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Abstract

Identification of cancer driver mutations is critical for advancing cancer research and per-

sonalized medicine. Due to inter-tumor genetic heterogeneity, many driver mutations occur

at low frequencies, which make it challenging to distinguish them from passenger mutations.

Here, we show that a novel Bayesian hierarchical modeling approach, named rDriver can

achieve enhanced prediction accuracy by identifying mutations that not only have high func-

tional impact scores but also are associated with systemic variation in gene expression lev-

els. In examining 3,080 tumor samples from 8 cancer types in The Cancer Genome Atlas,

rDriver predicted 1,389 driver mutations. Compared with existing tools, rDriver identified

more low frequency mutations associated with lineage specific functional properties, timing

of occurrence and patient survival. Evaluation of rDriver predictions using engineered cell-

line models resulted in a positive predictive value of 0.94 in PIK3CA genes. Our study high-

lights the importance of integrating multi-omic data in predicting cancer driver mutations and

provides a statistically rigorous solution for cancer target discovery and development.

Introduction

Large-scale cancer genome projects, such as The Cancer Genome Altas (TCGA), and the

International Cancer genome Consortium (ICGC) have systematically catalogued hundreds of

thousands of somatic mutations in a wide variety of adult and pediatric cancers. However, the

functional significance of the majority of these mutations remains unknown. As implicated in

previous studies, only a small fraction of genetic alterations are expected to be driver muta-

tions that functionally drive the malignancy of tumor cells and the rest are likely passenger

mutations conferring no selective advantage [1]. Distinguishing driver mutations from pas-

senger mutations remains one of the most pressing challenges in ongoing cancer genomic

research [2].
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Many computational approaches have been developed over years for predicting cancer

drivers at gene and/or mutation levels [3–9]. Many of them rely on examining mutational fre-

quencies, which are indicative of the fitness of a mutant allele and its oncogenic function.

Unfortunately, the majority of mutations in tumors occur rather infrequently, making fre-

quency-based approaches marginally effective. In a separate vein, approaches such as SIFT

[10] and PolyPhen [11] compute a phenomenological score for each mutation based on the

physical-chemical properties or the extent of evolutionary conservation of the amino acid

sequences affected by the mutation. OncodriveFM and FunSeq search for positive selection

and purifying selection patterns to identify cancer driver genes [4, 12]. These approaches focus

on local sequence features, missing the gene regulatory effect associated with individual muta-

tions. Modeling somatic mutations in the context of genome-wide mRNA and/or protein

expression levels can quantitatively improve the accuracy of driver mutation prediction [13]. It

has been shown that integrating quantitative trait data such as mRNA expression levels can

lead to more accurate identification of disease-causing polymorphisms in genetic disorders

[14, 15]. However, benefits of integrating expression data in predicting cancer driver muta-

tions have not been fully explored, lacking are approaches that systematically associate driver

mutations with genome-wide expression patterns. Statistical challenges may exist in modeling

excessive heterogeneity in somatic mutation data.

Some recent studies have started to explore transcriptome data for systematic prediction of

cancer drivers. These studies are limited in several important ways. Methods such as MOCA

[16] and DriverNet [17] examined mutations at gene levels, ignoring the functional difference

of the mutations within a gene. Methods such as xSeq [18] measured the effects of individual

mutations in gene expression through an in silico model of known pathway networks. How-

ever, global and novel regulatory effects unaccounted for by the predefined networks could be

missed, leading to biased inference. Indeed, it has been demonstrated that many cancer muta-

tions are neomorphic with unexpected functionality [19]. Importantly, these methods do not

integrate known evolutionary and structural properties of mutations characterized by func-

tional impact scores (FISs) generated by programs such as GERP [20] and SIFT [21], which

have been shown to be very informative at identifying functional variants. Increasingly more

projects such as TCGA and ICGC now generate multi-omic data from the same tumor sam-

ples. A growing need exists to integrate multi-omic data towards more accurate identification

of driver mutations.

Here, we hypothesize that a subset of driver mutations not only have high FISs but also

significantly affect mRNA/protein expression levels in tumor samples, as systemic alternation

in mRNA/protein expression levels are often required for acquisition of new distinct pheno-

types, such as inhibition of apoptosis, increased cell proliferation, acquired resistance to

therapy, and adaptation to local microenvironments [22]. If our hypothesis is correct, a

computational method that systematically integrates FIS, and mRNA/protein expressions shall

lead to enhanced discovery of that subset of driver mutations, particularly those occurring at

low-frequency but associated with systemic changes in expression levels.

Results

rDriver: An integrative approach to predict driver mutation

We developed a rDriver approach, which predicts driver mutations based on genome-wide

mRNA/protein expression levels, and the FISs of individual mutations (Fig 1 and Methods).

The statistical framework of rDriver was motivated by a Bayesian framework developed for

performing eQTL mapping [23], which identifies the x variables (mutations) that best predict

the y variables (expressions). The regression coefficients β are regularized by prior score δ,
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which quantifies a prior functional potential of each mutation as a weighted summation of a

set of FISs, such as GERP and SIFT scores. Under this model, all the mutations are assessed

simultaneously to account for potential synergistic or antagonistic effects among mutations.

Due to the sparse nature of the associations (i.e., regulatory mutations are rare), most regres-

sion coefficients shall shrink to zero under iterative L1 regularization. Only those that repre-

sent robust associations retain non-zero values. This process does continuous shrinkage of

associations and automatic variable selection simultaneously. It results in an association matrix

that pairs each mutation with each gene. A driver likelihood score is computed for each muta-

tion based on the number of genes associated with the mutation in the association matrix. The

larger the score is, the more likely the mutation is a driver. A p-value is further computed for

Fig 1. Outline of rDriver. We define a Bayesian hierarchical model that predict mRNA expression levels from mutations and related

functional genomic annotations. The regulatory features, such as the evolutionary conservation or the physiochemical properties of a

mutation are integrated into the model by a weight prior vector w. The program proceeds to learn these parameters by iterating the

following three steps: (i) rDriver takes as input the regulatory priors for each mutation, and constructs a set of regularized penalty δ for the

mutation. In the first iteration, the regulatory priors are assumed to be uniform. (ii) rDriver takes as input the mutations X and their specific

regularized penalty to learns the regression coefficients β, representing the predictability of a mRNA expression level from a mutation. (iii)

rDriver takes as input the output of the previous steps and updates the regulatory prior parameter of each mutation through minimization of

the objective function. The final converged solution will result in a mutation and expression association matrix. The likelihood (score) that a

mutation is a driver is computed based on the number of non-zero regression coefficients between the mutation and the set of mRNAs,

followed by permutation tests.

https://doi.org/10.1371/journal.pone.0196939.g001
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each mutation based on empirical distribution of the driver scores (Methods), reflecting the

probability that the observed amount of association was not produced by chance.

Assessment of rDriver using the TCGA breast carcinoma (BRCA) data

We examined rDriver using TCGA BRCA data that included 752 breast carcinoma patients.

We focused on 544 mutations in these patients that occurred at least twice in the cohort (Fig

2A). To reduce dimensionality, we limited mRNA expression data to a subset of 3,030 genes

(S1 Dataset), which included transcription factors, chromatin remodelers, and signal transduc-

tion genes, known to play important roles in cancer [24]. The GERP and SIFT scores are used

to calculate the prior functional potential for each mutation. The SIFT scores were available

for only single-nucleotide variants (SNV) and the GERPs for both SNVs and small insertion-

deletions (indel) existing in the mutation data. We assigned the missed SIFT scores of indel

mutations with the average value of the SNVs available.

In total, rDriver predicted 228 putative driver mutations and 316 putative passenger muta-

tions in the BRCA data (S2 Dataset) and estimated an association matrix between the muta-

tions and mRNA expression levels (Fig 2B). The resulting driver scores demonstrated

Fig 2. rDriver output of BRCA and its comparison with other methods. (A) the frequency (blue) and GERP score (red) distribution across the 528

mutations in TCGA BRCA data (the SIFT score is not shown due to missing value) (B) the association matrix between the mRNAs and the mutations, with

brown dots representing non-zero association coefficients. (C) the total number of non-zero values in the association matrix column-wise, representing the

likelihood of driver mutations. A few known driver mutation hotspots in PIK3CA and TP53 are labelled (red text). (D) Receiver operator characteristic (ROC)

curves comparing the sets of driver genes predicted by various programs against a set of 17 known cancer driver genes in the Cancer Gene Census. (E) ROC

curves comparing the sets of mutations predicted by rDriver, frequency, GERP, Condel, SIFT and PolyPhen against a set of 42 known driver mutations.

https://doi.org/10.1371/journal.pone.0196939.g002
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substantial variation across different mutations (Fig 2C). An average of 26% mRNA expression

variations were explained by the mutations (S1 Fig). Mutant alleles in known driver genes

such as TP53 and PIK3CA had considerably higher scores than others. We found that the rDri-

ver predictions were largely consistent with results obtained independently from differential

gene expression analysis (Methods), where the genes which are differentially expressed

between samples with and without a specific mutation are identified. For example, top-scoring

mutations in PIK3CA,GATA3, AKT1, and TP53were associated with a large number of

differentially expressed genes (DEGs), whereas bottom-scoring mutations in AOAH,

FAM157B and NCOA3were associated with few or no DEGs (Panel A in S2 Fig). The rank cor-

relation between rDriver score and the number of DEG associated are 0.82 (p = 0.002) based

on the top 9 most frequent mutations in BRCA (Panel B in S2 Fig). Pathway analysis of the

associated genes for each mutation revealed enrichment of a range of functions (S3 Dataset).

The top-scoring mutations turn to associate with genes in cell cycle and cancer related path-

ways (S3 Fig). These results indicated that our algorithm has captured the transcriptional regu-

latory effects of somatic mutations in mRNA expression levels and can potentially enhance the

discovery of driver mutations involved in transcriptional regulation.

We further assessed the accuracy of rDriver predictions by comparing them with cancer

drivers known in the literature and with those predicted by other algorithms. First, we com-

pared the sets of predicted driver genes against a set of 17 highly probable cancer genes that

were listed in the cancer gene census (CGC) [25, 26] and were mutated in our set (S4 Dataset).

A gene is predicted as a driver gene if it contains one or more predicted driver mutations. In

this benchmark, rDriver achieved the best classification accuracy with an area under curve

(AUC) of 0.89 (Fig 2D), followed by OncodriveFM (AUC = 0.79), xSeq (AUC = 0.78) and

MutSig2CV [9] (AUC = 0.77). An approach based purely on mutation frequency (Methods)

performed poorly (AUC = 0.63). Similar trends were observed (S4 Fig) when we compared

predictions against another list of 18 cancer genes (S4 Dataset) [27] mutated in our data. Sec-

ond, we compared the sets of predicted driver mutations with a list of 42 missense SNVs that

were known cancer drivers [28]. Only missense SNVs were compared due to restrictions of

some of the predictors. rDriver was able to achieve evidently better classification performance

(AUC = 0.85) on this set than other predictors (Fig 2E), followed by GERP (AUC = 0.78), Con-

del (AUC = 0.75), SIFT, PolyPhen and a frequency based approach (Methods).

Identifying cancer context specific candidate driver mutation across the

TCGA data

Encouraged by our results on the BRCA data, we further expanded rDriver analysis to a

TCGA Pan-cancer cohort (S1 Table), which included 9,938 recurrent mutations from a total

2,284 patients across 8 cancer types. In total, rDriver predicted 1,389 putative driver mutations

(S5 Dataset) in 951 genes across the cancer types, which explained an average of 28% variance

in mRNA expression levels. Seven of the eight cancer types each had over 100 putative driver

mutations except for the GBM. Most of patient carried at least 1 putative driver mutation.

Most affected genes possessed only one putative driver mutation. A subset (143) of genes

such as PIK3CA, TP53,VHL and EGFR, possessed two or more driver mutations (Panel A in

S5 Fig). Most of the putative driver mutations appeared in a single tumor type (Panel B in S5

Fig). Only a relatively small number occurred in multiple cancer types. For example, PIK3CA
E545K was predicted in 7 cancer types. 302 of the 1,389 predicted driver mutations in 95 of the

CGC genes demonstrated striking cancer-type specificity, and 16 of them are predicted at least

2 cancer types (Fig 3A). Some of mutation alleles were ranked highly in one cancer type, but

not in the others. For example, BRAFV600E ranked the 1st in SKCM, 22th in LUAD. PIK3CA

Cancer driver mutation prediction through Bayesian integration of multi-omic data
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E545K ranked among top 5 in 5 cancer types, but very low in KIRC and GBM. These results

indicated context specific nature of rDriver predictions due largely to dynamic mRNA expres-

sion profiles in different cancer types.

For simple illustration of novel discovery, we extracted the top 10 rank of each cancer type

and obtained 32 mutant alleles resided in 31 non-CGC genes (Fig 3B). In searching the litera-

ture, we found strong connections of at least 15 of these genes to known cancer genes (S2

Table). The roles of several of these genes (for example, CDH6 and TSHZ2) have recently been

elucidated. Three of them (RHEB, PPP1R3A and CNKSR1) encode proteins in insulin

signaling pathway involved in glucose and lipid homeostasis. Two (DHX9 and UPF3a) have a

role in the maintenance of genomic and transcriptomic stability. Three (ITGAX, STK39 and

C6) are found to be associated with aggressive cancer in GWAS and QTL studies. Further

investigation revealed that 26/31 of the genes were known interaction partners of previous

characterized cancer genes, based on the Pathway Common database [29].

We further compared driver mutations predicted by rDriver and mutation frequencies

with driver mutations known in the literature and occurred at least twice in each of the tumor

types. We found that rDriver were the most accurate algorithm in 8 cancer types (S6 Fig).

Timing of the rDriver predicted driver mutations

As it is known the driver mutations tend to be initiators of tumorigenesis, likely acquired ear-

lier than other mutations and were therefore more clonal (i.e., present in more cancer cells).

Fig 3. Functional annotations of rDriver predictions in 8 cancer types. (A) The predictedat drivers present in cgc and at least 2 cancer types. (B)The predicted top 10

ranked drivers in novel genes. The color represents different rank range.

https://doi.org/10.1371/journal.pone.0196939.g003

Cancer driver mutation prediction through Bayesian integration of multi-omic data

PLOS ONE | https://doi.org/10.1371/journal.pone.0196939 May 8, 2018 6 / 19

https://david.ncifcrf.gov/kegg.jsp?path=hsa04910$Insulin%20signaling%20pathway&termId=450038882&source=kegg
https://david.ncifcrf.gov/kegg.jsp?path=hsa04910$Insulin%20signaling%20pathway&termId=450038882&source=kegg
https://doi.org/10.1371/journal.pone.0196939.g003
https://doi.org/10.1371/journal.pone.0196939


We next did post-processing analysis of timing of the rDriver predicted mutation. We

obtained estimated cancer cell fractions (CCF) and clonal/sub-clonal classification for most of

the mutations from a previous study [30]. Overall, there are significantly more clonal muta-

tions in the rDriver predicted driver groups than in the passenger groups (Fig 4A, Methods) in

almost all the cancer types, except for LUSC that had fewer mutations with estimated CCFs

(S3 Table) (all p< 0.05 except LUSC, Fisher’s exact test). The driver mutations had signifi-

cantly higher CCFs than did the passenger mutations (S7 Fig). Particularly, we found that 93%

of the top 10 predicted drivers in the 8 cancer types were clonal mutations. Among them were

novel mutations in VLDLR, CNKSR1, RHEB, CDH6, ST14, PPP1R3A, and ITGAX. These inde-

pendently derived CCF data supported the overall validity of our results.

We also found that the clonality of the mutations varied considerably across different can-

cer types. For instance, PIK3CA E545K was predominantly clonal with high cancer cell frac-

tions in LUAD, BRCA, BLCA, LUSC and HNSC, but was often sub-clonal in GBM and KIRC

(Fig 4B). Such varying CCFs in different cancer types might reflect the context specific func-

tionality of these driver mutations. For example, a GBM patient had a PIK3CA E545K muta-

tion and an EGFRA224V mutation, both of which were predicted as driver mutations.

However, the EGFRmutation was estimated to be present in all the cancer cells, whereas the

PIK3CAmutation was estimated to be present in only 38% of the cancer cells (S8 Fig). As a

receptor tyrosine kinase (RTKs) in the upstream of the PI3K pathway, EGFR is able to activate

the PI3K pathway. The difference in the CCFs of these two driver mutations postulated that

the EGFRmutation might drive tumor initiation, whereas the PIK3CAmutation contributed

to tumor progression. Similar pattern was observed in a KIRC patient with co-occurring

PIK3CA E545K and VHLmutation (S8 Fig). Interestingly, rDriver assigned lower ranks to

PIK3CA E545K in GBM and in KIRC than in other cancer types, consistently with the

observed CCF patterns.

rDriver identifies subtype specific mutations

We examined the mutation types in the rDriver predicted driver group, as contrast to those in

the passenger group. The driver group appeared to contain a greater proportion of stop-gained

and splice-site mutations, but less in-frame or silent mutations than the passenger group in all

of the 8 cancer types (Fig 4D). Most affected genes have only one stop-gained or splice-site

mutation. However, tumor suppressor genes such as TP53 had 10 alleles in BRCA (S2 Dataset).

Different mutation subtypes in a gene may indicate their context-varying functions. A stop-

gained mutation may lead to protein truncation, mRNA degradation via Nonsense-Mediated

Decay (NMD) [31] or dominant negative phenotype; while a splice-site mutation may not

only lead to NMD, but also create protein isoforms of differing, even opposing functions [32].

Interestingly, the tumors harboring stop-gained or splice-site mutations in TP53 displayed sig-

nificant decreased expression levels, whereas the tumors with other mutation types had signifi-

cantly increased levels, compared to those of the wild-type ones (Fig 4C). This observation is

consistent with our previous study that TP53 hotspot missense mutations are associated with

higher TP53 RNA and protein expression [33]. We also observed similar effects in the VHL
mutations in KIRC (S9 Fig). These results suggest that stop-gained and splice-site mutations

might act as cis-regulatory drivers of their host genes.

rDriver enhanced the detection of low frequency driver mutations

To assess whether rDriver can improve the prediction of the low frequency, so-called “tail”

mutations, we compared the prevalence of low frequency mutations in our prediction. We

found that despite having comparable proportions of low frequency mutations in the driver

Cancer driver mutation prediction through Bayesian integration of multi-omic data
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Fig 4. Clone and subtype analysis. (A) The proportion of clonal/subclonal in driver and passenger group for each cancer types. Significance

from Fisher’s exact test is indicated. Exact p values are as follows; BLCA, p = 4.53e-03; HNSC, p = 4.70e-02; SKCM, p = 1.46e-05; GBM,

p = 5.45e-03; BRCA, p = 2.89e-03, LUSC, p = 6.686e-02; KIRC, p = 2.62e-03, LUAD, p = 1.372e-02 by Chi-squared test. (B) The fraction of

cancer cells mutated for PIK3CA E545K and BRAFV600E in effected cancers. (C) The distribution of mutation subtypes in the driver and the

passenger groups predicted by rDriver. Stars indicate significance of enrichment of stop-gained or splice related variants in driver group.
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and the passenger groups (S10 Fig), a significantly bigger portion of the low frequency muta-

tions in the driver group occurred in the CGC genes (S11 Fig) than that in the passenger

group. In particular, the doubleton mutations significantly occur to CGC genes in the driver

group across all cancer type except LUAD (p<0.05, Fisher’s exact test) This result indicated

that rDriver delineated mutations based on their potential functionalities (rather than frequen-

cies). Even more striking functional delineation was observed in mutations of higher

frequencies.

Experimental validation of rDriver predictions using engineered cell-line

models

We further evaluated rDriver predictions using an in vitro cell growth and transformation

assay based on BA/F3 and MCF10A cell-lines [34]. In this functional experiment, a mutant

allele was classified as a driver if it appeared activating, i.e., resulted in excessive cell prolifera-

tion than the wild-type alleles. It is difficult to obtain a comprehensive and unbiased evaluation

due to sparsity of functional validation data. For that reason, we focused on PIK3CA, which

has been sufficiently validated: 19 of the 22 PIK3CAmutations had experimental validation

data in our study (S4 Table). Among the 17 mutations that were predicted as drivers by rDri-

ver, 16 appeared activating and 1 had no effect, corresponding to a positive predictive value

(PPV) of 0.94. Of the 2 mutations that were predicted as passengers, 1 appeared activating and

1 had no effect, corresponding to a negative predictive value (NPV) of 50%. Eight (8) of the

16 validated driver mutations were potentially novel: not present as actionable mutations in

personalizedtherapy.org. Nine (9) of the 16 validated drivers were annotated as non-functional

variants by either SIFT or PolyPhen. This experimental validation result, although limited in

scope to a single gene, underscores the potential value of rDriver for accurate discovery of

novel driver mutations.

Prognostic association of combined mutation and expression in rDriver

prediction

We further assessed the value of rDriver in prognosis. For each patient, we computed an inte-

grative prognostic score (IPS) by multiplying the patient’s mutation, cancer-type-specific asso-

ciation matrix and gene expression data. Based on the distribution of the IPS, we stratified

patients in a cancer type into 2 or more subtypes (Methods). For comparison, we also stratified

patients based on the expression levels of a set of 500 genes that had the most variable expres-

sion levels in the cancer type using negative matrix factorization (NMF) consensus clustering

[35].

In BRCA, the IPS led to two subtypes with distinct clinical outcome in terms of overall sur-

vival (log-rank test p = 0.04) (Fig 5A and 5B), whereas the expression-only analysis resulted in

less significant difference (log-rank test p = 0.35) (S12 Fig). Patients in the IPS subtype 2 had a

much worse prognosis (n = 355, median survival time of 84.5 months) than those in the IPS

subtype 1 (n = 397, median survival time of 114.0 months). A detailed analysis showed that

patients in the IPS subtype 1 contained significantly (Student’s T test, p-value = 3.5e-09) higher

proportions of PIK3CAmutant alleles (e.g., H1047R, E545K, H1047L, and Q546K) than those

in the IPS subtype 2 (S13 Fig). In particular, patients with two PIK3CAmutation alleles were

highly enriched in subtype 1 (Chi-squared test, p-value = 0.1) and all of them were alive before

(��<0.01, �p<0.05; Fisher’s exact test) (D) Altered TP53 gene expression associated with different types of mutations in BRCA. (��<0.01,
�p<0.05; t-test).

https://doi.org/10.1371/journal.pone.0196939.g004
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censoring, indicating the prognostic value of the PIK3CAmutations. In GBM, the IPS

approach was also able to stratify patients into 2 subtypes with distinct survival (log-rank test

p-value = 0.0044) with the outcome of subtype 1 (n = 44, median survival time of 17.7 months)

being significantly higher than that of the subtype 2 (n = 106, median survival time of 12.0

months) (Fig 5C and 5D). We also found that IDH1 mutations were significantly enriched in

the subtype 1 (Chi-squared test, p-value = 1.4e-05), which was consistent with previous studies

[36]. In comparison, stratification based directly on IDH1 mutation status resulted in less sig-

nificant outcome (log-rank test, p-value = 0.0058) (S14 Fig) and stratification based only on

gene expressions resulted in no significant differences. We also found significant survival strat-

ification based on the IPS in HNSC, SKCM (S5 Table), although the P values were less signifi-

cant than those obtained from gene expression only analysis.

Discussion

Accurate identification of driver mutations in specific disease contexts is critical for under-

standing cancer biology and for developing targeted treatments in the era of precision medi-

cine. However, predicting function based on mutational frequency alone has been challenging

due to dramatic genetic heterogeneity among cancer patients, which often results in a large

number of low frequency mutations. Previous driver prediction studies have been limited to

analyzing mutation data without sufficiently accounting for transcriptional or translational

effects of mutations at a population level. As multi-omic data from comprehensive cancer

genome sequencing projects become readily available, simultaneous interrogation of genomic,

transcriptomic and proteomic data from the same tumor samples may emerge as a powerful

approach to identify context-specific driver mutations. In this study, we present a novel

Fig 5. Integrative prognostic scores in two cancer types. (A) Kaplan-Meier plot showing that IPS can significantly separate the tumors in terms of overall survival in

BRCA, log-rank test p = 0.041. (B) BRCA samples are classified into 2 clusters based on their IPS values. (C) Kaplan-Meier plot showing that IPS can significantly

separate the tumors in terms of overall survival in GBM, log-rank test p = 0.0044. (D) GBM samples are classified into 2 clusters based on their IPS values.

https://doi.org/10.1371/journal.pone.0196939.g005
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approach rDriver, which integrates mutations, functional genomic impact scores and gene

expressions to identify driver mutations. It results in increased accuracy compared to existing

methods that do not perform such integration. Our work illustrates a principle way to enhance

the functionalization of somatic mutations and can potentially accelerate the discovery of

novel driver mutations.

rDriver currently utilizes cancer-type specific gene expression and is capable of identifying

context-specific or tumor lineage associated drivers. In contrast, the previous mutational hot-

spot detection method considers only mutational rate variation [37] and may have missed low

frequency mutations with systemic regulatory effects. Indeed, through integrative analysis,

rDriver predicted not only 81% (129/159) of the previously identified hotspots [37], but also

more driver mutations in specific tumor lineages. As a result, the potential cause of 74% of

patients can be explained by the rDriver results, as contrast to 54.8% by hotspot mutations

only. We also demonstrated that the integrative prognostic scores computed using rDriver

could lead to more accurately prognosis of the BRCA and the GBM patients. These results pro-

vide a rationale for further investigating the utilities of rDriver in cancer target discovery and

development.

It is interesting to note that rDriver assumed that all regulated genes are independent and

did not take advantage the prior pathway information or known gene regulatory network.

This caveat may limit its power to predict the driver mutations that enable the regulatory func-

tion in a specific pathway. At same time, the context free prediction of rDriver lends itself to

recover the driver that has regulatory effects unaccounted for by the known interaction net-

work. For example, a known network-based approaches such as xSeq did not report PIK3CA
as a top candidate driver gene in breast cancer [18]. In contrast, rDriver, which examines the

expression levels of all the genes (including those in distant pathways), indicated PIK3CA as a

driver gene that impacts cell cycle, amino acid metabolism, cancer pathway, etc.

Our study has several caveats that will need to be addressed in the future.

First, the set of mutations that we included in our study are primarily protein coding muta-

tions detected via whole exome sequencing. This is not a principle limitation of our method

but reflects a limitation of publically available resource. In principle, the rDriver framework

can potentially include both coding and non-coding mutations, although more samples will

likely be needed when non-coding mutations are included. It is our expectation that rDriver

will be able to improve the prediction of non-coding driver mutations through integration of

gene expression or other quantitative trait data, as having been demonstrated in previous

genome-wide eQTL studies [38]. The novel statistical framework of rDriver makes it possible

to systematically integrate additional functional genomic information such as protein-DNA

interaction, DNA methylation, chromatin modification, etc., which have shown to be useful

for predicting non-coding driver mutations [39].

Second, we only included SNVs and indels in our investigation but did not include copy

number alteration (CNAs) that are predictive of gene expressions [38, 40]. That was because

the functional genomic properties (i.e., the FIS) of CNAs and other segmental events are fun-

damentally different from those of SNVs and indels. Including them with SNVs and indels will

require further investigation beyond the scope of this study. Despite this known caveat, our

algorithm was able to explain a considerable fraction of gene expression variances and trans-

form them into the prediction of driver mutations.

Third, similar to other association studies, results obtained from rDriver are likely con-

founded by additional genetic, epigenetic, pathological (e.g., intratumor heterogeneity), tissue

or environmental factors. To assess potential biases, we processed the raw gene expression

data using log transformation and quantile normalization, followed by a principal component

analysis. We did not find evident population stratification that may systematically bias driver
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mutation discovery (S15 Fig). We will further investigate and deconvolute these potential con-

founding factors in our future studies.

Finally, although we examined only mRNA expression data in this study, rDriver can

potentially be generalized to integrate other types of molecular data such as protein and phos-

phoprotein activity levels produced by reverse phase protein arrays [41] and splicing alteration

[42]. These additional data types will likely provide fuels to identify new drivers.

In summary, the results from our study indicated that our novel method rDriver has suc-

cessfully transformed the power of multi-omic datasets into more accurate driver mutation

prediction in individual patients. An important highlight in our study is that we used engi-

neered cell-line models to validate a subset of our computational predictions. Although limited

in scales and by potential bias of the cell-line models, the experimental validation results pro-

vided independent measurement that confirmed the accuracy of rDriver in driver mutation

discovery. Overall, the results were encouraging and could constitute a solid step towards solv-

ing one of the most pressing challenges in cancer genomics and personalized medicine.

Methods

The rDriver model

Consider two separate data profiles with G gene expression levels and M mutations in N sam-

ples. Let yj ¼ ½yj1 ;
yj2
; . . . ; yjN ;

� and xk ¼ ½xk1;
xk2
; . . . ; xkN ;

� be the expression levels of gene j and

mutation status of allele k, in samples 1 to N. A linear relationship between the expression of

gene j and the mutation k is assumed and represented by the following linear model,

yj ¼
XM

k¼1
bjk:xk þ εj; ð1Þ

where εj represents a standard Gaussian noise, and βjk representing the amount of association

for each mutation-gene pair. We further assume that xj are standardized and consider a model

without intercept. Within this context, the goal of study is to find, for each gene, a small subset

of mutations that affect its expression level. Usually, the number of candidate mutations is

larger than the number of samples, which results in a high-dimensional model selection prob-

lem. To ensure proper estimation of parameter β, a L1 and L2 penalty was added to the least

square estimator (known as the LASSO) [43]. Given the sparse nature of the associations, most

of the regression coefficients shrink to 0 and the nonzero ones will be recovered. To incorpo-

rate the prior functional impact scores (FISs), we introduce a scaling parameter δ to regularize

the estimation of β. We define δjk as a function of FISs that affect the pair interaction between

the jth gene and the kth mutation:

djk ¼ sigmoid
XF

i¼1
wifi

� �
¼

1

1þ expð�
PF

i¼1
wifiÞ

ð2Þ

where fi is the ith FIS (or feature) among total F ones that characterizes the potential impact of

mutation k on the expression of gene j. Since we are interested in the relative contributions

from different FISs, we further weigh them by wi� 0.

Therefore, an L1 and an additional L2 norm place constraints on the estimation of the coef-

ficients and feature weights respectively with adaptive scaling parameter is enforced in the

model as follows:

minb kyj �
XK

k¼1
bjk:xkk2

þ l1j

XK

k¼1
jdjk:bjkj þ l2j

XM

k¼1
ð
XF

i¼1
w2

kiÞ
n o

ð3Þ

where λ1j and λ2j determines the degree of regularization of βjk and wki through L1 and L2
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respectively. This is a convex optimization problem and thus, if an algorithm is able to find a

local minimum, it can find the global minimum.

rDriver uses an iterative coordinate descent algorithm to minimize the above objective

function (Fig 1). The iteration alternates between two steps. In one step, we optimize over w’s

given the current λ1, and λ2, and in the other step we optimize over λ1, and λ2 given the current

w’s. The regularization parameters λ1, and λ2 are determined through a 10-fold cross valida-

tion procedure.

To obtain the p-value for each mutation, we first run rDriver for each gene and obtain a

solution matrix representing the paired associations between genes and mutations. We then

summed up the number of genes associated with a specific mutation by nonzero regression

coefficients. We calculated the null distribution based on permutations of the original gene

expression matrix followed by running rDriver with identical parameters. After a large num-

ber of permutations, we calculated empirical p-values based on the percentiles of the observed

numbers of associations in respective null distributions.

Gene expression data, mutation and its clone status data collection

The data (https://www.synapse.org/#!Synapse:syn300013) include mutations and expression

data of 8 TCGA cancer types. Differential gene expression (DEG) analysis was performed using

Mann-Whitney U-test for each mutation. The obtained p-values were further corrected by Ben-

jamini and Hochberg (BH) multiple testing procedure, and the False Discovery Rate (FDR)

<0.05 was considered as significantly differential expression gene. In preprocessing step of

rDriver analysis, we first applied log2 transformation of mRNA RPKM expression values fol-

lowed by further quantile normalization across all patients and then screened the genes for can-

cer related targeting genes (~3,030) in eQTL mapping. The clonal status and cancer cell fraction

were downloaded from https://bitbucket.org/nmcgranahan/pancancerclonality/downloads.

Frequency based driver prediction

We predicted drivers based only on mutational frequency. At gene level, drivers were deter-

mined based on the number of times a gene was mutated in the cohort, regardless of the type,

position and amino acid alteration of individual mutations. At mutation level, drivers were

determined based on the number of times a mutation was observed in the cohort. A fixed cutoff

on the number of occurrence divided the set of genes or mutations into drivers and passengers.

Mutation annotation

We annotated single nucleotide variants (SNVs) and small indels using Annovar [44], GERP,

SIFT [20] and other programs and compared them with dbSNP, COSMIC [45], and TCGA

databases, in order to understand their potential functional consequence. For the GERP scores,

we extracted the resistant substitution (RS) scores from the nucleotide bases that belong to

each candidate mutation. A higher RS score represents stronger evolutionary conservation.

KEGG enrichment analysis

We extracted the KEGG pathway annotations from KEGG database. Among total 284 path-

ways, we examined the enrichment for the associated gene list. For a specific mutation’s associ-

ated genes, we search for pathway that are significantly over-represented compared to the

original 3030 genes. The enrichment p-values were calculated by the hyper-geometric test. The

obtained p-values were further corrected by Benjamini and Hochberg (BH) multiple testing

procedure, and the False Discovery Rate (FDR) <0.05 was considered as significantly
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differential expression gene. The pathway terms with adjusted p-values < 0.05 were considered

as significantly enriched by the targeted gene list.

Functional test of the mutations

Mutation clones were first constructed using High-Throughput Mutagenesis and Molecular

Barcoding (HiTMMoB) technology [34]. Stable cell lines including IL-3-dependent Ba/F3 cells

and EGF- and insulin-dependent MCF10A cells were then established expressing PIK3CA var-

iants. The mutations are introduced into IL-3-dependent Ba/F3 cells and EGF- and insulin-

dependent MCF10A cells using lentiviral approach. After spinoculation, cells were incubated

with medium without the dependent growth factors for 3 weeks. Cell viability of transduced

cells was examined by CellTiter-Glo assay (Promega) at 1, 1.5, 2 and 3 weeks post-transduction

time points. The level of activity was assigned based on the level of increased cell viability of

mutant comparing to wild-type.

Tumor clustering and survival analysis

We used different features associated with each patient to classify the tumor samples including

the 500 genes with most variable expression and mutation data, respectively. Cluster analysis

was performed on alternative numbers of clusters (2 to 6) based on NMF consensus clustering.

To cluster the integrative prognostic score, we used a one-dimensional K-mean consensus-

clustering algorithm. The optimized cluster number is selected based on cophenetic correla-

tion [35]. We used a log-rank test to examine whether the clusters or mutations significantly

correlated with patient overall survival time (available at https://tcga-data.nci.nih.gov/tcga/)

and used Kaplan-Meier plot to demonstrate survival distributions.

Software availability

The source code of rDriver is available at http://bioinformatics.mdanderson.org/main/

RDriver.
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resource for biological pathway data. Nucleic acids research. 2011; 39(suppl 1):D685–D90.

30. McGranahan N, Favero F, de Bruin EC, Birkbak NJ, Szallasi Z, Swanton C. Clonal status of actionable

driver events and the timing of mutational processes in cancer evolution. Science translational medi-

cine. 2015; 7(283):283ra54–ra54. https://doi.org/10.1126/scitranslmed.aaa1408 PMID: 25877892

31. Rausell A, Mohammadi P, McLaren PJ, Bartha I, Xenarios I, Fellay J, et al. Analysis of stop-gain and

frameshift variants in human innate immunity genes. PLoS computational biology. 2014; 10(7):

e1003757. https://doi.org/10.1371/journal.pcbi.1003757 PMID: 25058640

32. Darman RB, Seiler M, Agrawal AA, Lim KH, Peng S, Aird D, et al. Cancer-Associated SF3B1 Hotspot

Mutations Induce Cryptic 30 Splice Site Selection through Use of a Different Branch Point. Cell reports.

2015; 13(5):1033–45. https://doi.org/10.1016/j.celrep.2015.09.053 PMID: 26565915

33. Chen T, Wang Z, Zhou W, Chong Z, Meric-Bernstam F, Mills GB, et al. Hotspot mutations delineating

diverse mutational signatures and biological utilities across cancer types. BMC genomics. 2016;

17(2):394.

34. Dogruluk T, Tsang YH, Espitia M, Chen F, Chen T, Chong Z, et al. Identification of variant-specific func-

tions of PIK3CA by rapid phenotyping of rare mutations. Cancer research. 2015; 75(24):5341–54.

https://doi.org/10.1158/0008-5472.CAN-15-1654 PMID: 26627007

35. Brunet J-P, Tamayo P, Golub TR, Mesirov JP. Metagenes and molecular pattern discovery using matrix

factorization. Proceedings of the national academy of sciences. 2004; 101(12):4164–9.

36. Combs SE, Rieken S, Wick W, Abdollahi A, von Deimling A, Debus J, et al. Prognostic significance of

IDH-1 and MGMT in patients with glioblastoma: one step forward, and one step back? Radiation oncol-

ogy. 2011; 6(1):1.

37. Chang MT, Asthana S, Gao SP, Lee BH, Chapman JS, Kandoth C, et al. Identifying recurrent mutations

in cancer reveals widespread lineage diversity and mutational specificity. Nature biotechnology. 2016;

34(2):155–63. https://doi.org/10.1038/nbt.3391 PMID: 26619011

38. Khurana E, Fu Y, Chakravarty D, Demichelis F, Rubin MA, Gerstein M. Role of non-coding sequence

variants in cancer. Nature Reviews Genetics. 2016; 17(2):93–108. https://doi.org/10.1038/nrg.2015.17

PMID: 26781813

39. Das A, Morley M, Moravec CS, Tang W, Hakonarson H, Margulies KB, et al. Bayesian integration of

genetics and epigenetics detects causal regulatory SNPs underlying expression variability. Nature com-

munications. 2015; 6.

Cancer driver mutation prediction through Bayesian integration of multi-omic data

PLOS ONE | https://doi.org/10.1371/journal.pone.0196939 May 8, 2018 18 / 19

https://doi.org/10.1038/onc.2016.312
http://www.ncbi.nlm.nih.gov/pubmed/27841866
https://doi.org/10.1371/journal.pcbi.1001025
http://www.ncbi.nlm.nih.gov/pubmed/21152010
https://doi.org/10.1038/nprot.2009.86
https://doi.org/10.1038/nprot.2009.86
http://www.ncbi.nlm.nih.gov/pubmed/19561590
https://doi.org/10.1016/j.cell.2011.02.013
https://doi.org/10.1016/j.cell.2011.02.013
http://www.ncbi.nlm.nih.gov/pubmed/21376230
https://doi.org/10.1371/journal.pgen.1000358
http://www.ncbi.nlm.nih.gov/pubmed/19180192
https://doi.org/10.1038/nrc1299
http://www.ncbi.nlm.nih.gov/pubmed/14993899
https://doi.org/10.1126/science.1235122
http://www.ncbi.nlm.nih.gov/pubmed/23539594
https://doi.org/10.1186/s13059-014-0484-1
http://www.ncbi.nlm.nih.gov/pubmed/25348012
https://doi.org/10.1126/scitranslmed.aaa1408
http://www.ncbi.nlm.nih.gov/pubmed/25877892
https://doi.org/10.1371/journal.pcbi.1003757
http://www.ncbi.nlm.nih.gov/pubmed/25058640
https://doi.org/10.1016/j.celrep.2015.09.053
http://www.ncbi.nlm.nih.gov/pubmed/26565915
https://doi.org/10.1158/0008-5472.CAN-15-1654
http://www.ncbi.nlm.nih.gov/pubmed/26627007
https://doi.org/10.1038/nbt.3391
http://www.ncbi.nlm.nih.gov/pubmed/26619011
https://doi.org/10.1038/nrg.2015.17
http://www.ncbi.nlm.nih.gov/pubmed/26781813
https://doi.org/10.1371/journal.pone.0196939


40. Curtis C, Shah SP, Chin S-F, Turashvili G, Rueda OM, Dunning MJ, et al. The genomic and transcrip-

tomic architecture of 2,000 breast tumours reveals novel subgroups. Nature. 2012; 486(7403):346–52.

https://doi.org/10.1038/nature10983 PMID: 22522925

41. Akbani R, Ng PKS, Werner HM, Shahmoradgoli M, Zhang F, Ju Z, et al. A pan-cancer proteomic per-

spective on The Cancer Genome Atlas. Nature communications. 2014; 5.

42. Wang L, Brooks AN, Fan J, Wan Y, Gambe R, Li S, et al. Transcriptomic Characterization of SF3B1

Mutation Reveals Its Pleiotropic Effects in Chronic Lymphocytic Leukemia. Cancer Cell. 2016;

30(5):750–63. https://doi.org/10.1016/j.ccell.2016.10.005 PMID: 27818134

43. Tibshirani R. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society

Series B 1996: 22.

44. Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-through-

put sequencing data. Nucleic Acids Res. 2010; 38(16):e164. Epub 2010/07/06. https://doi.org/10.1093/

nar/gkq603 PMID: 20601685

45. Bamford S, Dawson E, Forbes S, Clements J, Pettett R, Dogan A, et al. The COSMIC (Catalogue of

Somatic Mutations in Cancer) database and website. British journal of cancer. 2004; 91(2):355–8. citeu-

like-article-id:921613. https://doi.org/10.1038/sj.bjc.6601894 PMID: 15188009

Cancer driver mutation prediction through Bayesian integration of multi-omic data

PLOS ONE | https://doi.org/10.1371/journal.pone.0196939 May 8, 2018 19 / 19

https://doi.org/10.1038/nature10983
http://www.ncbi.nlm.nih.gov/pubmed/22522925
https://doi.org/10.1016/j.ccell.2016.10.005
http://www.ncbi.nlm.nih.gov/pubmed/27818134
https://doi.org/10.1093/nar/gkq603
https://doi.org/10.1093/nar/gkq603
http://www.ncbi.nlm.nih.gov/pubmed/20601685
https://doi.org/10.1038/sj.bjc.6601894
http://www.ncbi.nlm.nih.gov/pubmed/15188009
https://doi.org/10.1371/journal.pone.0196939

