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Learning is a crucial basis for biological systems to adapt to environments. Environments
include various states or episodes, and episode-dependent learning is essential in
adaptation to such complex situations. Here, we developed a model for learning a two-
target search task used in primate physiological experiments. In the task, the agent
is required to gaze one of the four presented light spots. Two neighboring spots are
served as the correct target alternately, and the correct target pair is switched after
a certain number of consecutive successes. In order for the agent to obtain rewards
with a high probability, it is necessary to make decisions based on the actions and
results of the previous two trials. Our previous work achieved this by using a dynamic
state space. However, to learn a task that includes events such as fixation to the initial
central spot, the model framework should be extended. For this purpose, here we
propose a “history-in-episode architecture.” Specifically, we divide states into episodes
and histories, and actions are selected based on the histories within each episode.
When we compared the proposed model including the dynamic state space with the
conventional SARSA method in the two-target search task, the former performed close
to the theoretical optimum, while the latter never achieved target-pair switch because
it had to re-learn each correct target each time. The reinforcement learning model
including the proposed history-in-episode architecture and dynamic state scape enables
episode-dependent learning and provides a basis for highly adaptable learning systems
to complex environments.

Keywords: reinforcement learning, target search task, dynamic state space, episode-dependent learning, history-
in-episode architecture

INTRODUCTION

Learning is a fundamental process that is crucial for biological systems to adapt to the real world.
Real environments have diverse states, and situation-dependent learning is indispensable to adapt
successfully to such complexity. A good example of situation-dependent learning in humans is a
baseball game: to win, the batter needs to bat according to the situation of the game and batting
order, i.e., according to whether the previous batter got a hit and got on base. However, the batter
also needs to consider of his own episode, that is, how he played against the pitcher last few times
to predict what kind of ball the pitcher will throw next. An episode, which is also referred to as
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context in the field of neuroscience, is defined as a state
(or framework) of the environment in which an agent
gains experience and makes decisions or predictions (Maren
et al., 2013; Yonelinas et al., 2019). Studies on episode-
dependent learning provide a basis for understanding the high
adaptability of living systems to real environments, and applying
this to engineering.

The two-target search task used in our non-human primate
neurophysiological experiments has advantages for building
models that learn behaviors based on the sequence of episodes
and history of each individual episode (Kawaguchi et al., 2013,
2015). The episodes of one trial of the task are shown in Figure 1A
(i.e., the sequence of task events): the central fixation spot is
presented, and the animal fixates on it (2nd episode); during
fixation, four light spots appear around the fixation spot (3rd
episode); the disappearance of the fixation spot is used as a
go signal for gaze shift to one of the four spots. If the correct
light spot is fixed on, a reward is given (4th episode). To be
successful in the 4th episode, an action based on the history
must be selected. In the task, two adjacent light points (the target
pair) among the four should be alternately selected (Figure 1B).
However, after a certain number of consecutive correct responses
(exploitation phase), the target pair is switched without an
instruction signal, and the animal must identify a new target pair
through trial and error (exploration phase). To achieve a high
correct response rate in this task, action selection must be based
on the history of actions and outcomes of the previous two trials.

The first model of choice for learning action while inferring
what cannot be directly observed, such as a target pair, would
be a reinforcement learning model using a partially observable
Markov decision process (POMDP; Jaakkola et al., 1995; Thrun
et al., 2005). However, applied to a two-target search task,
learning models using a POMDP have a priori knowledge of
the target pairs. Models that require such knowledge will not
be able to learn unassumed tasks, as our previous studies have
shown (Katakura et al., 2022). Some models do not require
prior knowledge and make decisions based on history, including
models involving infinite hidden Markov processes, such as the
hierarchical Dirichlet process (Beal et al., 2002; Teh et al., 2006;
Mochihashi and Sumita, 2007; Mochihashi et al., 2009; Pfau
et al., 2010; Doshi-Velez et al., 2015). However, models using
such processes do not exhibit stable performance, because they
generate many useless action-value functions due to a lack of
criteria regarding the appropriateness of history length required
for decision-making (Katakura et al., 2022).

The reinforcement learning model with a dynamic state
space that we demonstrated in our previous study does not
require prior knowledge of target pairs, and adheres to criteria
regarding appropriate history length, and when that length
should be increased for decision-making. The model showed
high performance in a two-target search task, suggesting excellent
generality (Katakura et al., 2022). However, in the model
described above, one trial is equal to one-time step. Thus, it
cannot learn appropriate behavior in a case involving a sequence
of episodes (i.e., the task event sequence shown in Figure 1A).

In this study, we developed a reinforcement learning model
with a dynamic state space to enable episode-dependent

learning. Specifically, we added a “dynamic-state-within-
episode,” or “history-in-episode,” architecture to the model.
The model architecture dynamically generates a memory set
when encountering a novel episode, namely, a task event
(Figures 2A,B). Furthermore, the dynamic state space was used
to generate a Q-table (action value function) for each episode
(Figure 2C), according to the aforementioned criteria for
appropriateness of determining state expansion: the experience
saturation and decision uniqueness of action selection. These
two mechanisms enable episode-dependent learning in the
two-target search task. That is, the model autonomously
determines that the previous state in the relevant episode is
the last two trials (we refer to this as the “history” in this
paper), and can find the correct new target pair in a short time
without significant re-learning, resulting in high performance
comparable to that exhibited by monkeys. Such learning greatly
contributes to our understanding of the high adaptability of
living systems to complex real environments and could lead to
engineering applications.

MATERIALS AND METHODS

Model Architecture
Our proposed model has two types of time steps/sequences
(Figure 2). The first type is the sequence of episodes, t,
on which the changes of episode, Et , depend. In this study,
an episode is defined as a task event, specifically a display
presented to an animal, rather than a sequence of events. Hence,
episodes are explicit and directly observable, in the sense that
the agent does not need to make any particular inferences.
Temporally neighboring episodes interact when calculating
reward prediction error (see below for details). The other type
of step pertains to the history within an episode. Within this
framework, the history at the Nth trial denotes the experience
with the same task event, ei, accrued over previous trials, and is
represented as HN(ei). A given history, hj, is a state composed
of a sequence of action–outcome pairs. Each history can include
an arbitrary number of trials; however, they have a length of
one trial when learning begins. Herein, we refer to this temporal
structure of the model as history-in-episode architecture. The
model generates a new set of memories, consisting of working
memory and a dynamic Q-table (Figure 2A; episode-dependent
memory set), when a novel task event is encountered (Figure 2B).
Since our goal was to develop a learning model for a two-
target search task consisting of a discrete sequence of events, the
model has a simple mechanism to generate a memory set with
probability 1 when a new display is exhibited. This history-in-
episode architecture enables behaviors to be learned in each task
period; this was not possible using the one trial-one time-step
model in our previous paper (Katakura et al., 2022), in which
one trial had one time unit and only the fourth task period in
Figure 1A was considered.

Each episode-dependent memory set in the proposed model
contained the same dynamic states as the one proposed in
our previous paper (Katakura et al., 2022). The basic structure
of the episode-dependent memory set was grounded in the
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FIGURE 1 | The target search task. (A) The event sequence of the target search task. (B) A similar illustration of a valid-pair switch in the two-target search task.
Green circle: correct target; arrow: choice; dashed line: valid pair. Note that the subjects were not instructed to move their eyes by the green spot before gaze shift.

conventional temporal difference (TD) learning (Sutton and
Barto, 1998). The action value function, QN(Et = ei, HN = hj,
AN = ak) for the set of a particular episode, ei, history, hj, and
an action, ak, at the Nth trial were updated by the following
equation:

QN + 1
(
ei, hj, ak

)
← QN

(
ei, hj, ak

)
+ αδt,N

(
ei, hj, ak

)
(1)

where α is the learning rate, set to 0.1 in the range that showed
desirable results revealed by the parameter search. δt,N is the
reward prediction error, given by

δt,N
(
ei, hj, ak

)
≡ rt + γQt + 1,N(ei′ , hj′ , ak′)− Qt,N(ei, hj, ak)

(2)
where rt is the reward delivered for AN taken at Et and HN at time
t in the Nth trial, and the discount factor γ was set to 0.7 decided
empirically. If the correct spot was selected, a reward r = 1 was
delivered, otherwise r = 0 was given. At,N was selected according
to the stochastic function, Pπ(At,N = ak | Et = ei, HN = hj), under
the policy π. We used a softmax function for Pπ, defined by

Pπ
(
ak
∣∣ ei, hj) ≡ exp(βQ

(
ei, hj, ak

)
)∑5

l exp(βQ
(
ei, hj, al

)
)

(3)

where the parameter β, termed the inverse-temperature, was
set to 100 in the range that provided desirable results. 5 is the
number of actions that the model can take. For action selection,
the Q-table that refers to the longest history among generated
Q-tables was used.

Our model was designed to avoid the need for stochastic
decisions as much as possible. Specifically, when the model
did not have a value function for a particular action that
required a much larger value compared with others following
extensive experience with the episode and history, it expanded

the Q-table of the episode backward in sequence of trial
(Figure 2C). We illustrate the algorithm of this expansion in
Supplementary Figure 1A.

The initial Q-table was set as the one of a particular
combination of the five possible actions, namely gazing at the
right-up (RU), left-up (LU), left-down (LD), right-down (RD)
spot, or center (C), which are represented by arrows and a black
dot, and the outcome (correct or error), denoted by o and x in
Figure 3A and Supplementary Figure 1B. The initial Q-value for
each action was set to 0.5. The model monitored the stochastic
mean policy for each episode ei and history hj, given by

Pπ
mean,Nupdate,ei,hj

(
a|ei, hj

)
≡

1
Nupdate,ei,hj

Nupdate,ei,hj∑
m = 1

Pπ
m
(
a|ei, hj

)
(4)

where Nupdate,ei,hj is the number of times that the Q-values for
the episode ei and history hj were updated. Then, the information
gain or the Kullback-Leibler divergence (KLD) obtained by
updating the stochastic policy (step 1 in Supplementary
Figure 1A) is calculated:

Update_KLDei,hj

(
Pπ
mean,Nupdate,ei,hj

(a|ei, hj)||Pπ
mean,Nupdate,ei,hj−1(a|ei, hj)

)

≡

5∑
l

Pπ
mean,Nupdate,ei,hj

(
al|ei, hj

)
log

Pπ
mean,Nupdate,ei,hj

(
al|ei, hj

)
Pπ
mean,Nupdate,ei,hj−1

(
al|ei, hj

)
(5)
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FIGURE 2 | Schematic diagram of model operations as training progresses. (A) Schematic diagram of the model after the most elementary task, the fixation task,
has been completed. Some states and corresponding Q-tables are generated by reflecting on the previous action and its outcome in each episode. (B) Schematic
diagram of the model in the first trial in which the fixed one-target task was performed after the fixation task. Since the fixed one-target task includes task events 3
and 4 that the fixation task did not include, episode-dependent memory sets corresponding to task events 3 and 4 are newly generated. (C) Schematic diagram of
the model while it is learning the two-target search task. The figure illustrates that the number of states in task event 4 is still increasing, while those in task events 1
to 3 have already stopped increasing. w.m.: working memory; arrow: choice; ob: observation; a: action.
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FIGURE 3 | Calculation of temporary difference learning by the proposed and
control models. (A) A history-in-episode architecture using the dynamic state
model (proposed method) as an example. The action value function is
selected according to the history of each episode, and the reward prediction
error is calculated. Fixed 5-, 10- and 10 by 10-state models also have a
history-in-episode architecture, i.e., a Q-table generated for each episode.
However, its size does not change dynamically. (B) The conventional SARSA
model, which is the simplest control model. Since the previous actions are
irrelevant in this model, the state value function V is used here. This model
does not have a history-in-episode architecture, as only one state-value
function can be assigned to each episode.

We referred to this as the Update_KLD. Nupdate,ei,hj – 1
indicates the number of trials since the model last encountered
episode ei and history hj and calculated the mean Pπ(a| ei, hj).

Next, the model judged whether the Update_KLD of the
episode ei and history hj, fell below the criterion for experience
saturation, ζ (step 2),

Update_KLDei,hj
≤ ζ (6)

indicating that information can no longer be gained by updating.
The value of ζ was determined to be 10−2 in the range that
showed desirable results. When the Update_KLDei,hj was < ζ,
the distribution of Pπ

mean,Nupdate,ei,hj
(a|ei, hj) was compared with

Pπ
ideal(a|ei, hj). Pπ

ideal(a|ei, hj) is the action selection probability
that only one action will be selected and was obtained as follows.
First, the ideal policy, Qideal(a| ei, hj), was obtained by setting the
largest value within Q(a| ei, hj) to 1 and the other values to zero.

For example, if the Q(a| ei, hj) were, {0.1, 0.4, 0.1, 0.2, 0.1}, the
Qideal(a| ei, hj), would be set to {0, 1, 0, 0, 0}.

Thereafter, the Pπ
ideal(a|ei, hj) was calculated from Qideal(a| ei,

hj) using the softmax function in Eq. 3. For comparison, another
KLD was calculated, as described below (step 3):

D_KLDei,hj

(
Pπ
mean,Nupdate,ei,hj

(a|ei, hj)||Pπ
ideal(a|ei, hj)

)

≡

∑
l

Pπ
mean,Nupdate,ei,hj

(
al|ei, hj

)
log

Pπ
mean,Nupdate,ei,hj

(
al|ei, hj

)
Pπ
ideal

(
al|ei, hj

)
(7)

We called this the Decision-uniqueness KLD (D_KLD).
When the D_KLD was below the criterion for a preference for
deterministic action selection, η (step 4),

D_KLDei,hj < η (8)

the agent had uniquely selected an action for the episode ei and
history hj, and the Q-table was not expanded any further. η

was set to 2 within the range which produced fair performance
revealed by the parameter search. These two criteria, ζ and η,
guaranteed the appropriateness of state (history) expansion: the
former is for the appropriate timing of expansion; the latter is
for whether the Q-table should be expanded or not (Katakura
et al., 2022). When the D_KLD did not meet the criterion, it
was also compared to the parent D_KLD (step 5), defined as
the D_KLD of the parent history from which the current history
hj had been expanded (e.g., Supplementary Figure 1B). In step
6, when the D_KLD is judged to be less than its corresponding
parent D_KLD, as in Eq. 9,

D_KLDei,hj < Parent D_KLDei,hj + bias (9)

the D_KLD value is saved as the parent D_KLD, and the history is
expanded as depicted in the Q-table of Supplementary Figure 1B
(step 7). That is, the new history (child history) is the combination
of the parent history and the history of one more previous trial
to which the parent history refers. In the schematic example in
Supplementary Figure 1B, a new history is generated from one
in which the agent looked at LD and was rewarded one trial ago;
this is changed to one in which it looked at LD and was rewarded
one trial ago after it looked at RD and was rewarded two trials
ago. The initial Q-value for each action is set to 0.5. On the other
hand, if Eq. 9 does not hold, the current history being processed
(see flowchart in Supplementary Figure 1A) is pruned (step 6’).
When the current history consists of only the previous one trial,
it is not erased because there is no parent history with which it
could be compared. The bias is set to be−1 in all calculation.

In the current study, we compared the proposed model,
including the dynamic state space, to several models with fixed
state-space using the two-target search task and related simpler
tasks. However, these control models also generated a new
episode-dependent memory set when they encountered a novel
episode or task event. The models were classified depending on
the type of fixed Q-table in the generated episode-dependent
memory set. The fixed 10-state model had a Q-table of size 5
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by 10 in each episode, meaning that it had five action choices in
each of the 10 states (histories), which were the combinations of
five actions and their outcomes in the previous trial. The fixed
10 by 10-state model had states consisting of the combinations
of the actions and outcomes of the two previous trials, i.e.,
fixed 10 by 10 states (histories). The results for this model are
not shown in the current study, but this model is the optimal
model when created with prior knowledge of the task structure
of the two-target search task. Our previous paper (Katakura et al.,
2022) showed its performance as a fixed 8 by 8-model. The
fixed 5-state model obviously had five states for each episode,
corresponding to the actions in the previous trial. In other words,
this model did not explicitly include the result of the previous
trial in the state. This model is an instrumental learning model,
the results for which are omitted from the current study. The
conventional SARSA model had only one value function (V-
table, since the state was independent of the agent’s action) for
each episode, and selected one action among the five choices
based on the V-table. Therefore, this model did not include
“history.” That is, while the other models contained a history-in-
episode architecture (Figure 3A), the conventional SARSA model
did not have that architecture (Figure 3B). It should also be noted
that the conventional SARSA model is a Pavlovian learning model
in which each task event serves as a CS.

Behavioral Tasks and Simulation
Framework
The target search task included the four task events “trial start,”
“fixation spot on,” “peripheral spots on,” and “go & gaze shift”
(Figure 1A). During the “fixation spot on” period, the agent
was required to fixate on the central spot (C). In the subsequent
“peripheral spots on” period, the agent was required to keep
fixating on C without being distracted by the four spots presented
around it: left-up (LU), right-up (RU), left-down (LD), and right-
down (RD). When C disappeared at the beginning of the “go &
gaze shift” period, the agent shifted its focus to one of the four
surrounding spots, and if it focused on the correct target spot,
it was rewarded. Note that, in Figure 1B and Supplementary
Figure 2, the correct target is shown in green to help readers
identify the currently correct target. In actual calculations, the
agent only observe correct or error after gaze shift and cannot
directly observe the true target. If the agent chose the wrong
target spot, the trial was repeated under the same condition, i.e.,
the correct target stayed the same. The duration of each task
period in the experiments with primates was 500 ms (Kawaguchi
et al., 2013, 2015). In our simulations, the time step for calculation
was set to one task period for simplicity.

The one-target search task (Supplementary Figure 2) was
easier than the two-target task, and was used as a pretraining
task for monkeys. In this task, one out of four spots served as the
correct target until the target was switched to another spot after
seven successive successes without the provision of additional
instructions. After the target switch, the subject was required to
search for the new correct target.

In the two-target search task (Figure 1B), two neighboring
spots, referred to as a valid pair, were used as correct targets

alternately. A valid pair was switched after seven consecutive
successes without additional instructions, followed by an
exploration phase for the new valid pair. Details are described
elsewhere (Kawaguchi et al., 2013, 2015).

We also tested fixed one- and two-target tasks, in which the
correct target or valid pair was fixed throughout the simulations,
respectively, to evaluate each learning model.

Animal Behavior
Our animal research was performed in accordance with National
Institutes of Health guidelines and the guidelines of Tohoku
University. All experimental protocols were approved by the
Animal Care and Use Committee, Tohoku University (Permit
No. ido-74). Two Japanese monkeys (Macaca fuscata; monkey
K: 6.5 kg, monkey G: 6.1 kg) were trained to perform the two-
target search task. The monkeys were kept in individual primate
cages in an air-conditioned room with food available ad libitum.
During the experiments, the monkeys sat in a primate chair
with their heads restrained and faced a screen on which visual
stimuli were presented. Eye position was monitored with an
infrared corneal reflection system sampling at 250 Hz. Details are
described elsewhere (Kawaguchi et al., 2013, 2015).

RESULTS

We tested the proposed dynamic state model using several
behavioral tasks related to the two-target search task and
compared it to other models with fixed sets of states or value
functions. This comparison revealed fundamental differences
between the compared models.

First, we tested all models using a fixed one-target search task
with only one correct target spot during the entire simulation.
All models exhibited almost perfect performance (Figure 4A;
data not shown for the fixed 10 by 10- and 5-state models. The
same applies to the following results). However, it is noteworthy
that the simplest model, i.e., the conventional SARSA model,
learned the fastest.

Figure 4B shows the results of the fixed two-target task. In
this task, the correct valid target pair was not changed during
the entire simulation, but two targets in the pair were the correct
target alternately. This setup created additional difficulty since
the correct strategy in the previous trial is not valid, and the
models had to switch their behavior alternatively depending on
the state, i.e., the history. Under these conditions, we expected the
conventional SARSA model to exhibit poor performance because
it was not able to make decisions based on the previous actions.
As expected, all models except the conventional SARSA model
showed almost perfect performance.

The one-target search task revealed additional differences
between the tested models (Figures 4C,D). This task required
the agent to adapt to a switched correct target after every seven
consecutive successes. This requirement forced the conventional
SARSA model, as well as the fixed 5-state model (data not shown),
to re-learn the correct target after each switch. As a result, they
exhibited much lower correct response rates (Figure 4C) and
numbers of target switch (Figure 4D) than the dynamic state,
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FIGURE 4 | Comparison of the performance on each task between the proposed and control models. (A) Evolution of the correct response rate in the fixed
one-target task. (B) The fixed two-target task. (C) One-target search task. Dashed line: ideal performance. (D) Evolution of the number of target switches.
(E) Two-target search task. Dashed line: ideal performance. (F) Number of valid-pair switches. All calculations started at the initial state.
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FIGURE 5 | Comparisons of model performance and the exploratory behavior
of a monkey after valid-pair switches in the two-target search task.
(A) Monkey G’s exploratory behavior while recording the activity of a neuron
(20509U1a2) after completing the training; there were 23 pair switches.
(B) Exploration behavior of the model, with 774 pair switches. The gaze
direction distributions of the monkey (C) and model (D) in the second trial,
after switching the valid pairs.

fixed 10- and 10 by 10-state models. These superior models, in
contrast, learned how to explore in the exploration phase after
a target switch, because the state, i.e., history, explicitly included
the previous outcome as well as the action, which led to almost
ideal performance (dashed line in Figure 4C), although some
delay in the increase in correct response rate was observed for
the fixed 10-state model.

Finally, we tested all models on the two-target search
task (Figures 4E,F). As expected, our dynamic state model
reproduced the results of our previous paper (Katakura et al.,
2022), and showing nearly ideal performance (dashed line in
Figure 4E) and a high number of pair switches (Figure 4F);
the same performance was obtained for the fixed 10 by 10-
state model (data not shown), which was created as an ideal
model with prior knowledge of the task structure. As for the
fixed 10-state model, although it performed well for the one-
target search task, its performance for the two-target search
task was much worse than the ideal performance. This poor

performance was expected because the model included only one
previous trial in its history, while the ideal performance required
inclusion of the two previous trials in its history. The fixed 5-
state model showed similar performance to the fixed 10-state
model. The conventional SARSA model exhibited a lower correct
response rate than in the one-target search task and achieved
no pair switch. Re-learning to focus on each of the spots of
the valid pair never allowed the conventional SARSA model to
achieve a pair switch.

The proposed model performed as well as a monkey in the
two-target search task (Figure 5). The monkey quickly located
new valid pairs after valid-pair switches (Figure 5A). Since valid
pairs were switched without any explicit instruction, he inevitably
gazed at the target of the previously valid pair in the first trial
of the exploration phase (dark blue line in Figure 5A), whereas
he was highly likely to gaze at the new pair target after the first
trial (red line in Figure 5A). The rapid switching to the new
pair displayed by the monkey was also seen in the proposed
model (Figure 5B). Furthermore, to examine the exploratory
behaviors of the monkey and model in detail, gaze directions in
the second trials of the exploration phase were analyzed, and we
found that both the monkey (Figure 5C) and model (Figure 5D)
were highly likely to gaze at the target diagonal to the one in the
first trial (orange circles in Figures 5C,D). These results indicate
that the early detection of new pairs is achieved by sophisticated,
non-random exploratory behavior.

Previously, we showed that good performance can be achieved
over a wide range of meta-parameter, i.e., the learning rate,
inverse temperature, threshold of experience saturation, and
threshold of decision uniqueness, through parameter search
(Katakura et al., 2022). Here, we examine model performance
while varying the discount factor Eq. 2, which was not included in
our previous one trial-one time-step model (Figure 6). When the
high default value of 0.7 was reduced to 0.4, the model achieved
a high correct response rate, although learning was relatively
slow. However, when the default value was reduced further, the
performance deteriorated rapidly (Figure 6A). This deterioration
was not due only to the selection of the correct target in task event
4, but also to the inability to maintain fixation in the preceding
task events. When the discount factor was reduced, the fixation
error rate in each task event, i.e., the percentage of trials in the
task event of interest that had fixation errors relative to the total
number of trials on which task performance was maintained up
to that task event, increased. In addition, the error rate in task
event 3 was lower than that in task event 2, which is remote from
task event 4 (in which the reward is actually delivered; Figure 6B).
This implies that a high discount factor is required to learn a task
involving a long sequence of events with a reward given only at
the end of a trial.

Executing the two-target search task with a high correct
response rate requires making decisions based on the actions
of the previous two trials and their outcomes. However, this is
only true for the action selection during task event 4. Other
task events require the agent to only fixate to the central spot.
The dynamic state model learns to execute the task while
increasing the states consisting of actions and their outcomes.
However, when learning to focus on only one spot regardless
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FIGURE 6 | Effects of varying the discount factor on performance in the
two-target search task. (A) Changes in the percentage of correct trials with
learning. The incorrect response rates during task events 2 (B) The incorrect
response rates during task events 2 and 3 when varying the discount factor.

of the previous actions, learning using a single state, i.e.,
Pavlovian learning, might not only be sufficient, but could even
speed up learning.

To test this idea, we implemented a hybrid model in which
we used a single Q-table for task events 1 to 3 and a dynamic
Q-table for only task event 4 (Figure 7A). Figure 7B compares
performances between the dynamic state and hybrid models
on the two-target search task. Almost ideal correct response
rates were obtained (dashed line in Figure 7B); however, the
performance of the hybrid model increased earlier than that of
the dynamic state model. These results support our idea that, by
minimizing the number of states when learning how to fixate on
the center spot, the hybrid model speeds up its learning during
the first three task events.

To further confirm this, we developed a parallel model
in which Pavlovian, fixed 5-state, and dynamic state models
were calculated in parallel for each episode and an action was

FIGURE 7 | Configuration and performance of the hybrid model.
(A) Calculation of reward prediction error in the hybrid model. Dynamic state
space is given only to task event 4. (B) Performance comparison between the
hybrid and full dynamic state models (Figure 3A) in the two-target search
task. All calculations started at the initial state.

selected based on the Q-table exhibiting the highest decision
uniqueness among the three models. After executing 10,000 trials,
we examined the model used in each task event and found
that the dynamic model was used in task event 4, while the
Pavlovian model was used in the other three task events. This
result indicated that the most appropriate learning model changes
depending on the task requirements.

DISCUSSION

In this study, we proposed a history-in-episode architecture
to extend a reinforcement learning model, enabling episode-
dependent learning. In addition, we built a model that also
included the dynamic state space proposed in our previous paper
(Katakura et al., 2022), and tested its performance in a two-
target search task. By having episode and history, the model was
able to learn the appropriate action for each event in one trial
based on the history of recent trials. The proposed model, which
includes the dynamic state space and the history-in-episode
architecture, is expected to be further developed and applied as
a pioneering learning model with high adaptability to complex
real environments, since it learns appropriate behaviors under
various circumstances.

As shown in our previous paper (Katakura et al., 2022),
the dynamic state model had a sufficient range of well-behaved
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meta-parameters for its intrinsic parameters, such as experience
saturation and decision uniqueness, as well as conventional
parameters such as learning rate and inverse temperature of
the softmax function for action selection. This robustness was
also true for the model with the history-in-episode architecture
presented in the current study. Unlike the one trial-one time-step
model in our previous paper, the model including the history-
in-episode architecture uses TD learning to learn the task events.
In TD learning, the discount factor is used as a coefficient that
is multiplied by the reward prediction at the next time step
in calculating the reward prediction error in Eq. 2. The model
exhibited desirable performance in a sufficiently wide range of
discount factors as shown in Figure 6. When the discount rate
was too low, TD learning was unsuccessful and the model did not
learn to take any action, specifically not during the earlier task
events. The desirability of a high discount rate is also consistent
with Go and Shogi models (Silver et al., 2016, 2017), which learn
behavior for long and complex orders of steps.

In recent years, machine learning and artificial intelligence
(AI), as exemplified by learning models for Go and Shogi,
have outperformed humans in some tasks (Silver et al., 2016,
2017). However, it is questionable whether these models can
be implemented in field robots working in real environments.
Although the models can outperform humans in a single task,
they lack some basic structures that are crucial for flexible
learning in a real environment with complex situations and
multiple goals. As shown in Figure 4, when multiple targets must
be achieved (fixed two-target task), or when targets are frequently
switched (one-target search task), the conventional SARSA or
Pavlovian model or exhibited poor performance. In contrast,
the fixed 10-state model with history-in-episode architecture
achieved high performance for these two tasks, although state
space was fixed. Even the fixed 5-state, i.e., the conventional
instrumental learning model, which did not explicitly include the
outcome of the previous trial, showed high performance in the
fixed two-target task by choosing an action depending on the
action in the fourth task period of the previous trial. Therefore,
the history-in-episode architecture proposed in the current study
provided a framework for achieving multiple goals, which has
recently been a research issue (Bai et al., 2019; Colas et al., 2019;
Zhao et al., 2019; Pitis et al., 2020; Shantia et al., 2021).

However, that does not mean that Pavlovian learning is always
inferior. Our proposed model dynamically generated states and
corresponding Q-tables based on combinations of actions and
their outcomes. However, in task events 1 to 3 of the two-
target search task, it is sufficient to simply learn to fixate, and
having multiple states in each task event seems redundant.
The hybrid model, which learns in a Pavlovian fashion in all
task periods except the fourth using only a single V-table,
learned the task faster than the full dynamic model (Figure 7B).
A similar observation is shown in Figure 4A: for the fixed
one-target task, the conventional SARSA model with Pavlovian
learning during all task periods learned the task faster than
the other models. These computational examples show that
when states are redundant, the frequency with which each state
is encountered decreases, resulting in slower learning. These
arguments are related to the debate about whether Pavlovian or
instrumental learning is better (Rescorla and Solomon, 1967),

and how they can be used differently (Cartoni et al., 2016).
Dorfman and Gershman (2019) developed a model in which
either Pavlovian or instrumental conditioning predominated,
depending on the degree to which an action can control the
reward. We also generated a parallel model that included
Pavlovian, instrumental, and dynamic state models, computed
them in parallel, and let it select an action via the model exhibiting
the highest decision uniqueness. We found that in the two-
target search task, the Pavlovian model was used in task events
1 to 3, which are independent of the previous action. These
observations suggest that learning models that are as simple as
possible, i.e., having only the necessary states, are preferable.
Choosing a resource-saving learning method according to the
task requirements can avoid the curse of dimensionality problem
in reinforcement learning (Sutton and Barto, 1998) and increase
the learning speed.

If an action and its outcome are not uniquely predicted,
it is desirable to increase the number of states so that the
action and outcome can be uniquely expected by incorporating
new clues. When presented with an ambiguous CS, i.e.,
when a US follows a CS in an episode or experimental
condition but not in another condition, rats can uniquely
predict the US by considering the information available under
each condition, i.e., some clues in the environment or the
configuration between them (Fanselow, 1990). The first brain
region that contributes to such episode-dependent learning is
the hippocampus. For example, hippocampal lesions in rodents
produce deficits in freezing behavior during exposure to a shock-
paired condition (Selden et al., 1991; Kim and Fanselow, 1992;
Phillips and LeDoux, 1992). The structure and function of the
hippocampus should be taken into account when developing
our proposed model into one more in line with the structure
of the real brain.

Some readers may find similarities between assigning a
different Q-table to each episode in our model and learning
sub-tasks in hierarchical reinforcement learning (HRL) models
(Barto and Mahadevan, 2003; Hengst, 2010; Al-Emran, 2015;
Pateria et al., 2021). However, since the two-target search task
has temporally discrete task events, we need only generate a
new episode-dependent memory set when a new task event
is presented, and avoid the difficult problem of generating
sub-tasks by deciding how to divide a continuous scene, which
is one of the main issues for HRL. Moreover, our model is not
hierarchical in the same sense of HRL. That is, our model does
not include a supervisor that overlooks the units learning the
sub-tasks, and gives them sub-goals. For these reasons, our
model is not meant to be considered alongside or compared
with HRL models. Rather, the proposed model includes two
types of time steps i.e., the time step across different task
events and the dynamic history in the episode of interest,
and has a structure that generates memory sets or Q-tables as
required in each time direction, especially in the case of history,
where the state is generated dynamically to refer to multiple
steps in the past. We consider these to be two novel points
of the proposed model, and to be indispensable for learning
the two-target search task. In our previous physiological
studies, we observed neuronal activities in the lateral
prefrontal cortex of monkeys that reflected sub-task generation
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(Saito et al., 2005; Mushiake et al., 2006; Sakamoto et al., 2008,
2013, 2020a). In the future, HRL will have to be considered when
modeling those neural activities.

Other route to improvement of our proposed model is the
involvement of finer time and space increments. To train a
monkey to perform the two-target search task, it is necessary to
start with the fixation task, in which the monkey is required to
fixate on a single point in a continuous wide field of view and
then complete simple tasks, such as the one-target search task
used in the current study. In addition, it is necessary to gradually
increase the length of each task period and gradually decrease
the number of trials required to switch between targets or valid
pairs in the pretraining trials. In contrast, in our computer
simulations, the dynamic state model was able to learn the two-
target search task without any pretraining. This is because we
made the conditions of the simulations as simple as possible: one
task period corresponded to one time step in the calculation and
there were only five discrete choices of actions. In future, when
the model becomes applicable to finer increments of time and
space, the training of the model will require steps compatible to
the training of monkeys.

However, it remains difficult to determine appropriate
training steps. We have trained monkeys to perform many
advanced behavioral tasks (Mushiake et al., 2001; Sakamoto et al.,
2008, 2013, 2015, 2020a,b) and obtained empirical knowledge
regarding appropriate training steps. This knowledge is crucial
for effective training. A major focus for future work will be to
determine appropriate training steps for the model. We will aim
to develop a “coach” that outputs task parameters, such as the
length of the task period or complexity of the task, depending on
the task conditions and learner’s behavior, etc. The coach, which
also needs to be equipped with a model involving a dynamic
state space and a history-in-episode architecture, and the learner
then start co-learning. In developing such a coach, the main
challenge will be formulating the task complexity and generating
a new training step depending on the progress of the learner.
However, if we can generate such a coach model, it will likely be
the prototype of a new type of AI that co-develops with humans
and draws out our potential abilities rather than “confronting”
us. Such a system could be referred to as hyper-adaptable, and
we hope to use such systems to create a new discipline called
neuro-coaching (Sakamoto, 2019).
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Supplementary Figure 1 | Expansion and contraction of the history.
(A) Flowchart of the expansion and contraction process. (B) An example of
expansion of a history derived from the parent history in Q-table. The direction of
the arrow represents the target that the agent looked at, and o and x represent
the correct answer and error, respectively. The example in the figure shows that a
new history is generated from the history that the agent looked at LD and was
rewarded one trial ago, to the history that it looked at LD and was rewarded one
trial ago after it looked at RD and was rewarded two trials ago. The numbers in the
Q-table represent Q-values. The initial Q-value for each action is set to 0.5.

Supplementary Figure 2 | A schematic example of a target switch in the
one-target search task. The format is the same as the task shown in Figure 1B.
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