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Abstract

Aedes aegypti is the primary vector of dengue, Zika, yellow fever and chikungunya viruses

to humans. In Africa, two subspecies, Ae. aegypti aegypti (Aaa) and Ae. aegypti formosus

(Aaf) have been described. Until very recently, it was considered that the two forms were

sympatric in East Africa and that only Aaf was present in Central and West Africa. However,

recent data suggests that Aaa was also common in Senegal without any clear evidence of

genetic differences with Aaf. This study was carried out in different Ae. aegypti populations

from Senegal to better clarify their taxonomic status. The larvae, pupae and eggs were col-

lected between July and September 2018 and reared individually to adult stage. For each

population, F1 progeny from eggs laid by a single female F0 were reared as sibling samples.

The number of pale scales on the first abdominal tergite (T1) and the basal part of the sec-

ond tergite (T2) were counted. Individuals with no pale scale on T1 were classified as Aaf

while those with at least one pale scale on this tergite were classified as Aaa. The morpho-

logical variations within families of Aaf were studied across 4 generations. In total, 2400 indi-

viduals constituting 240 families were identified, of which 42.5% were heterogeneous

(families with both forms). Multivariate statistical analysis of variance including T1 and T2

data together showed that populations were significantly different from each other. Statisti-

cal analysis of T1 alone showed a similarity between populations from the southeast while

variations were observed within northwest population. The analysis of family composition

across generations showed the presence of Aaa and Aaf forms in each generation. The

classification of Ae. aegypti into two subspecies is invalid in Senegal. Populations exhibit

morphological polymorphism at the intra-family level that could have biological and epidemi-

ological impacts.

Introduction

Zika (ZIKV), dengue (DENV), yellow fever (YFV) and chikungunya (CHIKV) viruses are

transmitted mainly by Aedes aegypti worldwide. These arboviruses have experienced a signifi-

cant geographic expansion, causing epidemics in different countries of Africa, Indian Ocean,

Asia, Pacific, Europe and America despite all the considerable efforts made for their control [1,
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2]. DENV is the most prevalent arthropod-borne virus in the world. More than half of the

world’s population is exposed to dengue fever and the number of infections is estimated at 390

million each year [3]. The four serotypes (DENV1-4) have all been reported In Africa.

Recently, epidemics of dengue 1 (DEN1) occurred in Senegal (2017 and 2018) and Burkina

Faso (2019) [4]. A re-emergence of CHIKV has been observed [5] especially in Asia and Indian

Ocean islands. ZIKV is the most frequently amplified arbovirus in Senegal [2, 6] and recently

has risen to considerable notoriety worldwide [7]. Despite the availability of a highly effective

vaccine YF outbreaks are still frequents in Africa [8], and has recently occurred in Democratic

Republic of Congo and Angola from which imported cases have been reported in China [9,

10]. Forty-seven countries, including 34 in Africa and 13 in Central and South America, are

endemic to YF [8, 11]. Without any specific treatment and licensed vaccines (with the excep-

tion of YF) against these arboviruses, vector control is the only way of effective prevention and

control. However, this vector control requires very precise targeting of the populations actually

involved in transmission and therefore better knowledge of their structuration. Ae. aegypti, the

most important epidemic vectors of DENV, ZIKV, CHIKV, and YFV, is present in practically

all tropical and intertropical areas especially between 35˚ North and 35˚ South latitudes [12]. It

is genetically the best characterized species in the genus Aedes [13]. This species presents great

morphological and behavioral variability, close proximity to humans and the ability to trans-

mit many pathogens [14, 15]. The first observation of morphological variations in Ae. aegypti
was made by Hill in 1921 in Queensland, Australia [16]. This author noted that populations of

Ae. aegypti which bred in the bush was darker than that associated with urban environment.

This implicit correlation between differences in color and behavior was among the many con-

cerns that prompted Mattingly to reassess the biology and taxonomy of Ae. aegypti [14, 17].

Considering the morphological, ecological and ethological data, he described a pale anthropo-

philic form which breeds in urban environment and a dark or wild form preferring natural

breeding sites and animals for blood meals. Following this correlation between the habitat, the

morphology and the behavior of the females, this author conventionally subdivided the species

into two subspecies: Ae. aegypti aegypti (Aaa) and Ae. aegypti formosus (Aaf). Aaa was consid-

ered as domestic and anthropophilic with at least one pale scale on the first abdominal tergite.

As for, Aaf was described as darker and characterized by the total absence of pale scales on this

first abdominal tergite. This form Aaf was supposed to be present only in Africa with sylvatic

and rather zoophilic behaviors. Referring to Mattingly’s work, McClelland proposed a classifi-

cation of the different forms based one the coloration encountered, ranging from the black "F"

form to the palest form "R" [15]. Applying this classification to a large population of Ae. aegypti
from around the world, this author questioned the notion of subspecies as defined by Mat-

tingly [14] and proposed the possibility of an incipient speciation [18]. Until very recently, it

was considered that the two forms were sympatric in East Africa without reproductive barrier

[19] and only Aaf would be present in Central and West Africa [14, 20]. However, recent data

suggests that Aaa was also common in Senegal and presented a northwest–southeast cline

with a dominance of Aaa in the northwest and Aaf in the southeast [21, 22]. Unlike morpho-

logical and bioecological data, the analysis of the genetic differentiation of Ae. aegypti popula-

tions from different localities in Senegal provides no clear evidence of the existence of two

genetically distinct groups [21, 23]. In addition, genetic relationships highlighted by several

molecular markers such as microsatellites and single nucleotide polymorphisms often do not

match with morphological similarities [24]. Overall, these results improve understanding of

the diversity of Ae. aegypti in West Africa, but so far, all these studies were done at population

level and none has been interested in intra-family morphological variations. However, a study

on the polymorphism within 196 families (each coming from a single female) from 18 anthro-

pophilic and non-anthropophilic populations of Ae. aegypti collected from different localities
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in South Africa, showed that 60.2% of the families were heterogeneous containing both Aaa
and Aaf individuals [25]. These results suggest that the classification of Ae. aegypti into two

subspecies is not valid in South Africa. A similar study in West Africa could help to explain the

lack of genetic structuring of Ae aegypti subspecies in this area. It is in this context that we con-

ducted this study on intra-family morphological polymorphism in different populations of Ae.
aegypti from Senegal to better clarify on their taxonomic status.

Materials and methods

Sampling sites

Samples were collected between July and September 2018 in three climatic areas correspond-

ing to three main rainfall area from south to north (Fig 1).

• Kédougou, PK10, and Tambacounda are located in the south of the country and are under-

going demographic and economic changes. They have a Sudano-Guinean and Sudano-

Sahelian climate. They are a crossroads of ecosystems characterized by a very diverse flora

and fauna which are the result partly of favorable climatic characteristics. It is the rainiest

area in the country (between 450 and 1300 mm/year from May to October) with tempera-

tures ranging from 21˚C to 42˚C.

• Dakar and Mbour are located in the west of the country dominated by a wooded savannah.

They are among the most urbanized cities in Senegal. This area benefits from a coastal

microclimate influenced by the trade winds and the monsoon. The relatively short hot and

humid season lasts from July to October with mean temperatures around 27˚C and annual

rainfall of 300 to 400 mm/year.

• Barkédji and Louga located in the northwest of the country are characterized by a dry Sahel-

ian climate with a vegetation consisting of a savannah with trees and a long dry season of 9

months or more. The short and unstable rainy season records rainfall between 300 mm and

390 mm in 24 rainy days. Temperatures range between 21˚C to 38˚C and relative humidity

between 30 and 75% [26].

All sampling sites in Kédougou, Tambacounda, Dakar, Mbour, Barkédji, and Louga were

located in the center of urban areas in the domestic environment while the sampling site at

PK10 were within a forest gallery in a sylvatic environment.

Field collection of samples

The samples were collected from various potential breeding sites of Ae. aegypti (Table 1). In

the domestic environment, artificial breeding sites (used tires, bricks) were prospected to col-

lect larvae and pupae. These immature stages were also collected in natural breeding sites (tree

holes, fruit husks and rock holes) from one single forest gallery located at 10 km from Kédou-

gou city (PK10). In this forest, the choice to study the variations of the two populations

(PK10Aaf and PK10Aaa) was motivated by the first notification during our sampling of both

forms (Aaf and Aaa) in sympatric in the natural breeding sites in contrast to previous data

which only reported the presence of the Aaf form [21]. Eggs were collected with trap consisting

of a black painted pot half filled with water in which an oblique piece of wood immersed at 2/3

was used as a laying substrate. These traps were hung in shaded places in the urban environ-

ment as well as in the forest. The samples were collected from sites at least 100 m apart.
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Ethics statement

No specific permits were required for this study. No specific permissions were required for

these activities and the locations investigated are not protected. This study did not involve

endangered or protected species. The study protocol was carefully explained to the heads and

inhabitants of each household investigated to obtain their informed oral consent.

Sample processing in the laboratory

Larvae and eggs were maintained under standard insectarium conditions [27] (temperature of

27± 1˚ C, relative humidity of 80% and a photoperiod of 12: 12h) until pupal stage. These

pupae, as well as those collected directly in the field, were individually placed in test tubes.

Fig 1. Collecting locations of Ae. aegypti populations, July-September 2018, Senegal. This map was created using the R software (version 4.0.2) and the package

rgdal using an empty shapefile from the HDX website (https://data.humdata.org/dataset/senegal-administrative-boundaries) available under Creative Commons

Attribution 4.0 International license.

https://doi.org/10.1371/journal.pone.0242576.g001
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After their emergence, adult mosquitoes (F0) were identified morphologically according to

the descriptions of Mattingly and Huang [14, 28] and then grouped by sex. Subsequently, they

were gently cold-anesthetized and their wings were spread using needles to check the presence

or not of pale scales on the first abdominal tergite under binocular dissecting microscope.

After identification, male and female individuals of the same form were pooled according to

their origin for mating. The Aaa forms were chosen in Dakar, Mbour, Barkedji and Louga for

the F0 parents while Aaf was chosen in Tambacounda and Kédougou and both forms in PK10

forest (Table 1).

F0 families egg batches production

For each population, 30 fully engorged Aaa or Aaf females were selected for individual egg

batches production. Each female was placed in a cup covered with a mosquito net and a cotton

wool soaked in water were deposited at the bottom to collect the eggs. These females were sub-

sequently fed with 10% sucrose and maintained under standard insectarium conditions as

describe previously.

Morphology of F1 progeny

Each egg batch (family) was reared separately into adults, and 10 F1 females identified. For

that, the wings of the mosquitoes were cut off at their base and theirs bodies fixed using a nee-

dle horizontally crossing the thorax. The number of pale scales on the first abdominal tergite

(T1) and the basal part of the second tergite (T2) were counted under a binocular dissecting

microscope (Motic ST-36C-6LED) at 40 times magnification.

To follow the morphological variations within families across 4 generations, egg batches

were produced from 5 pairs of Aaf for each generation. The different egg batches were sepa-

rately reared into adults and 10 females identified, as described previously, per egg batch.

Data analysis

Mosquito specimens without any pale scale on the T1 tergite were classified Aaf while those

with one or more pale scales on this T1 tergite were classified Aaa. Thus, families in which all

individuals had the same forms (Aaa or Aaf) were considered as homogeneous while families

which presented both forms (Aaa and Aaf) were considered as heterogeneous. The mean

numbers of pale scales on both tergites (T1 + T2) of the different populations were compared

by multivariate analysis of variances using the Wilk’Lambda test. The mean numbers of pale

scales on each tergite (T1 and T2) were compared using the Waller-Duncan t-test [29]. The rel-

ative abundance of the two forms across the generations was compared with the χ2 test.

Table 1. Breeding sites and collection stages of Aedes aegypti populations by locality, July-September 2018, Senegal.

Locality Latitude N Longitude W Breeding sites Stages collected Morphology of F0
Kédougou 12˚33’45.3” 12˚10’31.9” Used tires, bricks Larvae + pupa Aaf
PK10 forest 12˚36’43” 12˚14’46.80” TH, RH, FH, Ovitraps Larvae + pupa Aaa, Aaf
Tambacounda 14˚9’52.73” 14˚5’8.98” Used tires Larvae + pupa Aaf
Louga 15˚37’16.5” 16˚14’7.6” Ovitraps Eggs Aaa
Barkédji 15˚16’37.4” 15˚51’46.8” Ovitraps Eggs Aaa
Mbour 14˚25’7.6” 16˚57’23.1” Used tires, poultry waterers Larvae + pupa Aaa
Dakar 14˚40’22.5” 17˚26’36.9” Used tires, flower pots Larvae + pupa Aaa

TH = Tree holes, RH = Rock holes, FH = Fruit husks.

https://doi.org/10.1371/journal.pone.0242576.t001
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Statistical analyses were performed using the R software version 2.15.1 [30] and results were

considered significant when P < 0.05.

Results

A total of 2400 female progenies belonging to 240 families were identified and the number of

pale scales on their T1 and T2 counted. Out of the 240 families, 42.5% (102/240) and 15% (36/

240) were respectively Aaa and Aaf homogeneous families. The remaining families (42.5% of

the 240 families investigated) were heterogeneous, containing both the Aaa and Aaf forms

(Table 2). For each population studied, part of the F1 offspring were morphologically different

from their F0 parents. Populations from the southeast (Kédougou, PK10 and Tambacounda)

presented higher heterogeneity rates (Fig 2) compared to those from the northwest (Dakar,

Mbour, Louga and Barkédji) (P <0.05).

The Waller-Duncan t-test on T1 showed a similarity between Ae. aegypti populations from

Kédougou, PK10 and Tambacounda (Table 2) with an average number of 1 to 2 pale scales on

T1 (p> 0.05). However, variations were noted within Ae. aegypti populations from northwest

sites with on average of pales scales ranging from 31 to 40. The population from Barkédji

showed more pale scales on T1 (p<0.0001) whereas that from Dakar presented fewer pale

scales on T1 than the others (p <0.0001). On the other hand, the populations from Mbour and

Louga were comparable (p> 0.05). All of these populations had more pale scales on T1 than

those from the southeast (p<0.0001).

The same analysis made on T2 showed significant variations between populations from the

southeast and those from the northwest with the exception of Dakar and PK10Aaf which were

comparable (Table 2). A similarity was noted between populations from Barkédji and Louga

(p> 0.05) and between those from Kédougou and Tambacounda (p> 0.05).

When both tergites means (T1 + T2) were compared together by multivariate analysis, sig-

nificant variations were observed across the 8 populations studied (p< 0.000 1).

The analysis of the composition of the offspring of Aaf families across 4 generations showed

that the two forms (Aaa and Aaf) were present in each generation (Fig 3). The relative abun-

dance of the two forms was statistically different from one generation to another (p<0.05).

Table 2. Comparison of the average numbers of pale scales on T1 and T2 tergites and classification of F1 families in 8 Ae. aegypti populations, July-September 2018,

Senegal.

T1 T2 Number of families

Locality Nb min-max Mean sd p-value min-max Mean sd p-value Aaa Aaf Aaf+Aaa
Barkédji 300 0–122 40.09 22.04 a 0–68 17.62 12.76 a 21 0 9

Dakar 300 0–83 25.77 16.31 b 0–76 8.13 10.13 b 26 0 4

Louga 300 0–124 31.76 18.18 c 0–42 16.23 10.43 a 25 0 5

Mbour 300 0–87 31.89 14.45 c 0–04 12.00 8.49 c 27 0 3

PK10Aa 300 0–35 2.36 5.03 d 0–17 1.56 2.91 df 1 11 18

Kédougou 300 0–23 2.66 4.72 d 0–23 0.92 2.56 d 2 9 19

PK10Af 300 0–32 1.79 4.37 d 0–16 6.89 2.77 eb 0 5 25

Tambacounda 300 0–34 2.39 6.04 d 0–23 3.35 5.18 f 0 11 19

Total 2400 102 36 102

42.50% 15% 42.50%

Identical letters indicate populations with a comparable average number of scales. Nb, number of individuals examined; sd, standard deviation; min, minimum number

of scales; max, maximum number of scales; Aaa, homogeneous family Ae. aegypti aegypti; Aaf, homogeneous family Ae. aegypti formosus; Aaf + Aaa, heterogeneous

family.

https://doi.org/10.1371/journal.pone.0242576.t002
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Discussion

This study conducted on 2400 females belonging to 240 families, showed significant intra-fam-

ily morphological variations in different populations of Ae. aegypti from Senegal. Our data

showed that a part of the F1 progeny was morphologically different from their F0 parents what-

ever the population studied. This intra-family heterogeneity in the offspring noted during this

study suggest that the classification of Ae. aegypti into two subspecies by Mattingly [14] based

on the presence of pale scales on the first abdominal tergite (T1) should be considered as

invalid in Senegal. The presence of both forms (Aaf and Aaa) across the country (at family

level) is discordant with an earlier study which showed a southeast/northwest cline in the dis-

tribution of these two forms at population level with the exclusive presence of Aaf in the south-

east, Aaa in the northwest and both forms in the center of the country [21]. The non-detection

Fig 2. Proportion of homogeneous Aaa, homogeneous Aaf and heterogeneous (Aaf + Aaa) families of Ae. aegypti populations, July-September 2018, Senegal.

Two populations of Ae. aegypti from the Aaa (PK10Aaa) and Aaf (PK10Aaf) parents were investigated in the PK10 forest Site. This map was created using the R

software (version 4.0.2) and the package rgdal using an empty shapefile from the HDX website (https://data.humdata.org/dataset/senegal-administrative-

boundaries) available under Creative Commons Attribution 4.0 International license.

https://doi.org/10.1371/journal.pone.0242576.g002
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of Aaa in the southeast and Aaf in the northeast, in this previous study, could be explained by

their low intra-family proportions in the populations studied and the possible influence of

some factors (temperature, relative humidity, rainfall, etc.) favoring a high mortality of the less

represented forms. The impact of these factors could explain the southeast/northwest cline of

Aaa and Aaf as previously observed [21]. Comparative studies on the survival of both forms

from the southeast, center and northeast of Senegal are necessary to assess the possible impact

of these factors. Our results are similar to those obtained during a study of the polymorphism

Fig 3. Relative abundance of Aaa and Aaf forms across four generations (F2 to F5) of Aaf parents. Different letters indicate a significant difference from

one generation to another.

https://doi.org/10.1371/journal.pone.0242576.g003
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of Ae. aegypti populations in South Africa [25]. Indeed, the author by rearing separately the

progenies of several females of Aaf or Aaa has observed the presence of both forms in several

families. As in South Africa, the proportion of homogeneous Aaf families was lower than that

of the homogeneous Aaa and the heterogeneous families. However, the proportion of homo-

geneous Aaf families was more important in Senegal. These intra-family morphological varia-

tions could explain the significant variations observed within and between different Ae.
aegypti populations worldwide. These variations also explain the presence in sympatry of both

forms, formerly considered as 2 different subspecies, in sub-Saharan Africa from natural and

artificial breeding sites [14, 21, 31–33]. It is interesting to note that our results are in perfect

agreement with all the genetic studies which did not show any clear differentiation between

individuals belonging to the two forms collected in several localities of Senegal [21–23, 34, 35].

The intra-family morphological variations of Ae. aegypti populations in other parts of Africa

should be systematically reviewed to determine their taxonomic status. The heterogeneity

rates in the progeny were higher in the populations from the southeast (Kédougou, PK10 and

Tambacounda) compared to those from the northwest (Dakar, Mbour, Louga and Barkédji).

That could be explained by an increase of Aaa specimens in this area in correlation with the

beginning of an adaptation to the domestic environment of these so-called wild populations.

Consistent with these data, a recent study showed the existence of a highly anthropophilic

neo-population of Ae. aegypti in this area (unpublished data). Based on the average number of

pale scales on T1 tergite, our results showed a similarity in populations from the southeast

(Kédougou, PK10 and Tambacounda). This could be explained by a conservation of sylvatic

characters, in particular the dark coloring of tergites in these populations evolving under the

same ecological conditions and dominated by the Aaf form [21, 23]. Indeed, an impact of cli-

matic factors including temperature and relative humidity on the geographic distribution of

the two forms has been noted by some authors [32, 36]. In agreement with other studies, our

results showed variations in coloration on the basal part of T2 ranging from complete absence

to well-marked bands [15, 25]. These variations less reflected the geographic distribution of

the two forms in Senegal compared to T1.

The presence of both forms across the four generations of Aaf parents seems to confirm

that the coloring of scales on T1 is a polymorphic morphological character within families. Ae.
aegypti should be viewed as a highly polymorphic rather than a polytypic species.

Other studies reported chromosomal inversions in Aaf from Senegal [37] and elsewhere

with genetic introgression between Aaa and Aaf [38] suggesting a chromosomal polymor-

phism in Ae. aegypti populations. These chromosomal inversions have been directly associated

with behaviors such as feeding behavior [39, 40], oviposition site preferences [41, 42], insecti-

cide resistance [43] and immune response to parasites [44, 45] in malaria mosquito vectors.

Moreover, mutant markers for abdominal coloring have been reported on Ae. aegypti chromo-

somes [13, 46].

Many studies showed that Aaa populations have higher vector competence compared to

Aaf [21, 47]. This difference in vector competence could be linked to differences in compe-

tence of individuals of both forms. Thus, to test this hypothesis, it would be interesting to com-

pare the intra-family variations in vector competence of individuals belonging to the Aaf and

Aaa forms.

Conclusion

This study revealed a morphological polymorphism at intra-family level in different popula-

tions of Ae. aegypti from Senegal. The presence of pale scales on T1 as a classification criterion

for the two forms should be considered as invalid in Senegal. However, this study reveals two
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distinct groups; a group located in the southeast of the country with an average of 1 to 2 pale

scales on T1 and another group in the northwest with an average of 31 to 40 pale scales on

same tergite. Additional detailed chromosome and/or genomic studies could give more expla-

nation to these intra-family and inter-population morphological variations which could have

an impact on biological parameters and the transmission of pathogens by Ae. aegypti in

Senegal.
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