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ABSTRACT Mycobacterium hippocampi is an acid-fast opportunistic pathogen associ-
ated with infections in aquatic animals. Here, we report the draft genome sequence
of M. hippocampi strain DL, an isolate from cultured European sea bass (Dicen-
trarchus labrax) associated with systemic symptomatology.

Mycobacteriosis, or “fish tuberculosis,” is a serious and often lethal disease of fish,
affecting a wide range of species globally both in culture and in wild settings (1,

2). The responsible agents, mycobacteria, are aerobic, acid-fast, and nonmotile rods (3).
They are considered important fish pathogens and are associated with multiple symp-
toms, such as uncoordinated swimming, abdominal swelling, weight loss, skin ulcer-
ation, and white nodule formation as granulomas in liver, kidney, and spleen (1, 4).

In 2017, abnormal swimming was recorded in cultured sea bass, followed by other
symptoms related to mycobacteriosis. In a culture-dependent approach including
necropsy, tissue homogenization, decontamination, and inoculation (5), we succeeded
in recovering the putative pathogenic agent from the spleen; the microbial culture
system was then optimized according to the method described by Balcázar et al. (6).
Colonies on Middlebrook 7H10 agar were irregular, rough, and scotochromogenic with
orange pigmentation. The optimum growth temperature was 25°C, whereas no growth
was observed at 37°C and little growth was observed at 20°C. The isolate was able to
grow between pH 6 and pH 9, with the optimum pH being 7.0. Moreover, microaero-
philic conditions promoted the growth of the isolate in solid medium. Genomic DNA
was extracted from a single colony and grown under optimum conditions, as described
by Haught et al. (7). DNA was quantified in triplicate with the Quant-iT double-stranded
DNA high-sensitivity assay (Invitrogen) in an Eppendorf AF2200 plate reader. The
genomic DNA library was prepared using the Nextera XT library preparation kit (Illu-
mina, San Diego, CA), following the manufacturer’s protocol. The library was quantified
using the Kapa Biosystems library quantification kit for Illumina on a Roche LightCycler
96 quantitative PCR system. The library was sequenced with 30-fold coverage on the
Illumina HiSeq platform using a 250-bp paired-end protocol, producing 720,754 reads.
Reads were adapter trimmed using Trimmomatic v. 0.30, with a sliding window quality
score cutoff value of Q15 (8). FastQC v. 0.11.8 was used to check the quality of the
validated reads (9). Reads were de novo assembled into 50 contigs using SPAdes v. 3.14
(10). The quality of the assembly was evaluated with Quast v. 5.0.2 (11). Taxonomic
assignment of the reads was performed using Kraken v. 2.0.8 (12), and the RAST
algorithm v. 2.0 (13–15) was used for genome annotation. The assembled draft genome
had a length of 6,251,150 bp, with a GC content of 66.7%. The largest contig was
553,185 bp long, the L50 value was 8, and the N50 value was 251,948 bp. Most of the
reads were classified into the genus Mycobacterium. The draft genome contained 5,984
unique predicted genes. Phylogenomic analysis based on the sequences of 52 single-
copy genes showed the greatest similarity with the gene sequences of Mycobacterium
hippocampi (87.1%). The genome was also checked based on average nucleotide
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identity (ANI) with FastANI v. 0.1.2 (16). Default parameters were used for all software
unless otherwise specified. Genome sequence comparison with type strains revealed
the greatest similarity with M. hippocampi (84.2%).

Our results report the genome sequence of M. hippocampi isolated from Dicen-
trarchus labrax, which may provide significant epidemiological information on nontu-
berculous mycobacteria in an aquatic environment.

Data availability. The whole-genome shotgun project for M. hippocampi has been

deposited in DDBJ/ENA/GenBank under the accession number JABFYL000000000,
BioProject number PRJNA630865, and BioSample number SAMN14846999. Raw se-
quencing reads were deposited in the Sequence Read Archive (SRA) under accession
number SRP260393. The version described in this paper is version JABFYL000000000.1.
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