematical
expressions of GLCM metrics (indicators) and from the
correlation matrix constructed in the previous step to decide
the number of groups/clusters that are three.

As shown in Figure 11, the Venn diagram is based on the
outcome of the agglomerative clustering (single solution)
using the Nearest Neighbour method with normalised data.
The Nearest Neighbour method uses squared Euclidean dis-
tance for computing distances. Other methods (between
groups linkage, within groups linkage, centroid clustering,
furthest neighbour, median clustering, Ward’s method) were
also employed to validate the clustering membership out-
come from this method. This was found that all the methods
gave a similar output.

3.7.1. Profiling of Clusters for Trait Analysis. In this section,
we profile the clusters in two ways: first, it was at a level of
GLCM metrics, and secondly, inferences have been derived
from the cluster analysis that has agronomical application.

(1) Cluster I. This is the biggest cluster out of the three. The
clustering process has found fifteen GLCM metrics hanging
together, namely, “autoc,” “contr,” “corrm,” “corrp,”

“cprom,” “cshad,” “dissi,” “entro,” “sosvh,” “savgh,” “senth,”
“dvarth,” “denth,” “idmnc,” and “svarh.” It can be observed
from their definition that most of these descriptors involve
variance-based computations. The value of the metrics, con-
trast (local variations), and cluster-shade (skewness) indicate
the texture present in the image. The cprom descriptor hints
at the degree of symmetry in the image matrix. The change
in the image’s skewness value indicates that the image’s sym-
metry gets impacted. This is also true; i.e., when the symme-
try in the image changes the skewness also changes. This
implies that whenever a slight change is induced in the
wheat canopy due to some stimuli or stress; these variables
will significantly change. The GLCM variables “sosvh” and
“svarh” give information on changes that occur in terms of
mean and variance. Since these variables have a strong rela-
tionship with each other according to correlation and factor
analysis, it can be safely inferred that both these variables
hang together. The variable “savgh” indicates the dispersion
of pixels, which again gets impacted due to changes in mean
and variance. The variables “autoc” indicates the consistency
of coarseness in a pattern. It appears that changes in skew-
ness and shift in symmetry create rapid changes in the
coarseness of the image matrix. Mathematically, it is clear
that if there are changes in the intensity of pixels and shifts
in pixel positions (skewness and symmetry), the variance
of pixel intensity also varies. Based on these facts, 15 vari-
ables/indicators have been identified that “hang together”
or “change together” whenever there is a change in wheat
plant canopy characterisation.

Table 4: Agglomeration clustering schedule.

Stage no.
Cluster combined

Coefficients
Stage cluster first appears

Next stage
Cluster 1 Cluster 2 Cluster 1 Cluster 2

1 2 17 .000 0 0 14

2 3 4 .000 0 0 20

3 9 23 .000 0 0 6

4 10 11 .367 0 0 10

5 8 12 .452 0 0 10

6 9 16 .849 3 0 9

7 1 15 1.358 0 0 8

8 1 13 1.493 7 0 12

9 9 18 1.820 6 0 17

10 8 10 3.854 5 4 16

11 5 6 9.366 0 0 15

12 1 14 9.856 8 0 15

13 21 22 24.732 0 0 16

14 2 7 27.952 1 0 18

15 1 5 32.500 12 11 17

16 8 21 58.100 10 13 21

17 1 9 62.709 15 9 18

18 1 2 90.114 17 14 19

19 1 20 257.481 18 0 20

20 1 3 443.493 19 2 22

21 8 19 2099.203 16 0 22

22 1 8 2152.905 20 21 0
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(2) Cluster II. Two GLCM metrics “inf1he” and “inf2h”
form the third cluster. These GLCM metrics compute the
dependency between the X and Y pixels by using probabil-
ity, correlation, and information theory. The agglomera-
tion algorithms seem to give membership to both these
metrics in the same group because both these metrics give
a similar type of information.

In summary, it can be observed that all of the 23 GLCM
metrics give hints about different changes that are occurring
in the wheat canopy. GLCM metrics can be grouped into
three types, namely, “contrast group” (contrast, cluster
shade, and cluster prominence), “Orderliness” (entropy
and energy), and the last group consisting of metrics that
give statistical characteristics and descriptions about the
texture. Using GLCM metrics, many types of trait analysis
of the wheat canopy can be done, and inferences can be
drawn. This work also helps in bringing clarity and control
in understanding the changes the wheat plant undergoes
during the vegetative growth stage due to water stress (as
the database consists of 594 instances of water stress also).

This understanding helps to improve the quality and quan-
tity of the breed by taking corrective steps.

(3) Cluster III. Cluster III has six GLCM metrics viz.,
“homomp,” “homom,” “maxpr,” “energy,” “homom1,” and
“indnc.” This implies that two types of homogeneity metrics
have a good deal of association linkage, and most likely, they
convey similar information (uniformity in pixels) for analy-
sis undertaken. The “maximum probability” metric has also
found itself grouped in this cluster. This metric value is the
largest entry (grey level) that corresponds to the most deci-
sive response in the image. Energy metrics in terms of
GLCM convey an amount of uniformity/homogeneity in
the image. If a homogenous image contains few dominant
grey shades, then the matrix will have few large entries. This
confirms our hypothesis that image-based features can also
be used for deriving agronomical inferences.

3.8. Agronomical Interpretations. In this subsection, a series
of assertions are made to rationalise the outcomes by linking
wheat plant behaviour with digital image processing which

Table 5: Comparative cluster membership analysis with different linkages.

S.
no.

Indicator/variables
Between
linkage

Centroid
linkage

Furthest
neighbour linkage

Median
linkage

Nearest
neighbour
linkage

Ward’s
linkage

Within
linkage

1 Autocorrelation (autoc) 1 1 1 1 1 1 1

2 Contrast (contr) 1 1 1 1 1 1 1

3 Correlation (corrm) 1 1 1 1 1 1 1

4 Correlation (corrp) 1 1 1 1 1 1 1

5 Cluster prominence (cprom) 1 1 1 1 1 1 1

6 Cluster shade (cshad) 1 1 1 1 1 1 1

7 Dissimilarity (dissi) 1 1 1 1 1 1 1

8 Energy (energ) 2 2 2 2 2 2 2

9 Entropy (entro) 1 1 1 1 1 1 1

10 Homogeneity (homom) 2 2 2 2 2 2 2

11 Homogeneity (homop) 2 2 2 2 2 2 2

12 Maximum probability (maxpr) 2 2 2 2 2 2 2

13
Sum of squares: variance

(sosvh)
1 1 1 1 1 1 1

14 Sum average (savgh) 1 1 1 1 1 1 1

15 Sum variance (svarh) 1 1 1 1 1 1 1

16 Sum entropy (senth) 1 1 1 1 1 1 1

17 Difference variance (dvarh) 1 1 1 1 1 1 1

18 Difference entropy (denth) 1 1 1 1 1 1 1

19
Information measure of
correlation1 (inf1h)

3 3 3 3 3 3 3

20
Information measure of
correlation2 (inf2h)

3 3 3 3 3 3 3

21
Inverse difference (INV) is

homom (homom1)
2 2 2 2 2 2 2

22
Inverse difference normalized

(INN) (indnc)
2 2 2 2 2 2 2

23
Inverse difference moment

normalized (idmnc)
1 1 1 1 1 1 1
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has been done [53, 54] (e.g., chlorophyll fluorescence
images). The wheat plant’s development features can be
inferred from the characteristics of its canopy. Using the
GLCM feature extraction process (texture analysis), we can
track the appearance of the canopy that covers normal and
water stress conditions.

(1) Mathematically, it is clear that there are changes in
the intensity of pixels, shift in pixel’s positions
(skewness and symmetry), and pixel intensity varies.
Due to this fact, the 23 texture variables “hang
together” or “change together” whenever a wheat
plant canopy changes its stress response

(2) Leaf shape helps to characterise the health of the
wheat plant. The texture features that help to identify
symmetry (cshad, cprom, and homogeneity) of the
image can also help characterise the wheat plant’s
health in our case

(3) Leaf size, area, density, and canopy is a collection of
leaves and branches. The texture features that can
track the size of the objects/pixel group contained
in the image are helpful in this case. The glcm metric
that tells us about the fineness or coarseness and
homogeneity can help us hint about the change in
the size of the leaf due to some stress. If a plant is
under stress, leaf size will get reduced, and conse-
quently, the leaf area and density will also reduce.
A large leaf area implies a complex texture of leaves.
GLCM features that track the dispersion of pixels
which in turn helps to check the health of the wheat
plant. The “savgh,” “sosvh,” “svarh,” and “glcm”
metrics help to find indications of stress in the plant
by tracking variance from the mean. Higher levels of
dispersion of pixels higher will be the plant under
water stress

4. Discussion

In summary, it can be observed that all of the 23 GLCM
metrics give hints about different changes that are occurring
in the wheat plant physiology. In the context of stress anal-
ysis, GLCMmetrics can be grouped into three types, namely,
“contrast group” (contrast, cluster shade, and cluster prom-
inence), “Orderliness” (entropy and energy), and the last
group consisting of metrics that give statistical characteris-
tics and description about the texture. This research gives
affirmation that by using GLCM metrics a lot of trait analy-
sis of wheat canopy can be done easily and reliable agrono-
mical inferences can be drawn. This work also helps to
clarify and control the changes the wheat plant undergoes
during the vegetative growth stage due to water stress.

5. Limitations and Conclusion

In this research, three methods (correlation analysis, factor
analysis, and clustering analysis) were employed to under-
stand the behaviour of plant response variables. The values
of variables used in wheat research work were computed
from the images of wheat plant canopy that had captured
maximum photosynthetic activity. First, the performance
of the number of segmentation algorithms has been analysed
for wheat plant canopy segmentation. It was found that the
curve fit-based K-means method is the most effective
segmentation algorithm as it yields the highest IoU score
(95.75%). Further, GLCM features were computed, followed
by correlation, factor, and cluster analysis. From the analysis,
it can be concluded with confidence that there are multiple
groups of variables/traits that “hang together.” These indi-
rect methods help quantify changes in the wheat plant phys-
iology that can help us to avoid destructive methods to map
the behaviour of a plant. It is clear from this research work
that changes in the plant morphology due to changes in

Contrast indicators of
change

Cluster I

Orderliness indicators

Information
correlation/Gain

Cluster II

Cluster III

Statistical characteristics
of canopy

Texture homogeneity of
the canopy

Normalized
information

about canopy

Contr,
corrm, corrp,

cshad,
cprom

Idmnc,
entro,
denth

Inf1h,
inf2h

Energ,
maxpr

Indnc
Homom,

homom1, homop

Svarh,savgh
dvarh, autoc,
dissi, sosvh,

senth

Figure 11: Visualization of clusters formed.
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stimuli and stresses can be observed by measuring the values
of mainly 23 texture variables. This statement is expressed
based on the outcome of the clustering process and correla-
tion analysis. This work is limited to a single wheat variety; a
larger dataset with multiple wheat varieties is always desired.
Large calibrated samples are required for the success of such
experiments so that generalisations from the study are more
accurate. Additionally, analysis based on other color models
could have increased the robustness of the results for deeper
agronomical insights.

Data Availability

The data used to support the findings of this study are
included within the article.

Additional Points

Future Perspective. To overcome the limitations of this cur-
rent work, a concept such as data fusion, data aggregation,
and data augmentation may be utilized for deeper analysis
and insights.
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