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Abstract

Background

Recent advances in sequencing technologies have resulted in an unprecedented increase

in the number of metagenomes that are being sequenced world-wide. Given their volume,

functional annotation of metagenomic sequence datasets requires specialized computa-

tional tools/techniques. In spite of having high accuracy, existing stand-alone functional

annotation tools necessitate end-users to perform compute-intensive homology searches

of metagenomic datasets against "multiple" databases prior to functional analysis.

Although, web-based functional annotation servers address to some extent the problem of

availability of compute resources, uploading and analyzing huge volumes of sequence data

on a shared public web-service has its own set of limitations. In this study, we present COG-

NIZER, a comprehensive stand-alone annotation framework which enables end-users to

functionally annotate sequences constituting metagenomic datasets. The COGNIZER

framework provides multiple workflow options. A subset of these options employs a novel

directed-search strategy which helps in reducing the overall compute requirements for end-

users. The COGNIZER framework includes a cross-mapping database that enables end-

users to simultaneously derive/infer KEGG, Pfam, GO, and SEED subsystem information

from the COG annotations.

Results

Validation experiments performed with real-world metagenomes andmetatranscriptomes,

generated using diverse sequencing technologies, indicate that the novel directed-search strat-

egy employed in COGNIZER helps in reducing the compute requirements without significant

loss in annotation accuracy. A comparison of COGNIZER's results with pre-computed bench-

mark values indicate the reliability of the cross-mapping database employed in COGNIZER.

Conclusion

The COGNIZER framework is capable of comprehensively annotating any metagenomic or

metatranscriptomic dataset from varied sequencing platforms in functional terms. Multiple

search options in COGNIZER provide end-users the flexibility of choosing a homology
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search protocol based on available compute resources. The cross-mapping database in

COGNIZER is of high utility since it enables end-users to directly infer/derive KEGG, Pfam,

GO, and SEED subsystem annotations from COG categorizations. Furthermore, availability

of COGNIZER as a stand-alone scalable implementation is expected to make it a valuable

annotation tool in the field of metagenomic research.

Availability and Implementation

A Linux implementation of COGNIZER is freely available for download from the following

links: http://metagenomics.atc.tcs.com/cognizer, https://metagenomics.atc.tcs.com/

function/cognizer.

Introduction
Recent advances in Next Generation Sequencing (NGS) techniques have facilitated large scale
sequencing of genomes of microbial communities (also referred to as metagenomes) residing
in diverse ecological niches. Sequencing data generated from metagenomes typically consists of
millions of short nucleotide fragments (also referred to as 'reads'). One of the important steps
in metagenomic data analysis pertains to estimation of the functional potential of various pro-
tein coding genes in the given dataset. Although homology-based approaches (like BLAST)
provide the most accurate results with respect to functional annotation [1], the compute
requirements of these approaches are enormous. Approaches employing additional heuristic
steps (as compared to BLAST), have therefore been developed in order to address the problem
of huge computational time required for protein database searches. For example, tools like
RAPSearch [2] and PAUDA [3] employ 'inexact’ search techniques for significantly reducing
computational costs that are typically associated with performing sequence similarity based
searches. Although, these tools outperform BLAST-like approaches in terms of execution
speed, the overall quality of results obtained with such tools, in several instances, is not at par
with those obtained using non-heuristic approaches [3].

MEGAN [4] and FANTOM [5] are among the few applications that are available for stand-
alone functional analysis of metagenomic reads. However, these GUI-based tools are primarily
designed for analyzing pre-computed BLASTx results. End-users are required to perform compute
intensive BLASTx searches prior to the use of these tools. For users having access to limited com-
puting resources, this becomes a time consuming step. For example, a previous study had esti-
mated that a computing facility with 1000-CPU compute-cluster would require approximately 30
days to complete a BLASTx search for a 20 GBmetagenome against the NCBI-nr database [6].

Web-servers like MG-RAST [7], METAREP [8], CAMERA [9], CoMet [10], IMG/M [11],
etc. provide an alternative means for end-users intending to perform functional annotation of
metagenomic datasets. Although these web-servers provide a range of utilities for functional
annotation, there is a limitation on the volume of reads that can be uploaded/analyzed by a spe-
cific end-user. Moreover, due to enormous demand, jobs submitted to these servers typically
are processed based on priority-listing (which, in turn, is determined/governed by a variety of
factors). In spite of appearing trivial, the stated limitations become a major hindrance for end-
user's intending to analyze huge datasets. For instance, the total size of (Whole Genome
Sequencing) datasets in recent metagenomic studies pertaining to diabetes [12,13] is in the
range of 300–400 gigabytes. Uploading (and processing) such a huge volume of data to any of
the public annotation servers may often prove to be infeasible for most end-users.
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On a different note, protocols for functional annotation of individual sequences constituting
metagenomic datasets are aimed at finding (a) COGs, i.e. the clusters of orthologous genes
[14], (b) KEGG pathway mappings [15,16], (c) SEED subsystems [17], Gene Ontology (GO)
[18], and (d) Pfam domain families [19]. Although existing stand-alone/web-based tools (men-
tioned above) provide functional annotations in terms of one or more of the above mentioned
functional categories (viz., COG, KEGG, SEED, GO, Pfam), with the exception of the
MG-RAST web-server, none of them provide functional annotations with respect to 'all' the
mentioned categories. End-users of MG-RAST can obtain functional annotation of their
uploaded datasets in terms of multiple functional databases like IMG, TrEMBL, PATRIC, Swis-
sProt, Genbank NR, M5NR, SEED, RefSeq, eggNOG, KEGG, etc. However, as mentioned pre-
viously, the typical problems associated with uploading and analyzing huge volumes of
sequenced data on a shared public web-service is definitely a major point of concern. In sum-
mary, the two major limitations of existing tools which are available for functional annotation
of metagenomic datasets are (1) requirement of computationally expensive homology-based
searches prior to use of stand-alone tools and (2) issues pertaining of usability (with respect to
upload limit, analysis turn-around time, data privacy, etc.) of web-based services.

In this study, we present COGNIZER, a stand-alone framework that can be employed for func-
tional annotation of metagenomic datasets. The framework provides four annotation workflow
options (schematically represented in Fig 1). Each option employs a distinct 'homology-search'
strategy requiring varying levels of compute power. These search options enable end-users to
choose a homology-search protocol based on compute resources available at their disposal. End-
users having access to huge compute power can employ the first and the second options i.e. the
BLASTx and RAPSearch search options respectively. When there is limited availability of com-
puting resources, users can deploy the COGNIZER framework with options 3 or 4. These two
options employ a 'customized' COG database and use a novel directed-search strategy that can
help in reducing the time required for database searches. The results of the ‘homology-search’
step (obtained using one of the above four options) are subsequently processed using the informa-
tion present in COGNIZER’s customized cross-mapping database. This step enables end-users to

Fig 1. Workflow options in the COGNIZERworkflow. A schematic representation of the four workflow options in the COGNIZER framework.

doi:10.1371/journal.pone.0142102.g001
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obtain functional profiles of a given metagenome (with respect to multiple functional categories
viz., COG, KEGG, SEED, GO, and Pfam) by performing a single database search.

Methods
Fig 1 schematically represents the four annotation workflow options in the COGNIZER frame-
work. Each option involves two phases, namely, a ‘homology-search’ phase and a 'mapping'
phase, the latter phase being common to all four workflow options. In the 'homology-search'
phase, sequences in the metagenomic dataset (to be analyzed) are queried against the COG
database [14]. Options 1–4 differ with respect to the employed 'homology-search' strategy as
well as the format of the COG database. The subsequent ‘mapping’ phase involves inferring
KEGG, SEED, GO, and Pfam annotations from the COG annotations obtained in the ‘homol-
ogy-search’ phase. A customized cross-mapping database is employed for this purpose. The
following sections describe (a) the structure of the COG database utilized in each workflow
option (b) the protocol used for creating the cross-mapping database, and (c) the overall algo-
rithm employed (in each workflow) for obtaining functional annotations.

(Customized) COG database
The COG database (available for download at http://www.ncbi.nlm.nih.gov/COG/) consists of
approximately 200,000 protein sequences categorized into various COG groups. All protein
sequences in the COG database are tagged to at least one of the 25 major functional COG cate-
gories [14]. This database, in its original form, is employed in options 1 and 2. For options 3
and 4, a 'customized' version of this database was created using the following procedure (Fig 2).
Sequences in each functional COG category were first clustered using ClustalW2 [20] in default
mode. This resulted in generating one or more clusters for each COG category. Subsequently,
the longest protein sequence from each cluster was chosen and tagged to indicate the COG cat-
egory to which it belonged. All (tagged) representative sequences were pooled together to form
the 'customized' COG database. It may be noted that the customized database, thus generated,
is approximately one-sixth in size as compared to the original COG database.

Fig 2. Creation of the 'customized' COG database. A schematic diagram illustrating the steps involved in the creation of the 'customized' COG database.

doi:10.1371/journal.pone.0142102.g002
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Cross-mapping database
A schematic representation of the steps involved in the creation of cross-mapping database is
provided in Fig 3. The following sequence-search/data-mining approaches were employed for
building a database containing cross-relationships between COG and other functional data-
bases. Mapping between COG and KEGG identifiers were obtained by (a) mining COG-KEGG
mapping information from the iPath database [21], and (b) performing BLAST-based searches
of protein sequences from the COG database against the sequences from KEGG databases
(using the CAMERA web-service). Information from both these sources was collated into a
unified mapping file. In cases where the mapping between the two sources did not match, the
mapping obtained using the BLAST approach was given preference. COG and Pfam identifier
mappings were obtained by comparing COG database sequences against Pfam database. This
comparison was done using hmmscan tool from the HMMER package [22]. Mappings between
GO and PFAM annotations were obtained from the GO website (http://www.geneontology.
org/external2go/pfam2go). These mappings were further processed to infer cross-relationships
between GO and COG entries. Sequence homology searches were used for obtaining the
SEED-COG mappings.

Algorithm
Details of the four workflow options in COGNIZER method are as follows. In option 1, the
BLASTx method is employed (in the homology-search phase) for querying reads constituting
metagenomic datasets. The search is performed against all sequences in the COG database.
The query sequence is assigned to the COG category that corresponds to the highest scoring
BLASTx hit whose e-value is lower than a user-specified threshold. In the subsequent 'mapping'
phase, for each query, functional annotation with respect to other databases viz., KEGG, SEED,
GO, and Pfam is inferred using COGNIZER's cross-mapping database. Steps in option 2 are
similar to those in option 1 except for the usage of RAPSearch algorithm instead of BLASTx
(in the homology-search phase).

Fig 4 illustrates the overall workflow for options 3 and 4 of COGNIZER. These options
work in the following manner. In the first step, query sequences in the input metagenomic data-
set are partitioned into subsets by performing similarity searches against sequences in the 'cus-
tomized' COG database. This results in generating 25 query subsets, each subset consisting of
sequences that have similarity to one of the 25 major COG categories. In other words, step 1
result in assigning a tentative high-level COG classification to each query sequence. In step 2,
sequences in each query subset (tagged in step 1 to a COG category) are searched only against
the subset of COG database sequences that belong to the same COG category. This directed-
search approach (wherein subsets of query sequences are searched only against respective data-
base partitions) therefore significantly reduces the search-space, and consequently decreases the
overall compute requirements. At the end of step 2, sequences in the query dataset are annotated
in terms of COG functional categories. In step 3, the pre-computed cross-mapping database is
employed for extrapolating the obtained COG annotations to directly infer functional annota-
tions corresponding to KEGG, Pfam, GO, and SEED subsystem databases. This extrapolation
step does not involve compute intensive (alignment-based) searches. It may be noted that while
option 3 employs BLASTx, option 4 uses the RAPSearch algorithm in steps 1 and 2.

Validation datasets
The performance of the COGNIZER framework was evaluated using 21 real-world datasets
comprising (a) 3 hyper-saline saltern metagenomes [23] (b) 7 metatranscriptomic datasets [24]
(c) 2 gut metagenomes from healthy and malnourished children [25] (d) 8 oral metagenomes
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Fig 3. Procedure adopted for obtaining cross-mapping information. Procedure adopted for obtaining cross-mapping information amongst sequences in
the COG and the other protein functional databases (KEGG, Pfam, GO and SEED).

doi:10.1371/journal.pone.0142102.g003
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[26], and (e) acid mine drainage (AMD) metagenome [27]. These datasets were chosen since
they fairly represented the typical characteristics of sequence data obtained using three well-
known sequencing technologies viz. Illumina, Roche-454 and Sanger.

Validation strategy
COGNIZER employs a cross-mapping database for deriving functional annotations corre-
sponding to KEGG, SEED, GO, and Pfam from the COG annotations. It is therefore essential
to verify the accuracy of the derived annotations. Furthermore, since some options available in
COGNIZER utilize a ‘customized’ COG database (for reducing execution time), validation of
the COG annotations obtained using these options is also required. Therefore, COG, KEGG,
SEED, and Pfam annotations (for sequences in individual datasets) were obtained by ‘directly’
performing requisite homology searches against all sequences in the respective functional data-
base. Annotations obtained in this manner were considered as ‘benchmarks’. Given that GO

Fig 4. Workflows adopted in options 3 and 4 of the COGNIZER framework. A flow-diagram depicting the steps adopted in workflow options 3 and 4 of the
COGNIZER framework.

doi:10.1371/journal.pone.0142102.g004
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mappings in the COGNIZER framework were directly obtained from the GO website, the
benchmark validation procedure for GO annotations was not performed. The results obtained
with the four workflow options (in COGNIZER) were then compared against the pre-com-
puted benchmark values.

The performance of the COGNIZER framework was evaluated in terms of (a) execution
time (b) Positive Predictive Value (PPV), and (c) Negative Predictive Value (NPV). The latter
two metrics were calculated as follows:

PPV ¼ number of true positives= ðnumber of true positives
þ number of false positivesÞ

NPV ¼ number of true negatives= ðnumber of true negatives
þ number of false negativesÞ

Results and Discussion
The performance of various options of COGNIZER, in terms of PPV and NPV, is summarized
in Table 1. Results obtained with option 1 of COGNIZER (i.e. BLASTx followed by mapping
step) indicate high (average>0.98) PPV and NPV values as compared to the benchmark val-
ues. These results confirm the reliability of the cross-mapping database employed in the COG-
NIZER framework. A relatively lower accuracy (average>0.94) is observed with option 2

Table 1. Evaluation of COGNIZER's annotation results in terms of positive predictive value (PPV) and negative predictive value (NPV).

Sequencing Platform Dataset# Option COG
Annotation

KEGG
Annotation

Pfam
Annotation

SEED
annotation

PPV NPV PPV NPV PPV NPV PPV NPV

Illumina (Average Read Length: 100 bp) High Salt Metagenome (35446) 1 1.00 1.00 0.99 0.99 0.99 0.99 0.99 0.99

2 0.97 1.00 0.96 0.99 0.96 0.99 0.96 0.99

3 0.77 0.98 0.75 0.97 0.75 0.97 0.79 0.98

4 0.76 0.98 0.74 0.97 0.75 0.96 0.78 0.97

Medium Salt Metagenome
(38929)

1 1.00 1.00 0.99 0.99 0.99 0.99 0.99 0.99

2 0.98 1.00 0.97 0.99 0.97 0.99 0.96 0.99

3 0.79 0.97 0.76 0.96 0.78 0.96 0.80 0.97

4 0.78 0.96 0.76 0.95 0.78 0.95 0.80 0.96

Low Salt Metagenome (34296) 1 1.00 1.00 0.99 0.99 0.99 0.99 0.99 0.99

2 0.98 1.00 0.97 0.99 0.97 0.99 0.96 0.99

3 0.81 0.99 0.78 0.98 0.79 0.98 0.79 0.98

4 0.79 0.99 0.77 0.97 0.76 0.98 0.77 0.98

Illumina Metatranscriptomic Datasets (Average
Read Length: 209 bp)

SRR397002 (587272) 1 1.00 1.00 0.99 0.99 0.99 0.99 0.99 0.99

2 0.95 0.97 0.90 0.89 0.94 0.95 0.93 0.93

3 0.92 0.94 0.82 0.85 0.90 0.92 0.86 0.88

4 0.92 0.93 0.79 0.79 0.86 0.91 0.83 0.84

SRR397004 (570339) 1 1.00 1.00 0.99 0.99 0.99 0.99 0.99 0.99

2 0.96 0.96 0.94 0.92 0.93 0.94 0.92 0.94

3 0.93 0.93 0.86 0.90 0.87 0.90 0.82 0.90

4 0.90 0.91 0.83 0.84 0.85 0.83 0.76 0.86

SRR397074 (564583) 1 1.00 1.00 0.99 0.99 0.99 0.99 0.99 0.99

2 0.96 0.98 0.91 0.88 0.89 0.96 0.94 0.94

(Continued)
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Table 1. (Continued)

Sequencing Platform Dataset# Option COG
Annotation

KEGG
Annotation

Pfam
Annotation

SEED
annotation

PPV NPV PPV NPV PPV NPV PPV NPV

3 0.92 0.96 0.89 0.86 0.79 0.92 0.82 0.90

4 0.90 0.92 0.83 0.81 0.75 0.84 0.79 0.86

SRR397076 (561040) 1 1.00 1.00 0.99 0.99 0.99 0.99 0.99 0.99

2 0.95 0.97 0.92 0.90 0.93 0.92 0.92 0.90

3 0.93 0.95 0.87 0.91 0.89 0.90 0.88 0.84

4 0.91 0.91 0.80 0.86 0.85 0.88 0.83 0.79

SRR397079 (596020) 1 1.00 1.00 0.99 0.99 0.99 0.99 0.99 0.99

2 0.96 0.97 0.92 0.89 0.94 0.96 0.96 0.93

3 0.94 0.94 0.86 0.88 0.91 0.92 0.90 0.87

4 0.92 0.90 0.81 0.82 0.87 0.89 0.78 0.82

SRR397146 (583386) 1 1.00 1.00 0.99 0.99 0.99 0.99 0.99 0.99

2 0.97 0.97 0.92 0.91 0.93 0.92 0.93 0.94

3 0.94 0.94 0.89 0.90 0.88 0.89 0.84 0.90

4 0.90 0.91 0.81 0.87 0.87 0.82 0.81 0.87

SRR397148 (564583) 1 1.00 1.00 0.99 0.99 0.99 0.99 0.99 0.99

2 0.96 0.97 0.92 0.90 0.95 0.84 0.90 0.88

3 0.92 0.94 0.90 0.85 0.86 0.80 0.84 0.87

4 0.91 0.91 0.84 0.82 0.82 0.76 0.81 0.80

Roche 454 (Average Read Length: 350 bp) Malnourished Child Gut
Metagenome (1501481)

1 1.00 1.00 0.99 0.99 0.99 0.99 0.99 0.99

2 0.87 0.99 0.81 0.95 0.85 0.98 0.80 0.96

3 0.88 0.96 0.85 0.81 0.85 0.92 0.81 0.87

4 0.67 0.98 0.60 0.88 0.64 0.95 0.55 0.91

Healthy Child Gut Metagenome
(1501481)

1 1.00 1.00 0.75 0.94 0.77 0.94 0.79 0.95

2 0.86 0.99 0.96 0.98 0.96 0.98 0.95 0.98

3 0.89 0.97 0.85 0.98 0.86 0.98 0.87 0.98

4 0.66 0.98 0.98 0.98 0.98 0.98 0.98 0.98

Roche 454 Oral Metagenomic samples (Average
Read Length 400 bp)

4447101.3.6941 (295072) 1 1.00 1.00 0.99 0.99 0.99 0.99 0.99 0.99

2 0.99 0.99 0.94 0.96 0.97 0.96 0.97 0.96

3 0.97 0.98 0.91 0.92 0.94 0.94 0.79 0.94

4 0.96 0.96 0.84 0.89 0.91 0.92 0.79 0.89

4447102.3.6942 (244881) 1 1.00 1.00 0.99 0.99 0.99 0.99 0.99 0.99

2 0.98 0.99 0.95 0.96 0.97 0.96 0.92 0.97

3 0.96 0.97 0.83 0.92 0.95 0.94 0.78 0.94

4 0.96 0.95 0.76 0.88 0.92 0.83 0.77 0.92

4447103.3.6943 (464594) 1 1.00 1.00 0.99 0.99 0.99 0.99 0.99 0.99

2 0.99 0.99 0.95 0.94 0.97 0.98 0.94 0.95

3 0.96 0.97 0.91 0.89 0.93 0.96 0.88 0.90

4 0.95 0.93 0.85 0.89 0.90 0.95 0.82 0.86

4447192.3.7032 (204218) 1 1.00 1.00 0.99 0.99 0.99 0.99 0.99 0.99

2 0.99 0.99 0.95 0.95 0.97 0.95 0.92 0.94

3 0.97 0.96 0.89 0.88 0.95 0.92 0.83 0.92

4 0.96 0.92 0.82 0.84 0.93 0.74 0.77 0.88

(Continued)
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which adopts the RAPSearch algorithm in the search phase. This is expected since RAPSearch
employs a heuristic 'reduced amino acid alphabet' based search approach for reducing the asso-
ciated computational costs. In this context, it is interesting to note that the marginal gain in
annotation accuracy of BLASTx (option 1) over RAPSearch (option 2) comes at a huge compu-
tational cost. As observed in Table 2, RAPSearch takes only one-fourth of the processing time
required by BLASTx.

In spite of employing a directed search strategy against a customized (reduced) COG data-
base, the PPV and NPV values obtained with options 3 and 4 of COGNIZER (in majority of
cases) are observed to be in the range of 0.76–0.95 (Table 1). Significantly, for most datasets
having sequences with read-length greater than 300 bp, the mean PPV and NPV values of
options 3 and 4 are observed to relatively higher than those obtained with datasets with shorter
reads. The probable reason behind this observation is as follows. Sequence fragments of longer
lengths are more likely to generate relatively robust alignments thereby decreasing the likeli-
hood of predicting a false positive outcome. Furthermore, proteins typically comprise of multi-
ple functional domains. Consequently, the probability of encompassing information
corresponding to multiple protein domains is relatively higher for longer sequence fragments.
The slight improvement in results obtained with datasets having higher mean sequence lengths
(typically those from the 454-Roche and the Sanger sequencing technology) are a reflection of
the same. Given that most of the currently available sequencing technologies have the

Table 1. (Continued)

Sequencing Platform Dataset# Option COG
Annotation

KEGG
Annotation

Pfam
Annotation

SEED
annotation

PPV NPV PPV NPV PPV NPV PPV NPV

4447903.3.7714 (306740) 1 1.00 1.00 0.99 0.99 0.99 0.99 0.99 0.99

2 0.98 0.98 0.94 0.96 0.97 0.96 0.91 0.96

3 0.96 0.94 0.90 0.91 0.93 0.93 0.87 0.94

4 0.95 0.91 0.86 0.88 0.91 0.89 0.79 0.89

4447943.3.7744 (339503) 1 1.00 1.00 0.99 0.99 0.99 0.99 0.99 0.99

2 0.99 0.97 0.93 0.93 0.97 0.97 0.90 0.96

3 0.97 0.95 0.89 0.89 0.95 0.92 0.82 0.94

4 0.96 0.93 0.83 0.83 0.92 0.91 0.76 0.91

4447970.3.1 (70503) 1 1.00 1.00 0.99 0.99 0.99 0.99 0.99 0.99

2 0.99 0.98 0.93 0.94 0.97 0.97 0.89 0.94

3 0.96 0.96 0.88 0.90 0.95 0.93 0.81 0.94

4 0.96 0.91 0.84 0.86 0.92 0.92 0.70 0.89

4447971.3.6 (97722) 1 1.00 1.00 0.99 0.99 0.99 0.99 0.99 0.99

2 0.98 0.97 0.93 0.93 0.98 0.97 0.92 0.93

3 0.97 0.95 0.91 0.89 0.92 0.94 0.85 0.93

4 0.96 0.92 0.88 0.84 0.89 0.93 0.78 0.88

Sanger (Average Read Length: 1000bp) Acid Mine Drainage Metagenome
(180713)

1 1.00 1.00 0.99 0.99 0.99 0.99 0.99 0.99

2 0.98 0.78 0.93 0.74 0.96 0.72 0.90 0.87

3 0.95 0.82 0.65 0.79 0.82 0.73 0.63 0.90

4 0.95 0.68 0.72 0.66 0.86 0.63 0.69 0.80

# Number within brackets indicates the total number of reads in each of the validation datasets. For oral metagenomes, MG-RAST ids are provided as

dataset identifiers.

doi:10.1371/journal.pone.0142102.t001
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Table 2. Comparison of computing time required by different options in the COGNIZER framework.

Sequencing Platform Dataset# Option Time
(secs)*

Percentage Reduction in time as
compared to option 1

Illumina (Average Read Length: 100 bp) High Salt Metagenome (35446) 1 507 -

2 120 76.33

3 378 25.44

4 111 78.11

Medium Salt Metagenome
(38929)

1 551 -

2 125 77.31

3 392 28.86

4 111 79.85

Low Salt Metagenome (34296) 1 398 -

2 94 76.38

3 287 27.89

4 90 77.39

Illumina Meta-transcriptomic Datasets (Average
Read Length: 209 bp)

SRR397002 (587272) 1 15272 -

2 2772 81.85

3 9274 39.27

4 1136 92.56

SRR397004 (570339) 1 15491 -

2 2814 81.83

3 8949 42.23

4 1157 92.53

SRR397074 (564583) 1 17627 -

2 3579 79.70

3 9536 45.90

4 1595 90.95

SRR397076 (561040) 1 17979 -

2 3535 80.34

3 9282 48.37

4 1583 91.20

SRR397079 (596020) 1 14411 -

2 3039 78.91

3 7294 49.39

4 1759 87.79

SRR397146 (583386) 1 14664 -

2 3375 76.98

3 8261 43.66

4 1732 88.19

SRR397148 (564583) 1 13752 -

2 2986 78.29

3 7950 42.19

4 1697 87.66

Roche 454 (Average Read Length: 350 bp) Malnourished Child Gut
Metagenome (1501481)

1 56700 -

2 17040 69.95

3 40620 28.36

4 9840 82.65

(Continued)
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Table 2. (Continued)

Sequencing Platform Dataset# Option Time
(secs)*

Percentage Reduction in time as
compared to option 1

Healthy Child Gut Metagenome
(1501481)

1 48540 -

2 13800 71.57

3 36900 23.98

4 8220 83.07

Roche 454 Oral Metagenomic samples (Average
Read Length 400 bp)

4447101.3.6941 (295072) 1 19085 -

2 6048 68.31

3 12525 34.37

4 3706 80.58

4447102.3.6942 (244881) 1 14780 -

2 4466 69.78

3 9224 37.59

4 2728 81.54

4447103.3.6943 (464594) 1 30130 -

2 10084 66.53

3 20716 31.24

4 6048 79.93

4447192.3.7032 (204218) 1 11772 -

2 3621 69.24

3 8027 31.81

4 2382 79.77

4447903.3.7714 (306740) 1 18253 -

2 5713 68.70

3 12108 33.67

4 3725 79.59

4447943.3.7744 (339503) 1 21127 -

2 6852 67.57

3 13941 34.01

4 4143 80.39

4447970.3.1 (70503) 1 4087 -

2 1307 68.02

3 2763 32.40

4 882 78.42

4447971.3.6 (97722) 1 5652 -

2 1893 66.51

3 3803 32.71

4 1168 79.33

Sanger (Average Read Length: 1000bp) Acid Mine Drainage Metagenome
(180713)

1 21680 -

2 7100 67.25

3 9020 58.39

4 5650 73.94

* All validation experiments were performed on a CentOS (ver. 6.3) server having 64 Intel Xeon dual-core 2.3 Ghz processors and 128 GBs of RAM.

Individual options of COGNIZER were executed using 32 CPU threads.
# Number within brackets indicates the total number of reads in each of the validation datasets. For oral metagenomes, MG-RAST ids are provided as

dataset identifiers.

doi:10.1371/journal.pone.0142102.t002
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capability to generate reads with length of at least 250 bp, the results obtained with options 3
and 4 (with datasets having sequences of length 300 and above) assume relevance in the present
context. With respect to processing time, options 3 and 4 are observed to outperform options 1
and 2 respectively (Table 2), thereby reflecting the utility of the directed search strategy in
reducing the computational costs.

A heat map depicting correlation between the annotation results obtained using option 1
and those obtained using the other three options of COGNIZER is presented in Fig 5. In sum-
mary, validation results provided in Tables 1 and 2 along with results depicted in Fig 5 indicate
that options 2 and 4 represent an optimal trade-off between execution time and annotation
accuracy. It is pertinent to note here that all workflow options of COGNIZER (including
options 2 and 4) rely on the cross-mapping database for deriving annotations pertaining to dif-
ferent functional databases (KEGG, SEED, GO, and Pfam) using a single homology search
against the COG database. Consequently, this database constitutes a key component of this
stand-alone functional annotation framework. Interestingly, results presented in Tables 1 and
2 and Fig 5 further indicate that the drop in annotation accuracy with options 2–4 (as com-
pared to option 1) is more or less consistent across various datasets (irrespective of read
length). This is expected given that options 2–4 involve additional heuristic features. Overall,
the annotation accuracy appears to be dependent on both query sequence length as well as the
heuristic option employed.

COGNIZER relies primarily on the COG database. The main reason for choosing the COG
database is as follows. The COG database, comprising of approximately 200,000 protein

Fig 5. Correlation between prediction results obtained using option 1 and those obtained using the other three options in the COGNIZER
framework. A heat map of the correlation coefficients between the annotations obtained using option 1 and the other three options of COGNIZER
framework. Pearson correlation coefficients were obtained with a p-value confidence of <0.00001. In option 1, the BLASTx method is employed (in the
homology-search phase) for querying reads constituting metagenomic datasets. The search is performed against all sequences in the COG database. In the
subsequent 'mapping' phase, for each query, functional annotations are inferred using COGNIZER's cross-mapping database. In option 2 the RAPSearch
algorithm is used instead of BLASTx (in the homology-search phase). Option 3 and 4 are analogous to options 1 and 2 respectively, except that a reduced/
customised COG database is used during the homology-search phase.

doi:10.1371/journal.pone.0142102.g005
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sequences, is a relatively smaller database as compared to other protein databases. For instance,
the Pfam database, a collection of HMM profiles (not actual protein sequences), exceeds 1.2
GB (as compared to 70 MB of the COG database). Furthermore, the COG database captures
most of the known protein functional categories. A recent review has reported that, in spite of
the difference in database sizes, the quality of annotation (i.e. categorization of protein
sequences into functional classes) obtained using the COG and the RefSeq databases are com-
parable [1]. The directed-search approach employed in COGNIZER therefore helps in further
reducing the computing requirements without substantial loss in annotation accuracy. It is per-
tinent to note here that in all validation experiments, the peak memory requirement of COG-
NIZER rarely exceeded 500 MBs of RAM usage.

Usage of options 3 and 4, employing a reduced COG database in conjunction with cross-
mapping framework, is logically expected to result in some degree of loss in annotation accu-
racy. Not withstanding this fact, the availability of compute resources is expected to drive/dic-
tate the choice of options by end-users. For instance, analysis of the diabetes datasets [12,13]
(having a cumulative volume of 300–400 gigabytes) is expected to entail huge compute
resources and time, and hence usage of option 4 appears to be the logical choice. In spite of
some loss in annotation accuracy, the results generated using this option would help in obtain-
ing macro-level profiles (corresponding to various functional aspects) of these metagenomes.
Results presented in this study with varied datasets (with all four options) are expected to serve
as a guideline for end-users to decide upon an acceptable trade-off between execution time and
prediction accuracy based on the compute resources available at their end.

The architectures of existing protein databases (e.g. Pfam, COG, SEED, etc.) are not similar.
While the COG database is based on the evolutionary relatedness of genes/proteins from differ-
ent organisms, the Pfam database contains information pertaining to protein domains and
families. The KEGG annotations, in contrast, are employed for estimating metabolic pathways
that are functional among the organisms constituting a metagenome. With its cross-mapping
database, COGNIZER enables obtaining multiple functional annotations using a single homol-
ogy search.

A recently published study [3], has proposed an alternate approach (PAUDA) for annotat-
ing metagenomic datasets against protein databases. Although PAUDA outperforms all four
options (available in the COGNIZER framework) in terms of operational speed, the authors
report that the tool is able to achieve an assignment rate of only 33% as compared to BLASTx.
The NPV of PAUDA is therefore expected to be very low. In contrast, results obtained with all
four options of COGNIZER demonstrate significantly relative higher NPV values. In addition,
the cross-mapping utility in the COGNIZER framework enables end-users to obtain multiple
functional annotations (using a single homology search) in a time efficient manner. The COG-
NIZER framework therefore provides significant value addition to researchers working in the
field of metagenomics and metatranscriptomics.

COGNIZER software has been implemented as a generic framework. In principle, any
sequence alignment tool can be integrated within this framework for performing homology
searches of query sequences against sequences in the COG database (or its customized variant).
In the present implementation, sequence alignment tools which are compatible with both
32-bit and 64-bit system architectures were included. Given this, the present distribution of
COGNIZER does not integrate DIAMOND [28]—a recently published homology search tool
(with a 64-bit implementation) that can perform sequence alignments at a pace that drastically
exceeds any of the tools currently implemented in the COGNIZER framework. In spite of its
superior processing speed, experiments performed with the a subset of same datasets (used for
evaluating the performance of COGNIZER) indicated a lower sensitivity/specificity of DIA-
MOND as compared to that obtained with RAPSearch and/or BLASTx (S1 Fig). However, as
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mentioned above, end-users intending to harness the rapid processing speed of DIAMOND
can easily integrate this tool into the COGNIZER framework.

Conclusion
Validation results demonstrate that the COGNIZER framework is capable of comprehensively
annotating any metagenomic or metatranscriptomic dataset (from varied sequencing plat-
forms) in functional terms. Multiple search options in COGNIZER provide the flexibility for
choosing a homology search protocol based on available compute resources. The cross-map-
ping database in COGNIZER enables end-users to directly infer/derive Pfam, KEGG, GO, and
SEED subsystem annotations from COG categorizations. This cross-mapping greatly increases
the utility of COGNIZER. Furthermore, availability of COGNIZER as a stand-alone (scalable)
implementation is expected to make it a valuable annotation tool in the field of metagenomic
and metatranscriptomic research.

Supporting Information
S1 Fig. Comparison of the performance of RAPSearch and DIAMOND. Comparative analy-
sis of the specificity and sensitivity of RAPSearch and DIAMOND in comparison to BLASTX.
The analysis was performed at an e-value cut-off of 0.00001.
(TIF)
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