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Background. Clostridioides difficile infection (CDI) is a leading cause of health care–associated infection and may result in 
organ dysfunction, colectomy, and death. Published risk scores to predict severe complications from CDI demonstrate poor 
performance upon external validation. We hypothesized that building and validating a model using geographically and 
temporally distinct cohorts would more accurately predict risk for complications from CDI.

Methods. We conducted a multicenter retrospective cohort study of adults diagnosed with CDI. After randomly partitioning 
the data into training and validation sets, we developed and compared 3 machine learning algorithms (lasso regression, random 
forest, stacked ensemble) with 10-fold cross-validation to predict disease-related complications (intensive care unit admission, 
colectomy, or death attributable to CDI) within 30 days of diagnosis. Model performance was assessed using the area under the 
receiver operating curve (AUC).

Results. A total of 3646 patients with CDI were included, of whom 217 (6%) had complications. All 3 models performed well 
(AUC, 0.88–0.89). Variables of importance were similar across models, including albumin, bicarbonate, change in creatinine, non- 
CDI-related intensive care unit admission, and concomitant non-CDI antibiotics. Sensitivity analyses indicated that model 
performance was robust even when varying derivation cohort inclusion and CDI testing approach. However, race was an 
important modifier, with models showing worse performance in non-White patients.

Conclusions. Using a large heterogeneous population of patients, we developed and validated a prediction model that estimates 
risk for complications from CDI with good accuracy. Future studies should aim to reduce the disparity in model accuracy between 
White and non-White patients and to improve performance overall.
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Clostridiodes difficile infection (CDI) is the leading cause of 
health care–associated infection in US hospitals, accounting 
for nearly 500 000 infections per year [1, 2]. Furthermore, ∼8% 
of patients with CDI may develop disease-related complications, 
including organ dysfunction, severe sepsis, colectomy, and death 
[3]. In addition to the substantial patient morbidity and mortal-
ity, CDI results in $4.8 billion in acute health care costs in the 
United States, with even more costs associated with non–acute 

care settings [4]. While treatments to reduce the risk of adverse 
outcomes exist, it is not optimal to use them in all patients due to 
cost, invasive nature, and/or experimental status (eg, fecal trans-
plant or colectomy). Thus, there is a need to identify patients at 
risk for adverse outcomes from CDI.

Although risk scores to identify patients at risk for 
CDI-related complications have been developed, these scoring 
systems have limited generalizability due to being developed in 
small, single-center cohorts and have not undergone external 
validation [5–13]. Recently, our group demonstrated that pub-
lished CDI severity scoring systems performed poorly when test-
ed on a large, multicenter cohort within the United States [14]. 
Thus, an accurate prediction model that can be applied early af-
ter CDI diagnosis is needed to identify patients at risk for com-
plications from CDI, which may allow for more equitable 
allocation of treatments to minimize adverse CDI outcomes. 
In this study, we aimed to determine whether using structured 
electronic health record data from several geographically distinct 
centers in the United States would provide a more generalizable 
predictive model for complicated CDI.
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METHODS

Patient Cohorts

We conducted a retrospective cohort study at 4 geographically 
and temporally distinct cohorts, including (1) the University of 
Michigan (UM) from 2010 to 2012 and (2) 2015 to 2016; (3) 
University of Wisconsin (UW) from 2014 to 2015; and (4) 
the University of Chicago (UC) from 2013 to 2015, as previous-
ly described [14]. Adult subjects age ≥18 years diagnosed with 
CDI were included in our analysis. CDI was diagnosed by the 
presence of diarrhea (≥3 unformed stools in a 24-hour period) 
and positive stool testing. At UW and UC, a diagnosis of CDI 
was made using a positive real-time polymerase chain reaction 
(PCR) for the tcdB gene (Simplexa C. difficile Universal Direct, 
Diasorin Molecular LLC, Cypress, CA, USA). At UM, a diagno-
sis of CDI was made using 2-step mechanism testing in which 
C. difficile glutamate dehydrogenase (GDH) and toxins A or B 
(C. Diff Quik Chek Complete, Alere, Waltham, MA, USA) were 
evaluated, and discordant result (GDH+/toxin−) stool tests 
were subjected to analysis for the tcdB gene by real-time PCR.

Primary Outcome

We defined CDI as complicated if it led to any of 3 adverse out-
comes within 30 days of CDI diagnosis: admission to intensive 
care unit (ICU), colectomy, or death attributable to CDI as de-
termined by the study team physicians [12, 15]. If patients had a 
positive CDI diagnosis but were admitted to the ICU, under-
went colectomy, or died for reasons not attributable to CDI, 
they were not included in our composite outcome for compli-
cated CDI. For example, a patient admitted to the ICU for sep-
tic shock secondary to pneumonia while actively being treated 
for CDI would not have met our primary outcome definition. 
Complicated CDI was determined manually by chart review 
at each center by an infectious disease specialist or gastroenter-
ologist with expertise in C. difficile. A diagnosis of complicated 
CDI could be made independently of when the CDI was con-
firmed as attributions were made in a retrospective manner (af-
ter discharge) when the complete hospital course was available 
for review. Clinical and demographic variables including co-
morbidities, medications, vitals, laboratory results, and study 
results (such as radiographic imaging) were collected for each 
patient’s admission through automated query of the electronic 
health record (EHR).

Patient Consent

Written informed consent was not obtained as this study did 
not include factors necessitating patient consent. The institu-
tional review boards at UM, UW, and UC gave ethical approval 
for this work.

Predictor Variables

A total of 32 predictor variables were evaluated for inclusion in 
the final model based on literature review of clinically relevant 

factors (Supplementary Table 1). All variables had to be collect-
ed within 48 hours of CDI diagnosis to be included for analysis. 
Non-CDI-related ICU admission and non-CDI concurrent an-
tibiotics were included as predictor variables only if ICU ad-
mission and/or antibiotic use were unrelated to CDI. For 
example, a patient admitted to the ICU postoperatively who 
subsequently developed CDI would not be eligible to meet cri-
teria for the composite outcome (ie, ICU, colectomy, death), 
but non-CDI-related ICU admission would be included as a 
predictor of CDI-related complication.

Data Preprocessing

We used R, version 4.0.2 (R Foundation for Statistical 
Computing, Vienna, Austria), for cleaning and munging 
data. Data were randomly split, with 75% of the data used for 
model training and the remaining 25% data held out for testing 
and validation. The data were stratified by the proportion of se-
vere CDI events so that the distribution of the outcome was 
maintained in both the training set and the test set. We inten-
tionally did not split the data by cohort in order to maintain the 
generalizability of our results across centers and time. 
However, we did investigate site-specific variations in patient 
demographic composition and clinical practice patterns 
around the diagnosis and management of CDI (see sensitivity 
analysis below). Missing data were imputed using the R pack-
age missForest [16], a random forest–based multiple imputa-
tion method previously shown to have the lowest imputation 
error for both continuous and categorical variables [17]. Of 
note, only laboratory data and vital signs were imputed, while 
demographic data, such as age, gender, and race, and comorbid 
conditions were not imputed as there were no missing data for 
these variables. Numeric variables were centered and scaled 
while categorical variables were recoded into dummy variables.

Model Development and Testing

With the randomly selected 75% of subjects included in the 
training set, we developed 3 separate machine learning classifi-
cation models using the Tidymodels framework [18], including 
least absolute shrinkage and selection operator (lasso) 
L1-regularized regression with the R package glmnet [19], ran-
dom forest with the R package ranger [20], and extreme gradi-
ent–boosted trees with the R package XGBoost [21]. The best 
performing algorithms were combined in an ensemble model 
using stacking with the R package stacks [22]. Machine learning 
algorithms were first applied to training data to parameterize 
and fit the model. Ten-fold cross-validation was utilized to es-
timate model accuracy and tune model hyperparameters. To 
evaluate the prediction accuracy of machine learning models, 
areas under the receiver operating characteristic curve 
(AUCs) were calculated for each model using the independent 
test data consisting of the remaining 25% of patients not select-
ed for the training set (Figure 1).
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Variable Importance

Variable importance was determined by using the R package 
vip [23], which provides model-specific variable importance 
scores. To further improve interpretability, we also performed 
locally interpretable model-agnostic explanations using the R 
package breakDown [24], which decomposes model predic-
tions into parts that can be attributed to particular variables.

Sensitivity Analyses

We performed several post hoc analyses to assess model perfor-
mance and generalizability with regards to differences in study sites, 
time periods, clinical practice patterns around the diagnosis and 
management of CDI, and participant demographic composition.

RESULTS

Patient Characteristics

A total of 3646 patients who were diagnosed with CDI were an-
alyzed from 4 cohorts (Table 1). The total population had a 
mean age (SD) of 58.2 (18.0) years, with 53.1% of the popula-
tion being female. Age and sex were similar among the 4 co-
horts. UC was composed of a Black majority (53.2%), 
whereas all other sites were predominantly White (81.6%– 
92.2%). In addition, the UM 2015–2016 cohort was the only co-
hort with outpatients (27.4%). A total of 217 patients (6.0%) 
met the primary end point, including 64 (4.8%) in the UC co-
hort; 90 (7.9%) in the UM 2010–2012 cohort; 28 (4.3%) in the 
UM 2015–2016 cohort; and 35 (6.8%) in the UW cohort. Mean 

laboratory values, vital signs, and comorbid conditions are pre-
sented by cohort in Table 1.

Model Training and Performance

Lasso regression, random forest, and stacked ensemble models 
all performed well, with AUC scores ranging from 0.88 to 0.89 
(Figure 2; Supplementary Table 2) when tested on an indepen-
dent test data set. XGBoost models performed poorly (AUC, 
0.50) and were not carried forward in subsequent analyses. 
Model calibration plots for the 3 models are illustrated in 
Supplementary Figure 1. The calibration plots for the 3 models 
show minimal mismatch between the probabilities predicted by 
the model and the probabilities observed in the data, with the 
stacked ensemble model demonstrating the best calibration 
(closest to the straight diagonal reference line).

Sensitivity Analyses
Generalizability of Models
For the site-specific cohort analysis, we trained the machine 
learning algorithms on 3 cohorts and validated model perfor-
mance on the fourth cohort. We repeated this process 3 times 
so that models were built on the other 3 and then validated on 
each individual remaining cohort (Supplementary Figure 2). 
Because our cohorts included subjects diagnosed from 2012 
to 2016, this process also served as a temporal validation. We 
found that models trained on only 3 cohorts were able to pre-
dict complicated CDI in the fourth cohort with high accuracy. 
Model performance was robust in this sensitivity analysis 

Figure 1. Model development and validation strategies. Data from University of Michigan 2010–2012 and 2015–2016, University of Wisconsin 2014–2015, and University 
of Chicago 2013–2015 were randomly split into a training set (75%) and an independent test set (25%). Four separate classification models, including least absolute shrink-
age and selection operator (lasso), random forest, extreme gradient boosted trees (XGBoost), and ensemble model using stacking were evaluated. Ten-fold cross-validation 
was utilized to tune model hyperparameters. Model accuracy was then evaluated by calculating area under the receiver operating characteristic curves and calibration curves 
for each model using independent test data. Variable importance and breakdown plots were also performed to determine feature importance for each model.
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Table 1. Patient Characteristics

University of Chicago 
(2013–2015) (n = 1341)

University of Michigan 
(2010–2012) (n = 1144)

University of Michigan 
(2015–2016) (n = 646)

University of Wisconsin 
(2014–2015) (n = 515)

Total Patient 
Population (n = 3646)

Age, mean (SD), y 58.7 (18.5) 57.3 (18.0) 57.7 (18.2) 59.2 (16.1) 58.2 (18.0)

Female, No. (%) 703 (52.4) 625 (54.6) 344 (53.3) 264 (51.3) 1936 (53.1)

Race, No. (%)

White 545 (40.6) 933 (81.6) 558 (86.4) 475 (92.2) 2511 (68.9)

Black 713 (53.2) 147 (12.8) 46 (7.1) 26 (5.0) 932 (25.6)

Other 83 (6.2) 64 (5.6) 42 (6.5) 14 (2.7) 203 (5.6)

Inpatient admission, No. 
(%)

1341 (100.0) 1144 (100.0) 469 (72.6) 515 (100.0) 3469 (95.1)

Non-CDI ICU admission, 
No. (%)

84 (6.3) 144 (12.6) 9 (1.4) 61 (11.8) 298 (8.2)

Disease-related complications from C. difficile, No. (%)

30-d mortality 39 (2.9) 49 (4.3) 23 (3.6) 17 (3.3) 128 (3.5)

30-d colectomy 16 (1.2) 4 (0.3) 1 (0.2) 5 (1.0) 26 (0.7)

30-d ICU admission 18 (1.3) 49 (4.3) 5 (0.8) 26 (5.0) 98 (2.7)

Total composite end 
point, mean (SD)

64 (4.8) 90 (7.9) 28 (4.3) 35 (6.8) 217 (6.0)

Concomitant non-CDI 
antibiotic use within 
30 d, No. (%)

908 (67.7) 756 (66.1) 228 (35.3) 354 (68.7) 2246 (61.6)

Peak WBC count, mean 
(SD), K/μL

11.3 (12.0) 13.4 (12.4) 12.2 (15.5) 13.7 (20.2) 12.5 (14.1)

Baseline creatinine, 
mean (SD), mg/dL

1.6 (2.2) 1.4 (1.7) 1.2 (1.3) 1.5 (1.9) 1.5 (1.9)

Peak creatinine, mean 
(SD), mg/dL

2.1 (2.4) 1.6 (1.8) 1.3 (1.4) 2.0 (2.4) 1.8 (2.1)

Creatinine change, 
mean (SD), mg/dL

0.5 (1.1) 0.3 (1.1) 0.1 (0.7) 0.5 (1.0) 0.4 (1.0)

Acute kidney injury, No. (%)

None 734 (54.7) 797 (69.7) 299 (46.3) 289 (56.1) 2119 (58.1)

Stage 1 588 (43.8) 336 (29.4) 47 (7.3) 159 (30.9) 1130 (31.0)

Stage 2 3 (0.2) 0 (0.0) 0 (0.0) 0 (0.0) 3 (0.1)

Stage 3 734 (54.7) 797 (69.7) 299 (46.3) 289 (56.1) 2119 (58.1)

Lowest albumin, mean 
(SD), g/dL

3.034 (0.707) 3.157 (0.664) 3.305 (0.739) 2.650 (0.676) 3.083 (0.716)

Lowest hemoglobin, 
mean (SD), g/dL

9.725 (1.889) 9.489 (1.990) 10.016 (2.346) 9.253 (2.239) 9.628 (2.062)

Peak platelets, mean 
(SD), K/μL

250.434 (147.188) 258.749 (186.944) 259.821 (135.329) 217.984 (125.550) 250.003 (157.399)

Lowest sodium, mean 
(SD), mmol/L

136.008 (4.728) 136.508 (4.214) 137.767 (3.790) 136.903 (4.388) 136.571 (4.419)

Lowest bicarbonate, 
mean (SD), mmol/L

20.090 (4.524) 23.603 (4.527) 24.403 (4.412) 22.606 (4.453) 21.611 (4.836)

Maximum body 
temperature, mean 
(SD), °F

98.924 (0.785) 99.526 (1.462) 99.982 (1.616) 99.759 (1.499) 99.395 (1.340)

Maximum systolic blood 
pressure, mean (SD), 
mmhg

105.965 (9.102) 99.329 (19.353) 93.894 (18.664) 99.479 (16.855) 101.164 (16.142)

No. of positive prior 
CDIs, mean (SD)

0.192 (0.394) 0.266 (0.442) 0.289 (0.454) 0.058 (0.234) 0.213 (0.410)

Peripheral vascular 
disease, No. (%)

109 (8.1) 75 (6.6) 153 (23.7) 107 (20.8) 444 (12.2)

Peptic ulcer disease, No. 
(%)

0 (0.0) 27 (2.4) 67 (10.4) 4 (0.8) 98 (2.7)

Congestive heart failure, 
No. (%)

323 (24.1) 151 (13.2) 153 (23.7) 129 (25.0) 756 (20.7)

Malignancy, No. (%) 225 (16.8) 220 (19.2) 0 (0.0) 515 (100.0) 960 (26.3)

Metastatic malignancy, 
No. (%)

156 (11.6) 61 (5.3) 0 (0.0) 41 (8.0) 258 (7.1)
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(AUC ranging from 0.84 to 0.92), although there was a drop in 
performance when the data from UC were used as the test set 
(AUC, 0.75–0.76) (Figure 3; Supplementary Table 2).

Impact of Non-CDI-Related ICU Admission as Predictor Variable
Given the potential for shared information between CDI-related 
complications as an outcome and non-CDI-related ICU admis-
sion, we performed a sensitivity analysis to determine whether 
model performance was affected when excluding non-CDI- 
related ICU admission as a predictor variable (lasso model: 
AUC, 0.82; 95% CI, 0.77–0.88; random forest: AUC, 0.82; 95% 
CI, 0.77–0.89; stacked ensemble: AUC, 0.83; 95% CI, 0.77– 
0.89) (Supplementary Figure 3, Supplementary Table 2).

PCR vs Two-Step Diagnosis for CDI
As the definition of CDI varied by individual centers, we per-
formed an additional sensitivity analysis to determine whether 
diagnosis of CDI by PCR only vs 2-step mechanism (PCR 
screen with enzyme immunoassay confirmation) influenced 
our model predictions. Sites that utilized PCR only (ie, UW 
and UC) were analyzed separately from sites that utilized a 
2-step diagnostic approach (ie, UM 2010 and 2016). We again 
randomly split the data, training the model on 75% of the data, 
and tested and validated our models on the remaining held-out 
25% of the data (Supplementary Figure 4). For sites that used 
2-step testing (ie, UM 2010 and 2016), our models retained ex-
cellent performance (AUC, 0.89–0.91), while model perfor-
mance was lower when using sites that used PCR testing 
alone (ie, UW and UC) as the hold-out test set (AUC, 0.79– 
0.84) (Supplementary Figure 5, Supplementary Table 2).

Effect of Race on Model Prediction
Finally, we noted our discrepant model performance in the UC 
cohort, which included a larger proportion of subjects self- 
reporting as Black race. Given this observation and the growing 
concern about implicit bias with machine learning algorithms 

[25, 26], we performed a fourth set of sensitivity analyses to de-
termine whether self-reported race may affect model predictions. 
We first determined whether machine learning algorithms may 
predict race. Because of low numbers of Hispanic/Latino, 
Asian, American Indian/Alaska Native, or mixed races at each 
site, patients were grouped into White vs non-White categories. 
Second, as UC had a much higher proportion of patients self- 
reporting as Black compared with other sites, we trained and val-
idated models using data from White patients only at UC and 
compared the prediction with a model trained and validated 
on the entire cohort from UC. Third, using data from all 4 co-
horts, we stratified our models by race to determine if race affect-
ed model prediction (Supplementary Figure 6). Using data from 
all 4 cohorts, we first determined that lasso and random forest 
algorithms were able to predict race with reasonable accuracy 
(AUC, 0.75 for lasso; AUC, 0.78 for random forest).

Next, using data only from White patients at UC, our models 
showed good performance for predicting disease-related com-
plications from CDI (AUC, 0.87 for both lasso and random for-
est). However, we found that performance worsened when we 
trained and validated the model on all patients at UC (AUC, 
0.76 for lasso; AUC, 0.75 for random forest).

We then investigated whether race was predictive of compli-
cated CDI. We found that non-White race was not associated 
with complicated CDI in all cohorts (P = .71) as well as in 
each cohort (P = .53, P = .15, P = .46, and P = .68 for UC, 
UW, UM 2010, and 2016, respectively). We further found 
that non-White race was not associated with individual compo-
nents of the composite outcome (ie, ICU admission, colectomy, 
or death related to CDI) for the entire cohort as well as for each 
individual cohort (data not shown).

Finally, when using data from only White patients in all 4 co-
horts, our models showed good performance for predicting com-
plicated CDI (AUC, 0.84 for lasso; AUC, 0.86 for random forest 
and stacked ensemble). However, when using data from 
non-White patients at all 4 cohorts, models showed worse 

Table 1. Continued  

University of Chicago 
(2013–2015) (n = 1341)

University of Michigan 
(2010–2012) (n = 1144)

University of Michigan 
(2015–2016) (n = 646)

University of Wisconsin 
(2014–2015) (n = 515)

Total Patient 
Population (n = 3646)

Chronic pulmonary 
disease, No. (%)

333 (24.8) 320 (28.0) 205 (31.7) 157 (30.5) 1015 (27.8)

Rheumatoid arthritis, 
No. (%)

189 (14.1) 77 (6.7) 39 (6.0) 39 (7.6) 344 (9.4)

Diabetes without 
complication, No. (%)

290 (21.6) 267 (23.3) 187 (28.9) 171 (33.2) 915 (25.1)

Diabetes with 
complication, No. (%)

100 (7.5) 127 (11.1) 0 (0.0) 94 (18.3) 321 (8.8)

Renal disease, No. (%) 410 (30.6) 309 (27.0) 230 (58.2) 196 (38.1) 1145 (33.7)

Obesity, No. (%) 116 (8.7) 72 (6.3) 164 (25.9) 18 (3.5) 370 (10.2)

Inflammatory bowel 
disease, No. (%)

97 (7.2) 110 (9.6) 108 (16.7) 26 (5.0) 231 (9.2)

Abbreviations: CDI, Clostridioides difficile infection; ICU, intensive care unit; WBC, white blood cell.
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performance (AUC, 0.62 for lasso; AUC, 0.68 for random forest; 
AUC, 0.67 for stacked ensemble) (Supplementary Figure 7). 
Similar variables were found to be important for predicting com-
plicated CDI in White and non-White patients, including baseline 
and peak serum creatinine levels, use of non-CDI-related antibiot-
ics, non-CDI-related ICU admission, low systolic blood pressure, 
and low serum bicarbonate levels (Supplementary Figure 8).

Predictive Features for Complicated CDI
Using variable importance analysis, the variables of importance 
were similar across models but varied in their relative contribu-
tion to each model (Figure 4A, B). The top predictors shared 
across all models included albumin, bicarbonate, change in cre-
atinine, systolic blood pressure, non-CDI-related ICU admis-
sion, and concurrent non-CDI antibiotics.

Breakdown plots were also generated to determine how each 
variable contributed to a final prediction. Absence of factors 
such as non-CDI-related ICU admission, concurrent non- 
CDI antibiotics, low bicarbonate, low systolic blood pressure, 
and peak WBC count was associated with decreased risk for 
complicated CDI (Figure 4C, D). In contrast, non-CDI- 
related ICU admission, high WBC count, low systolic blood 
pressure, low albumin level, and concurrent non-CDI antibiot-
ics were associated with increased risk for complicated CDI 
(Figure 4E, F).

DISCUSSION

In this multisite cohort study, machine learning models based 
on structured electronic health record data predicted 
disease-related complications from CDI with good accuracy. 
Lasso regression, random forest, and stacked ensemble ma-
chine learning methods demonstrated respectable performance 

in predicting severe complications from CDI (ie, AUC of 0.88– 
0.89). Importantly, we intentionally developed models without 
site-specific variables, and our results suggest that this model is 
generalizable across centers and time, which is critical when 
considering the heterogeneity in patient populations and prac-
tice patterns across the United States. However, self-reported 
race was a significant modifier of model performance, with 
models performing significantly worse in patients of 
non-White race. Finally, although there was some model- 
specific variability, the predictors most important in discrimi-
nating disease-related complications from CDI were similar be-
tween models.

While several CDI severity and complication scoring systems 
have been developed previously, they generally were developed 
from single centers and were not externally validated [5–13]. In 
the largest external validation to date, our group recently re-
ported that these models yielded AUC scores below 0.70 [14]. 
A recent study in a similarly sized cohort in Virginia also 
showed poor performance of published models upon external 
validation [27]. Thus, current models cannot reliably predict 
risk for severe complications from CDI.

There are multiple notable strengths that make our approach 
more generalizable. First, our models were developed using 
data from 3 geographically distinct sites, which were comprised 
of a heterogenous population. Second, our models were robust 
despite differences in temporal trends and practice patterns 
across sites. For example, CDI was diagnosed by positive 
PCR test alone at UC and UW, while UM utilized a 2-step al-
gorithm. The fact that model performance was lower when us-
ing sites that used PCR testing alone suggests that false 
classification of disease due asymptomatic CDI colonization 
may have affected model accuracy. Furthermore, UM started 
to use vancomycin as first-line treatment for CDI starting in 

Figure 2. Receiver operator characteristic curves for lasso, random forest, and stacked ensemble models. After randomly splitting the data into training/validation sets, 
lasso regression, random forest, and stacked ensemble models were trained. All models demonstrated good performance when tested on an independent validation set (lasso 
regression: AUC, 0.88; 95% CI, 0.84–0.93; random forest: AUC, 0.89; 95% CI, 0.84–0.94; stacked ensemble: AUC, 0.88; 95% CI, 0.83–0.94). Abbreviation: AUC, area under the 
curve.
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2013, while the other centers did not switch from metronida-
zole to vancomycin as first-line treatment until mid-2016. 
Our sensitivity analyses demonstrated that our model retained 
good performance despite these differences in practice patterns 
and temporal trends.

While our model showed strong performance overall, we did 
see a noticeable drop in performance when the model was validat-
ed on the cohort from UC. As Black patients comprised a larger 
proportion of the cohort at UC compared with other sites, we 
speculated that this may be related to loss of important 

Figure 3. Models were robust despite geographical, demographic, and temporal variability. To determine whether models were generalizable across centers and across 
time, machine learning algorithms were derived and trained using data from 3 cohorts and then validated model performance on the fourth cohort (labeled “Test” in the 
figure). This process was repeated 3 times so that models were validated on each individual cohort. The lasso regression, random forest, and stacked ensemble models 
demonstrated good performance when tested on (A) the University of Michigan 2010–2012 cohort (lasso regression: AUC, 0.84; 95% CI, 0.79–0.89; random forest: AUC, 
0.87; 95% CI, 0.82–0.91; stacked ensemble: AUC, 0.86; 95% CI, 0.82–0.91; (B) the University of Wisconsin cohort (lasso regression: AUC, 0.92; 95% CI, 0.86–0.98; random 
forest: AUC, 0.92; 95% CI, 0.86–0.98; stacked ensemble: AUC, 0.92; 95% CI, 0.86–0.98; and (C) the University of Michigan 2015–2016 cohort (lasso regression: AUC, 0.91; 
95% CI, 0.87–0.96; random forest: AUC, 0.89; 95% CI, 0.82–0.95; stacked ensemble: AUC, 0.90; 95% CI, 0.84–0.96). Performance of the models dropped but still showed 
adequate performance when tested on (D) the University of Chicago cohort (lasso regression: AUC, 0.76; 95% CI, 0.70–0.82; random forest: AUC, 0.75; 95% CI, 0.67–0.80; 
stacked ensemble: AUC, 0.75; 95% CI, 0.68–0.82). Abbreviation: AUC, area under the curve.
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Figure 4. Predictive features for complicated Clostridiodes difficile infection. Twenty of the most important variables by variable importance analysis are illustrated for 
(A) lasso regression and (B) random forest. Please note that variable importance scores are assigned to each term in the model for linear models, such as lasso. Thus, var-
iables positively associated with complicated CDI in the lasso model are shown in red, while variables negatively associated with complicated CDI are shown in blue. In 
contrast, absolute values are provided for nonlinear-based machine learning techniques, such as random forest, and no sign has been provided. Breakdown plots were also 
generated to determine how predictors vary for patients with low and high predicted probability for complicated CDI. Breakdown plots are shown for (C) lasso and (D) random 
forest models in the same patient (patient #1) with low predicted probability for complicated CDI. A distinct breakdown plot is depicted for (E) lasso and (F) random forest 
models in a patient with high predicted probability for complicated CDI (patient #277). The intercept represents the mean model-specific predicted probability for complicated 
CDI, while each subsequent variable increases or decreases predicted probability and results in the overall predicted probability (labeled prediction). Abbreviation: CDI, 
Clostridiodes difficile infection.
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information related to racial diversity when model derivation was 
performed using data only from the UM or UW cohort. Indeed, 
our models retained excellent performance in White patients 
both at UC and from the entire cohort, while model performance 
in non-White patients was considerably less accurate. These re-
sults further raise the concern that machine learning algorithms 
may inadvertently result in systemic bias and health disparities 
[25, 26]. Interestingly, many of the most important variables for 
predicting disease-related complications from CDI when stratified 
by race involved serum creatinine levels, which are used to calcu-
late estimated glomerular filtration rate (eGFR). As eGFR was ini-
tially developed using data from White patients [28], prior studies 
have demonstrated that non-Hispanic Black adults had higher se-
rum creatinine levels compared with non-Hispanic White adults 
[29]. Thus, our models may have been underestimating eGFR in 
Black individuals, which may have biased our results. 
Furthermore, our results may be detecting real site-specific dispar-
ities in CDI complications related to race. However, as our models 
were developed to be site-agnostic, this may have limited our abil-
ity to adjust for these site-specific differences. Thus, these 
site-specific disparities should be identified and addressed in sub-
sequent studies. Future research should also focus on whether in-
cluding larger populations of non-White patients and carefully 
selecting nonbiased variables, for example, cystatin C–based esti-
mates of GFR [30, 31], or other host- and/or microbe-derived bio-
markers [32] may improve model prediction of severe CDI in 
Black and other non-White populations.

Our results were generally agnostic to specific algorithms 
and performed equally well when using both linear and nonlin-
ear machine learning approaches. However, XGBoost was a no-
table exception, which showed poor performance and 
potentially reflects overfitting of the models. Furthermore, as 
the random forest and stacked ensemble methods do not pro-
duce coefficients, they are inherently less interpretable, and 
transforming model results into a risk score is more complex 
compared with lasso regression [33].

In general, the variables that carried the greatest importance 
were consistent across models. Importantly, all variables were 
collected within 48 hours of CDI diagnosis, which increases 
the clinical utility of our model by allowing for early risk strati-
fication of patients. White blood cell count >15 000 cells/mL and 
acute rise in serum creatinine >1.5 mg/dL are well-established 
markers for severe CDI [34]. In addition, older age [35, 36], hy-
poalbuminemia [37], low hemoglobin levels [38], concurrent an-
tibiotic use [37], and ICU admission [13, 37] have also previously 
been identified as predictors of poor outcomes from CDI. ICU 
admission is likely a marker of more severe disease, as higher 
rates of comorbid health conditions, laboratory derangements, 
and antibiotic use were observed in this group. As our model 
identified similar predictors of importance as other studies, we 
suspect that employing a large, multicenter cohort and using 
best practices for predictive modeling may have allowed for 

better model parameterization and optimal variable selection, ul-
timately resulting in improved model performance compared 
with prior scoring systems [14].

Our study has several notable strengths. To our knowledge, 
this is the largest study to combine data from 4 distinct cohorts 
composed of both temporally and geographically distinct pa-
tients. By employing and comparing several well-validated pre-
dictive modeling techniques, we were able to develop a highly 
accurate model for predicting complicated CDI using readily 
available structured EHR data. In addition, the use of 
permutation-based variable importance analysis allowed us to 
identify the importance of each predictor in our models.

However, there are several limitations as well. First, there were 
significant differences in model performance in White vs 
non-White populations, which suggests that inadvertent biases 
were encoded in the machine learning algorithms. Second, as 
our analysis was retrospective, some model features may not be 
true risk factors but rather markers for the beginning of complicat-
ed CDI itself. Third, our models were derived from 3 academic 
medical centers in the Midwestern United States. Model perfor-
mance will have to be evaluated outside of this setting to confirm 
generalizability. Fourth, we cannot exclude the possibility that pa-
tients may have experienced the outcome at another hospital 
where we do not have records, and thus we may have potentially 
underestimated the extent of complications from CDI. In addi-
tion, although CDI testing was recommended only for sympto-
matic patients and this was further validated by chart review, 
some positive CDI tests might still reflect asymptomatic carriers. 
However, PCR-based testing strategies were most likely to pick 
up asymptomatic carriage, while our sensitivity analyses showed 
that model performance remained robust when stratified by test-
ing strategy. Fifth, as attributable CDI was adjudicated by each site 
investigator, there may have been site-specific differences in attrib-
utable CDI. However, definitions for attributable CDI were specif-
ically defined a priori, while our sensitivity analyses suggest that 
models were robust despite any potential differences across sites. 
Lastly, our model employed a large number of variables, which 
may affect clinician-perceived usability. However, as these vari-
ables are all easily accessible within the EHR, we anticipate that 
an automated decision tool, embedded directly within the EHR, 
would minimize these concerns.

In summary, in a large heterogeneous population from a multi-
center cohort, we demonstrated that machine learning algorithms 
based on structured EHR data can accurately estimate patients’ risk 
for disease-related complications from CDI. Our approach leverag-
es variables that can be readily extracted from the EHR once a di-
agnosis of CDI has been made. Future studies may determine 
whether prospective deployment of this model may aid clinicians 
to tailor patient therapy in real time and allow for early use of 
more aggressive therapies to minimize risk of complications. 
However, our results and sensitivity analysis demonstrated implicit 
racial biases. While model bias and unfairness have the potential to 
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exacerbate racial inequities in health care, they can also be used to 
overcome inequalities by proactively mitigating existing disparities 
[25, 26]. By identifying clear racial differences in model perfor-
mance, we can apply group-specific modifications of decision 
thresholds to ensure fairness. The goals of future studies should 
be to reduce the disparity in model accuracy between White and 
non-White patients and to improve performance overall, and 
both goals could possibly be served by including host- or microbe- 
derived biomarkers alongside clinical data [32].
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