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O-GlcNAcylation is a dynamic post-translational modification where the sugar, O-linked b-
N-acetylglucosamine (O-GlcNAc) is added to or removed from various cytoplasmic,
nuclear, and mitochondrial proteins. This modification is regulated by only two
enzymes: O-GlcNAc transferase (OGT), which adds O-GlcNAc, and O-GlcNAcase
(OGA), which removes the sugar from proteins. O-GlcNAcylation is integral to
maintaining normal cellular function, especially in processes such as nutrient sensing,
metabolism, transcription, and growth and development of the cell. Aberrant O-
GlcNAcylation has been associated with a number of pathological conditions, including,
neurodegenerative diseases, cancer, diabetes, and obesity. However, the role of O-
GlcNAcylation in immune cell growth/proliferation, or other immune responses, is currently
incompletely understood. In this review, we highlight the effects of O-GlcNAcylation on
certain cells of the immune system, especially those involved in pro-inflammatory
responses associated with diabetes and obesity.
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INTRODUCTION

The immune system is a complex network of cells and proteins that has evolved to help the body
eradicate viral and bacterial pathogens. The pro-inflammatory responses of both the innate and
adaptive immune systems work in tandem to facilitate this activity. Inflammation caused by the
immune system in response to microbial infection and tissue damage provides protection against
future infections and sets up long-term adaptive immunity against these pathogens. Adaptive
immune memory cells trigger innate inflammatory immune responses to previously encountered
pathogens, initiating a quicker response to bolster the defenses against infection. Both the innate
and adaptive immune systems are pro-inflammatory when activated; however, chronic
inflammatory response contributes to numerous disease states while the mechanisms by which
these responses are initiated are not fully understood. One modification that plays a major role in
initiating the pro-inflammatory states of the immune system is O-GlcNAcylation, and the potential
mechanisms by which it does so are discussed below.
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T CELL ACTIVATION INDUCES A
METABOLIC SHIFT IN IMMUNE CELLS

Naive CD4+ T cells can differentiate into several classes of
activated T cells. Antigen-presenting cells (APC) with major
histocompatibility complex II (MHC II) present antigenic
peptides on its surface to activate naive T cells if the T cell
receptor recognizes the antigen, and if a second signal from a co-
stimulatory molecule like CD28 is also present (1, 2). The T cell
then becomes activated to respond specifically to that antigen
and proliferates rapidly to eliminate it (3). In order to maintain
the massive proliferation of the T cells, a complete metabolic
switch in adaptive immune cells is needed.

The metabolites needed to sustain this response rely on
aerobic glycolysis and glutaminolysis rather than oxidative
phosphorylation. This causes a sharp increase of various
metabolites that promote cell growth and differentiation. Early
studies demonstrated a sharp increase of glucose into activated T
cells (4). In addition to glucose, activated T cells also require
increased amounts of amino acids, such as glutamine (5).
Glutamine uptake is increased in activated T cells ten times
more than any other amino acid, underscoring the dependence
on this amino acid as an energy source for these cells (6). In
addition to its role in increased protein translation, glutamine
serves as a source of oxaloacetate (OAA) in the TCA cycle, which
produces citrate, that is transported out of the mitochondria and
then converted to acetyl-CoA (7). Acetyl-CoA is vital for fatty
acid and cholesterol synthesis (8); thus, increased glutamine
levels result in increased production of acetyl CoA, allowing
for greater fatty acid synthesis during the metabolic shift induced
by activated T cells. Notably, the metabolites produced during
these processes serve as substrates in the hexosamine
biosynthetic pathway (HBP), enabling the production of UDP-
GlcNAc, a necessary substrate for protein O-GlcNAcylation (9).
O-GLCNACYLATION REGULATES T CELL
ACTIVATION AND DIFFERENTIATION

O-GlcNAcylation is a post-translational protein modification
resulting from the enzymatic addition of a single, O-linked
b-N-acetylglucosamine (O-GlcNAc) molecule to the serine or
threonine residues of a protein. This modification can cycle on
and off of many cellular proteins found in the cytoplasm,
nucleus, and mitochondria. The two enzymes that regulate this
dynamic cycling are O-GlcNAc transferase (OGT), which adds
the sugar to proteins, and O-GlcNAcase (OGA), which removes
the sugar from proteins (10).

Multiple studies have provided support for the idea that the
dynamic cycling of O-GlcNAc plays an important role in the
activation and regulation of T cells. First, lymphocyte activation
during thymic development results in a rapid increase in levels of
O-GlcNAc on nuclear proteins and a coincident decrease in
levels on cytosolic proteins, suggesting a regulatory role in early
T cell development (11). Second, the downregulation of OGT via
siRNA-mediated knockdown leads to impaired IL-2 production,
Frontiers in Endocrinology | www.frontiersin.org 2
which affects the proliferative response of T cells (12). Consistent
with this, activation of primary human T cells through the T cell
receptor (TCR) leads to increased O-GlcNAc levels and elevation
in the expression of OGT, but not OGA, suggesting that the
addition of O-GlcNAc, but not its removal, is important for T
cell activation and cytokine production (13). This study also
identified several proximal O-GlcNAc substrates, such as ZAP-
70, SHIP1, and LCK, which are directly involved in immune cell
signaling via antigenic stimulation of the TCR. Increased OGT in
mouse adipocytes promotes the expression of leptin (14). The
adipose microenvironment is rich in CD4+ T cells, with leptin
signaling being an important regulator of T cell growth and
function (15). These findings demonstrate the importance of O-
GlcNAc early in the TCR pathway and its subsequent role in
regulating T cell activation.

Following TCR activation, naive CD4+ T cells can be
differentiated into any one of a variety of effector lineages,
depending on the microenvironment in which the cell
differentiates and the proximal signals the cell receives (e.g.
cytokines, APC ligands, etc.) These effector lineages include T
helper (Th)1, Th2, Th17, and regulatory T cells (Tregs). Each of
these effector cell types perform distinct functions. Th1, Th2, and
Th17 cells are responsible for the elimination of various
pathogens, while Tregs are responsible for the reduction of the
inflammatory immune response. Interestingly, O-GlcNAcylation
is necessary for both the differentiation and homeostasis of both
Th17 cells and Tregs (16, 17), outlining two opposing functions
in immune cell signaling. The production of IL-17A, a major
pro-inflammatory cytokine secreted by Th17 cells, is significantly
increased in response to treatment of splenic CD4+ T cells with
Thiamet G (TMG), a highly selective OGA inhibitor (16). TMG
treatment also increased the binding of RAR-related orphan
receptor gamma (RORgt) to the IL-17 promoter. Another pro-
inflammatory marker of Th17 function, the IL-23 receptor,
increased in response to TMG treatment. In adipose tissue,
saturated fatty acids released by the adipocytes promotes
differentiation of Th17 cells from naïve CD4+ T cells and
increases the production of both IL-17 and IFNg (18). Taken
together, the elevation of O-GlcNAcylation promotes IL-17
production and Th17 differentiation. On the other hand, O-
GlcNAcylation is also needed to stabilize Tregs by regulating the
transcription factor Forkhead box P3 (FOXP3) and activating
STAT5 (17). The varying roles of O-GlcNAcylation in T cell
differentiation demonstrates its importance as a regulator of
immune responses and T cell homeostasis.
O-GLCNACYLATION CAUSES
OTHER PRO-INFLAMMATORY
IMMUNE RESPONSES

As mentioned, the HBP produces UDP-GlcNAc, which is the
substrate utilized by OGT to O-GlcNAcylate proteins. The
amount of UDP-GlcNAc produced by the HBP relies on
the availability of glucose in a cell, with 2-3% of the glucose
entering a cell continuing down this pathway (19). Under
April 2021 | Volume 12 | Article 596617

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Qiang et al. O-GlcNAcylation in Immune Cell Activation
hyperglycemic conditions, such as in diabetes or obesity,
there is increased glucose flux through the HBP, consequently
producing more UDP-GlcNAc which then elevates O-GlcNA
cylation levels.

Higher levels of OGT in adipose tissue are also linked to
pro-inflammatory signaling in diabetes and hyperleptinemia,
again illustrating the role OGT plays in regulating immune
cells in adipose tissue (14). O-GlcNAcylation of the
transcription factor nuclear factor kappa-light-chain-enhancer
of activated B cells (NF-kB) under hyperglycemic conditions
increases transcriptional activity and decreases binding to
IkBa, a regulatory protein that inhibits NF-kB complex
activity (20). NF-kB plays an important role in T cell function
and development, especially in the subset Th17 cells, which
produce pro-inflammatory cytokines such as IL-17A, IL-17F,
IL-21, and IL-22 (21). Thus, over-stimulation of the NF-kB
signaling pathway, such as during increased O-GlcNAcylation
in hyperglycemia, has pro-inflammatory effects.

Other transcription factors that are modified by O-
GlcNAcylation include nuclear factor of activated T-cells
(NFAT), which is crucial for the function and differentiation
of T helper cells, such as Th1, Th2, and Th17 cells (22), and
STAT3, which is activated by numerous cytokines and growth
factors, including IL-6, a pro-inflammatory cytokine whose
dysregulation is related to the development of colorectal cancer
(23). O-GlcNAcylation induced by fibroblast growth factor 23
results in increased activation of NFAT and secretion of IL-6 in
the regulation of airway inflammation in human epithelial
bronchial cells (24). In addition, under hyperglycemic
conditions, higher levels of O-GlcNAcylation led to changes in
specific STAT3 sites of diabetic rat retinas (25). STAT3 O-
GlcNAcylation also negatively regulats its phosphorylation and
the production of IL-10, exacerbating inflammation and
inflammation-driven tumorigenesis in colon macrophages (26).
Taken together, these findings illustrate the necessity of O-
GlcNAcylation in promoting inflammation as part of the initial
immune response.
O-GLCNACYLATION PROMOTES
OPPOSING EFFECTS IN MACROPHAGES

M1 macrophages promote inflammation by secreting pro-
inflammatory cytokines and chemokines as part of the initial
immune response, such as IL-6, IL-10, and TNFa. On the other
hand, M2 macrophages are important in wound healing and
tissue repair, secreting anti-inflammatory cytokines like IL-10
and TGF-b. Changes in O-GlcNAcylation affects the polarization
of both kinds of macrophages, suggesting a regulatory role in
these innate immune cells.

The aggregation of pro-inflammatory macrophages
accompanies conditions such as diabetes and obesity. O-
GlcNAcylation has an essential function in promoting antiviral
innate immunity, as human and murine cells with OGT
deficiencies reported defective antiviral responses upon
vesicular stomach virus (VSV) challenge (27, 28). Cells with
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normal OGT levels demonstrate an increase in the HBP upon
VSV challenge, elevating O-GlcNAcylation of mitochondrial
antiviral-signaling protein (MAVS) to promote the innate
immune system. Thus, O-GlcNAcylation caused by VSV
challenge increases the function of M1 macrophages, boosting
the pro-inflammatory immune response.

Increased HBP activity is also a hallmark of the polarization
of M2 macrophages. The N-glycosylation pathway, which
requires uridine diphosphate N-acetylglucosamine (UDP-
GlcNAc) as a sugar donor, is essential for the expression of
M2 activation markers Relma, CD206, and CD301 (29).
Even though N-glycosylation has different functions than
O-GlcNAcylation, both share the substrate UDP-GlcNAc,
suggesting that changes in O-GlcNAcylation may affect N-
glycosylation levels (30) and thus M2 macrophage polarization.
For example, another study found that depletion of OGT in the
human macrophage cell line THP-1 adversely affected M2
polarization, but M1 genes were upregulated (31). OGT also
inhibits the pro-inflammatory activation of macrophages by
suppressing the phosphorylation of S6 kinase b-1, suppressing
mTORC1 signaling, which prevents pro-inflammatory gene
transcription (32). O-GlcNAcylation is therefore shown to be
an essential regulator of macrophage function, affecting both
the initial inflammatory response of M1 macrophages and the
anti-inflammatory response of M2 macrophages.
OGT EXACERBATES CYTOKINE
RELEASE SYNDROME IN
HYPERGLYCEMIC CONDITIONS

Cytokine release syndrome (CRS) is a systemic inflammatory
response that can be induced by a number of factors, including
severe viral infection (33). Recently, OGT was found to induce
CRS caused by influenza A virus (IAV) challenge (34). IAV
infection increases the amount of many metabolites involved in
both glycolysis and the HBP, leading to more O-GlcNAcylation
due to the increased availability of UDP-GlcNAc (Figure 1).
OGT interacts with interferon regulatory factor 5 (IRF5) to
mediate this IAV-induced cytokine storm. Furthermore, blood
samples from patients with IAV showed higher blood glucose
levels and higher expression of inflammatory cytokines like IL-6
and IL-8. This study links high blood glucose levels (thus
increased O-GlcNAcylation), with inflammatory cytokine
production upon IAV challenge (Figure 1). Future studies
could focus on the role of O-GlcNAc in other CRS related
diseases to further elucidate its role in causing this pro-
inflammatory condition.

In fact, CRS is often present in severe cases of COVID-19.
Patients with severe cases had higher levels of pro-inflammatory
cytokines like IL-6, IL-10, and TNFa (35). In addition, patients
with pre-existing conditions, such as diabetes, are at higher risk
for a rapid and more severe progression of COVID-19 and are
more susceptible to the development of a cytokine storm (36).
O-GlcNAcylation is increased in hyperglycemic conditions,
including diabetes, suggesting that O-GlcNAcylation may play
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a role in mediating CRS in severe cases of COVID-19. A link
between O-GlcNAc and SARS-CoV-2 was found, as prolonged
TMG treatment in tissue culture cells decreased expression of the
gene SARS, which encodes the ACE2 receptor (bound by SARS-
CoV-2) (37). Further exploration of the relationship between O-
GlcNAcylation and the gene SARS, as well as its involvement in
the onset of the pro-inflammatory cytokine storm, could lead to
the development of novel immunotherapies for combating
COVID-19.

O-GlcNAc has been the most widely studied in T cells, but
there is a burgeoning interest in its effects on other cells in the
immune system. Initial studies have found varying roles, both
pro-inflammatory and anti-inflammatory, for this post-
translational modification. But the specific mechanisms and
reasons for its variations have yet to be deeply explored.
Further studies are needed in order to more clearly understand
Frontiers in Endocrinology | www.frontiersin.org 4
the active role that this nutrient-sensitive modification has in the
immune system.
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FIGURE 1 | Influenza A virus challenge increases the availability of glucose and other metabolites involved in the hexosamine biosynthetic pathway (HBP), leading to
increased synthesis of UDP-GlcNAc and protein O-GlcNAcylation. O-GlcNAcylation of IRF5 causes translocation from the cytoplasm to the nucleus and elevates the
production of pro-inflammatory cytokines like IL-6, IL-8, IFN-b, and TNF-a.
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