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Abstract

Motivation: Mass spectrometry imaging (MSI) characterizes the molecular composition of tissues at spatial reso-
lution, and has a strong potential for distinguishing tissue types, or disease states. This can be achieved by super-
vised classification, which takes as input MSI spectra, and assigns class labels to subtissue locations. Unfortunately,
developing such classifiers is hindered by the limited availability of training sets with subtissue labels as the ground
truth. Subtissue labeling is prohibitively expensive, and only rough annotations of the entire tissues are typically
available. Classifiers trained on data with approximate labels have sub-optimal performance.

Results: To alleviate this challenge, we contribute a semi-supervised approach mi-CNN. mi-CNN implements mul-
tiple instance learning with a convolutional neural network (CNN). The multiple instance aspect enables weak super-
vision from tissue-level annotations when classifying subtissue locations. The convolutional architecture of the CNN
captures contextual dependencies between the spectral features. Evaluations on simulated and experimental data-
sets demonstrated that mi-CNN improved the subtissue classification as compared to traditional classifiers. We pro-
pose mi-CNN as an important step toward accurate subtissue classification in MSI, enabling rapid distinction be-
tween tissue types and disease states.

Availability and implementation: The data and code are available at https://github.com/Vitek-Lab/mi-CNN_MSI.

Contact: o.vitek@neu.edu

1 Introduction

Biochemical constitution of tissues varies with tissue types (such as
epithelial and connective tissues), or disease states (such as tumor
and healthy tissues). Mass spectrometry imaging (MSI) provides an
untargeted characterization of the molecular composition of such
tissues at spatial resolution, simultaneously quantifying hundreds of
analytes without the need for chemical labels or antibodies
(Spengler, 2015; Jones et al., 2012). Therefore, MSI has a strong po-
tential to become a rapid diagnostic technology in the clinic
(Kriegsmann et al., 2015; Vaysse et al., 2017).

Although the name of the technology contains the word ‘image’,
the structure of MSI data is very different from other bioimaging
technologies (Fig. 1). In MSI, mass spectra are acquired at thousands
of different spatial locations in a raster pattern throughout the tis-
sue. MSI techniques fall into two major categories: matrix-assisted
laser desorption/ionization (MALDI) MSI (Aichler and Walch,
2015) and desorption electrospray ionization (DESI) MSI (Wu et al.,
2013). With each technique, the mass spectrum obtained at each

location is a collection of features, corresponding to the ions of bio-
chemical analytes such as metabolites, lipids, peptides and proteins.
The features do not contain direct information regarding the identity
of the underlying analyte, except for their ratios of mass over charge
m/z. For one tissue location, a typical MSI experiment reports hun-
dreds to thousands of m/z in ascending order. The intensities of the
m/z correlate with the abundance of the analyte. A plot of the abun-
dance of one m/z across all locations is referred to as an ion image.

A reliable diagnostics can be achieved by supervised classifica-
tion models that take as input the observed mass spectra, and predict
labels such as tumor, healthy or tumor subtypes. Beyond tissue-level
classification (classifying the entire tissues), subtissue-level classifica-
tion (classifying the disease status of individual locations within the
tissues) is of most interest. Ranking m/z features by their predictive
ability is also important. Currently, training subtissue-level classi-
fiers providing this information requires training sets of tissues with
reliable subtissue labels.

Unfortunately, accessing a training set with reliable subtissue
labels is challenging in practice. In a typical workflow, pathologists
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examine the hematoxylin and eosin (H&E)-stained optical images
such as in Figure 1a. To obtain subtissue labels, the pathologist must
manually examine and annotate the distinct regions of each tissue
(Lou et al., 2017). The cost of manual work is one of the reasons to
the relatively small number of biological replicates in MSI. The pro-
cedure is particularly costly for heterogeneous tissues that require
labeling of multiple small sub-regions, or for tissues with challenging
histology. To be transferrable to MSI, the subtissue labeling must use
specialized software that takes time to learn. As the result, patholo-
gists often avoid labeling the individual locations, and only roughly
annotate the entire tissues. Figure 1c shows that, although the tissue
on the left is annotated as tumor, the ion image indicates tissue het-
erogeneity, and the tissue likely contains both cancerous tissue and
healthy kidney parenchyma. Such imprecise labeling of tissue loca-
tions compromises the accuracy of the resulting classifiers.

In addition to the labeling, high correlations between many m/z
limit our ability to train accurate classifiers on MSI data. For ex-
ample, in peptide MSI proteins are digested to give rise to multiple
peptide ions of a same protein, and therefore have similar spatial dis-
tributions of abundance. An analyte can also produce multiple m/z
ions for other reasons, that include sodium adducts, neutral loss ions,
fragment ions or multiply charged ions. For example, Figure 1b illus-
trates the potential sodium and potassium adducts that give rise to
correlated features. The high correlation in the high-dimensional vec-
tor of m/z features undermines the stability of the classifiers, and leads
to overfitting (Kriegsmann et al., 2015; Vaysse et al., 2017).

To improve our ability to accurately classify subtissue locations
in MSI from approximate tissue-level annotations, we propose a
semi-supervised approach mi-convolutional neural network (CNN).
mi-CNN implements multiple instance learning (MIL) with a CNN.
The multiple instance aspect of the approach enables weak supervi-
sion from tissue-level annotations when classifying subtissue labels.
The convolutional architecture of the CNN captures potential con-
textual dependencies between m/z, such as sodium adducts and
dehydrated ions. Evaluations on simulated and experimental data-
sets demonstrate that mi-CNN improved the subtissue classification
as compared with traditional classifiers such as support vector ma-
chine (SVM) and CNN, and successfully reflected the truly predict-
ive spectral features. We propose mi-CNN as an important step
toward accurate subtissue classification in basic biology and clinical
applications of MSI.

2 Background

2.1 Subtissue-level classification in MSI
Classifying tissue locations using MSI spectra has already received a
lot of attention (Kriegsmann et al., 2015; Vaysse et al., 2017).
Various classifiers have been proposed for these task, including lin-
ear discriminant analysis (Dill et al., 2010, 2011), regularized logis-
tic regression (Eberlin et al., 2014; Sans et al., 2017), SVM
(Calligaris et al., 2015), and many others. Variations of these
approaches such as nearest shrunken centroids (Bemis et al., 2016)
incorporate spatial smoothing to enhance the spatial stability of the
results. The classifiers take as input m/z features at each location,

classify the label of each location, and classify the tissues according
to the majority of its location labels.

Recently, neural networks became of a great interest for MSI.
Rauser et al. (2010) used fully connected neural networks for tumor
classification, and Inglese et al. (2017) used unsupervised neural net-
works to cluster tumor tissues. CNNs, a class of deep neural net-
works originally designed for image classification, were also
introduced. CNN convolutes the image using a small-sized kernel to
capture the local connectivity within an image (Rawat and Wang,
2017). A novel application of CNN to MSI proposed to view mass
spectra as 1D images. Behrmann et al. (2018) used a modified
Residual Net with 13 935 parameters and kernel size of 3 to capture
isotopic patterns in mass spectra. van Kersbergen et al. (2019)
replaced convolutional layers in Behrmann’s network with dilated
convolutional layers to increase receptive size, and capture globally
distributed patterns in the spectra.

Although the approaches above are quite diverse, they all rely on
quality subtissue labels for training. As the result, they are under-
mined by training sets with approximate annotations, such as in
Figure 1.

2.2 Multiple instance learning (MIL)
Multiple instance learning is a semi-supervised framework common-
ly used in a variety of applications such as image and video analysis
(Cheplygina et al., 2019) and computer-aided diagnosis (Fu et al.,
2010; Kandemir and Hamprecht, 2015), but so far not utilized for
MSI. In contrast to the classifiers above, MIL allows weak supervi-
sion of the training data. The approach considers groups of observa-
tions, called bags, where ground-truth labels are only available at
the bag level. The labels of the observations in a bag, called instan-
ces, are unknown. In a binary classification problem MIL assumes
that a positive bag contains at least one positive instance, but the
negative bags contain only negative instances. The homogeneity of
the data in the negative bags is the key feature of the approach that
enables efficient learning.

Existing MIL algorithms can be classified into two groups: bag
space algorithms and instance space algorithm. Bag space algorithms,
such as mi-Graph (Zhou et al., 2009) and MIL with instance (Fu
et al., 2010), do not predict labels of individual instances. They clas-
sify the bags directly by considering similarities of input features be-
tween the bags. Instance space algorithms, such as mi-SVM (Andrews
et al., 2003) and MILboost (Zhang et al., 2006), take features of the
instances as input and predict labels of both instances and bags. For
instance-level prediction, mi-SVM is one of the most accurate meth-
ods (Kandemir and Hamprecht, 2015). The method treats labels of
instances in positive bags as latent variables, and estimates them from
the data. Parameters of SVM are optimized by iteratively training
SVM on the current instance-level labels, and updating the instance-
level labels from their predictions by the current SVM.

2.3 Interpretation of black-box machine learning models
Many of the classification approaches above function like a ‘black
box’ and lack interpretability. Post-processing of these models
(Molnar, 2019) helps characterize the relative importance of each
predictive feature after the model is fit. One such approach is Local
Interpretable Model-agnostic Explanation (LIME; Ribeiro et al.,
2016), which ranks features by their importance in predicting the
label of a particular observation of interest. LIME generates new
observations by permuting the values of the predictive features in
the dataset, and obtains the black box predictions for these new
observations. Next, LIME weights the new observations by their
proximity to the observation of interest, and trains a weighted inter-
pretable model (such as linear regression with subset selection or
regularization) on the new observations and their predictions.
Finally, LIME repeats this procedure multiple times, and ranks the
features by their frequency of being selected as predictive.

(a) (b) (c)

Fig. 1. MSI data. (a) H&E-stained optical images of a pair of tumor and healthy tis-

sues from the human renal cell carcinoma (RCC) experiment. (b) Mass spectrum

from one location in the tumor tissue. The inset zooms into m=z 2 ð250; 300Þ. Two

features with m/z shift Dm ¼ 22 can correspond to molecular ions and sodium

adducts. Two features with m/z shift Dm ¼ 38 can correspond to molecular ions

and potassium adducts. (c) Ion images of m/z 215 of the tissues in (a)
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3 Multiple instance learning with convolutional
neural network (mi-CNN)

3.1 Overview
For the purposes of subtissue classification in MSI, we propose to
view a tissue as a bag, and a tissue location as an instance. We as-
sume that tissues annotated as non-tumor do not have tumor loca-
tions, but tissues annotated as tumor can have both tumor and non-
tumor locations. MIL allows us to train classifiers of subtissue loca-
tions on training sets with such rough tissue-level annotations.
Instance space algorithms are of a particular interest for this task.
Our proposed approach takes as the baseline mi-SVM, which
reported high classification accuracy on similar tasks in the past, but
substitutes the SVM classifier with a CNN (Fig. 2). Although CNN
are frequently used for image analyses in computer vision domains,
the proposed approach uses CNN is a different way. We do not
apply spatial convolution on a tissue, as we expect high heterogen-
eity of the microenvironment within a tumor, and an insufficient
spatial smoothness of the location labels. Instead, the CNN incorpo-
rates convolutional filters to m/z in individual locations to capture
potential correlations between m/z of a same location. The CNN
has a lightweight structure to avoid overfitting. Finally, post-
processing with LIME identifies highly predictive m/z for down-
stream biological and clinical interpretation.

3.2 Notation
Consider tissue j and its locations i. The tissue is characterized by a
collection of mass spectra Xj ¼ fXijg; i ¼ f1; . . . ; Ijg; j ¼ f1; . . . ; Jg,
and each mass spectrum Xij is a vector of M intensities of m/z fea-
tures Xij ¼ fXð1Þij ; . . . ;X

ðMÞ
ij g. Let Yj 2 f0; 1g denote the annotation

of the tissue j, and yij the subtissue label at the ith location. Note
that Yj is known, and yij is unknown. Denote pj the probability that
tissue j belongs to Class 1, and pij is the corresponding probability
for the location i in that tissue. Given a mass spectrum Xij, our goal
is to predict the label yij of this location, and the label Yj of the entire
tissue.

3.3 Subtissue-level classification
Using cross-entropy as the loss function, the objective of MIL is
defined as

max
H

X
i;j

fyij logðpijÞ þ ð1� yijÞlogð1� pijÞg

such that max
j
ðyijÞ¼ Yj; (1)

where pij ¼ f ðH;XijÞ is the prediction of a classifier (a CNN) with
parameters H.

Since the subtissue labels yij are not observed, they are estimated
by an expectation–maximization-like algorithm (Algorithm 1, simi-
lar to mi-SVM in Andrews et al., 2003) minimizing the entropy loss
[Equation (1)]. First, the labels of all subtissue locations are initial-
ized with the annotations of the corresponding tissues. Next, the

algorithm iterates between training CNN on the current location
labels, estimating the probability pij that location i in tissue j belong
to Class 1, and imputing the location labels yij from these probabil-
ities until convergence. The constraint in Equation (1) ensures that
the labels of non-tumor locations in non-tumor tissues are always
classified as non-tumor. On the other hand, if no locations on a
tumor tissue are classified as tumor, the location with the highest pij

in this tissue will be labeled as tumor (Lines 7–10, Algorithm 1). The
algorithm stops when the number of updated labels is below a
threshold, or when the maximum number of iterations is
reached.The architecture of CNN must be adapted to the specifics
of the MSI. In these experiments the number of m/z features can be
very large (up to one hundred thousand), while the number of bio-
logical replicates is relatively small (typically < 50). Therefore, the
CNN should be relatively lightweight, and minimize the number of
parameters to avoid overfitting. The convolution filter should be
large enough to incorporate neighboring m/z, but small enough to
benefit from weight sharing and computation reduction.

We propose a 1D CNN, consisting of three basic components,
namely convolutional layers, pooling layers and fully connected
layers. Three convolutional layers hierarchically learn the poten-
tial patterns in a mass spectrum. For each layer, the filter size is
set according to the contextual dependencies between m/z of
interest, such as mass shifts corresponding to sodium adducts and
molecular ions. After each convolutional layer, maxpooling
reduces the resolution of the previous layer by focusing on large
intensities of m/z features and reducing the impact of spectral
noise. The CNN includes only one fully connected layer that cap-
tures globally distributed patterns (Fig. 2). Softmax activation

Fig. 2. Architecture of mi-CNN. pj the probability that tissue j belongs to Class 1, and pij is the corresponding probability for the location i in that tissue. (a) Training set and

(b) validation set

Algorithm 1 mi-CNN

1: procedure mi-CNN(X1; . . . ;XJ;Y1; . . . ;YJ, threshold)

2: Initialize: yij ¼ Yj for j 2 1; . . . ; J

3: while the number of updated labels < threshold do

4: Compute CNN parameters H for current labels yij

5: Compute pij ¼ f ðH;XijÞ
6: For each j where Yj ¼ 1, set yij ¼ ifelseðpij > 0:5; 1; 0Þ
7: for each j where Y j ¼ 1 do

8: if
P

yij ¼ 0 then

9: Compute i0 ¼ arg maxi pij

10: Set yi0 j ¼ 1

11: end if

12: end for

13: end while

14: OUTPUT (H; yij)

15: end procedure
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function is used in the output layer to generate probability of each
class.

The CNN is trained using stochastic gradient descent. It calcu-
lates the partial derivative of the loss function in Equation (1) with
respect to the learnable parameters in H by backpropagation, and it-
eratively updates H and values in each layer until convergence.

Tissue-level classification. The proposed tissue-level classifica-
tion does not count the proportion of predicted location labels in a
tissue. Instead, it treats each tissue as one observation, and uses the
collection of mass spectra fX1j; . . . ;XIj jg from all the locations in
the tissue as its predictive features. The CNN architecture for this
task is the same as the architecture for subtissue-level classification,
with the exception of combining the probabilities of the individual
locations into a pooling layer that estimates the probability of a
tissue-level label. The pooling can be a simple max or mean pooling,
or a generalized mean pooling

pjðp1j; . . . ;pIjÞ ¼ Ij

X
i

pr
ij

� ��1
r
; (2)

where Ij is the number of locations on tissue j, and r is an integer
tuning parameter. The loss function is the cross-entropy of tissue-
level predictions and tissue-level labels

max
H

X
J

fYj logðpjÞ þ ð1� YjÞ logð1� pjÞg; (3)

where pj is pooled probability of pij, and pij ¼ f ðH;XjÞ are the pre-
dicted probabilities by CNN.

3.4 Evaluation and interpretation
We evaluate the accuracy of subtissue classification by calculating
the accuracy and the balanced accuracy of label predictions at indi-
vidual locations. We evaluate the accuracy of tissue-level classifica-
tion by calculating the accuracy and the balanced accuracy of label
predictions at the entire tissues. The metrics are defined as

Accuracy ¼ TPþ TN

PþN
and (4)

Balanced accuracy ¼ 1

2

TP

P
þ 1

2

TN

N
; (5)

where for subtissue-level classification, TP is the number of cor-
rectly classified positive (i.e. tumor) locations across all the tissues,
TN is the number of correctly classified negative (i.e. non-tumor)
locations across all the tissues. P and N are the total numbers of
locations across the tissues classified as tumor or non-tumor re-
spectively. For tissue-level classification, TP, TN, P and N have
the same interpretation, but for the entire tissues. Accuracy quanti-
fies the overall proportion of correct predictions by model. When
the number of observations in each class is not balanced, and the
prediction of a minority class is under-represented, overall accur-
acy may inaccurately characterize the performance. In this case,
balanced accuracy, quantifying the average of individual propor-
tions of correct predictions in each class may provide more
insights.

Even when we can report the accuracy of classification, the clas-
sifier remains a black box. Therefore, we use LIME to assist with
the interpretation, and identify m/z features that play a particularly
important role in classifying the labels of individual locations. We
randomly select a subset of locations in the validation sets in our
experiments, use LIME to select top five influential features for each
location, and rank the selected features by frequency of being
selected in multiple locations.

3.5 Implementation
We implemented mi-CNN using Tensorflow (Allaire and Tang,
2019) in the RStudio environment. We constructed a CNN architec-
ture of three convolutional layers with Rectified Linear Unit (ReLU)
activation, and a fully connected layer. The filter sizes of each

convolutional layer were set as 38, 18 and 16. The network had
1774 trainable parameters in total for an input length of 850. CNN
were trained using batch stochastic gradient descent optimization.
Training one epoch of the renal cell carcinoma (RCC) dataset with
5350 spectra took �10 s, and training the entire model took �1.5 h
on a computer with 64 RAM and 3.6 GHz CPU. Baseline model mi-
SVM was implemented in R following (Andrews et al., 2003). The
maximum number of iterations of mi-SVM was set as 200. The ker-
nel function used was radial basis function with gamma as 0.0012 in
simulation datasets and human RCC data, and sigmoid function
with gamma as 0.00125 in human bladder cancer data. LIME was
implemented using R package lime (Pedersen and Benesty, 2019).
The number of bins for continuous variable was set as 4 and the ker-
nel width was set as 0.1 in lime.

4 Data

We evaluated the performance of mi-CNN on five datasets. Two ex-
perimental datasets represent two human cancers, and two different
MSI acquisition strategies (DESI, characterizing metabolites and lip-
ids and MALDI, characterizing peptides). We further simulated
three datasets with known ground truth, inspired from one of the
experimental datasets.

4.1 Human RCC experiment

The experiment aimed to classify locations in human renal tissues
as tumor versus healthy. Pairs of tumor and healthy tissue sections
were collected from eight human donors with RCC. The tissues
were subjected to serial H&E staining. Pathology examination of
the H&E-stained tissues was unable to classify the tissues at the sub-
tissue resolution, and only annotated each entire tissue section as
tumor or healthy (Fig. 3).

Data from the tissues were acquired using DESI ionization
source on a Thermo Finnigan LTQ ion trap mass spectrometer in
negative mode. The mass range covered 150–1000 Da. In total,
7567 mass spectra were collected from on average 472 locations per
tissue. Prior to classification, the spectra were normalized by total
ion current (TIC) and resampled to unit mass resolution, which pro-
duced 850 m/z features per mass spectrum. The data are available in
R package CardinalWorkflow (Bemis, 2019). The pairs of tissues
were randomly split into a training set (six pairs) and validation set
(two pairs).

4.2 Human bladder cancer experiment
The experiment aimed to classify human bladder cancer tissues as
tumor versus stroma. Two tissue microarrays (TMAs) containing
core needle biopsies from resected formalin-fixed and paraffin-
embedded bladder tissues of 49 patients were built, and each TMA
was mounted onto a separate glass slide (Fig. 4). A pathologist anno-
tated 42 tissue cores by carefully examining sub-areas of each tissue

(a) (b)

Fig. 3. Human RCC experiment. Pairs of tumor and healthy tissues from eight

donors were H&E stained, and examined by a pathologist. For each pair, the tissue

on the left has the pathology annotation of tumor, and the tissue on the right has the

pathology annotation of healthy. The subtissue-level annotations were not available

for this experiment. (a) Training set and (b) Validation set
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and color-coded subregions presenting tumor and subregions pre-
senting stroma (Fig. 4). The annotations are viewed as ground truth
in this article. The label tumor was assigned to tissue cores contain-
ing tumor subregions, and the label stroma to cores containing only
stroma.

The proteins in the tissues were digested with trypsin and the
peptides were covered with alpha-cyano-4-hydroxycinnamic acid
matrix and analyzed with an AB SCIEX 4800 MALDI Time-of-
Flight (TOF)/TOF mass spectrometer in positive mode. The mass
range was 800–2300 Da. Subregion annotations containing 3152
mass spectra in total and 77 spectra per tissue were extracted via an
affine transformation strategy (Föll et al., 2019). The two datasets
were resampled, combined and pre-processed using Cardinal and
MALDIquant algorithms on https://usegalaxy.eu (Bemis et al.,
2015; Föll et al., 2019; Gibb and Strimmer, 2012). The major pre-
processing steps comprised peak picking, re-calibration, removal of
contaminants and TIC normalization. The pre-processed file

contained 593 m/z features. Annotated tissues from one slide were
used as training set (21 tissues), and on the second slide as the valid-
ation set (21 tissues). The split aims to test the robustness of the clas-
sifier to experimental batch effects.
Simulated Dataset 1: one differentially abundant analyte with four
features, and a complex background. The simulation is based on the
mass spectra from eight healthy tissues in RCC dataset. It mimicked
real-life variation in feature intensities, while providing the ground
truth regarding both the labels of the tissue locations and the pre-
dictive features.

First, the eight healthy tissues in the RCC dataset were split into
two halves, as shown in Figure 5. Since the mass spectra from these
tissues have real-life biological and technological variation, but no
systematic variation between the tissue types, they are viewed as a
complex background.

Second, the newly created tissues were assigned tissue- and
subtissue-level labels. The left half of the upper newly created tissues
was labeled as tumor, and the remaining locations as healthy. These
labels were viewed as the ground truth. To mimic pathology annota-
tions at the tissue level, the entire upper tissues were annotated as
tumor, and the lower tissues as healthy.

Next, one synthetic differentially abundant analyte between the
tumor and the healthy locations was added to the experimental spec-
tra. The simulation incorporated a morphology (grey area in Fig. 5)
that confounded the intensity of the differentially abundant analyte
and spanned both tumor and the healthy tissue locations. The inten-
sity X0ij of this analyte at location i in tissue j was simulated as
follows

X0ij ¼ lþ Sj þ dij þ eij

Sj�iidNð0;r2
SÞ; eij�iidNð0;r2

� Þ; dij�iidNðð�Iout þ IinÞDl; r2
dÞ
; (6)

where l is the mean intensity of the analyte for tumor or stroma, Sj

is the biological between-tissue variation, dij is the variation between
the morphological region and background, and eij is the biological
and technological variation between locations of a same tissue. All
the random variables are independent. Iin and Iout are indicators of
whether a tissue location is inside or outside a morphology region,
and Dl is the mean intensity shift of locations inside or outside the
morphological region. Here l¼50 for tumor and l2 ¼ 150 for
healthy, rS ¼ 0:15l; Dl ¼ 5; rd ¼ 0:1Dl and re ¼ 0:1l.

Finally, we simulated four individual m/z features generated by
this analyte. The features correspond to dehydrated ions
½M�H �H2O�� (m/z 407), molecular molecules ½M�H�� (m/z
425), sodium adducts ½M� 2H þNa�� (m/z 447) and potassium
adducts ½M� 2H þ K�� (m/z 463). Each feature was simulated as

X
ðm=zÞ
ij � Dirchletð1; 1;1; 1Þ �X0ij.

Similarly to the RCC dataset, the tissues were split into a training
set of six tissue pairs, and a validation set of two tissue pairs.

Simulated Dataset 2: one analyte with differential relative intensity of
two of the four features, and a complex background. We mimicked a
situation where tumor locations affect the relative intensities of fea-
tures of a same analyte. We assumed that the synthetic analyte pro-
duced more potassium adducts in tumor locations, but more sodium
adducts in healthy tissues. The simulation repeated the procedure
above, while setting the mean intensity of the analyte to l ¼ 50 for
both tumor and healthy locations, and setting the total intensity of

molecular ions and dehydrated ions to X
ð407;425Þ
ij . The total intensity

(a) (b)

Fig. 4. Human bladder cancer experiment. H&E-stained optical images of human

bladder cancer tissues after data acquisition. Letters above each tissue are tissue-

level annotations (T, tumor; S, stroma). The colors inside each core indicate subtis-

sue-level pathology (red, tumor; blue, stroma), viewed as the ground truth. (a)

Training set: 3 purely stroma tissues and 18 tissues with both tumor and stroma

locations. (b) Validation set: 7 purely stroma tissues and 14 tissues with both tumor

and stroma

Fig. 5. Simulated Dataset 1. Healthy tissues from the RCC experiment were split

into halves. Locations on the left half of the upper newly created tissues were labeled

as tumor, and the remaining locations as healthy. The labels were viewed as the

ground truth. To mimic pathology annotations, the entire upper tissues were anno-

tated as tumor, and the lower tissues as healthy. A synthetic analyte with four fea-

tures, differentially abundant between tumor and healthy, was added to the

experimental spectra. Its intensity was confounded by a morphology structure span-

ning both tissue types

Table 1. Simulated Dataset 1: classification accuracy

Compare with SVM CNN mi-SVM mi-CNN

Training Tissue annotations 0.895 (0.895) 0.948 (0.948) 0.885 (0.882) 0.751 (0.742)

Subtissue labels 0.747 (0.833) 0.747 (0.833) 0.809 (0.862) 0.979 (0.981)

Validation Subtissue labels 0.778 (0.671) 0.752 (0.831) 0.833 (0.693) 0.975 (0.964)

Note: Accuracy [Equation (4)] and balanced accuracy [in parentheses, Equation (5)]. The first two rows evaluate the accuracy with respect to tissue-level anno-

tations. The last four rows evaluate the accuracy with respect to labels of within-tissue locations.
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of adducts X
ð447;463Þ
ij was simulated from Dirichletða ¼ cð1; 1ÞÞ �X0ij.

Next, in the tumor locations we set the intensity of sodium adducts

X
ð447Þ
ij ¼ 0:2 �Xð447;463Þ

ij , the intensity of potassium adducts X
ð463Þ
ij ¼

0:8 �Xð447;463Þ
ij . In the healthy locations we set the intensity of sodium

adducts X
ð447Þ
ij ¼ 0:8 �Xð447;463Þ

ij , and the intensity of potassium

adducts X
ð463Þ
ij ¼ 0:2 �Xð447;463Þ

ij in healthy.

Simulated Dataset 3: impact of biological variation, technological
variation and sample size. The simulation evaluated the effect of
biological and technological variation, and of the number of tissues
in the training set, on the performance of mi-CNN. We simulated
training sets with between 13 and 130 tissues, half of which anno-
tated at the tissue level as tumor, and the other half as healthy. Each
simulated tissue was characterized by 25 locations, with spectra ran-
domly selected from the healthy tissues in the RCC experiment to
represent complex background. As in Datasets 1 and 2, only half of
the locations in the tumor-annotated tissues had tumor locations as
the ground truth. The synthetic analyte was simulated as in
Equation (6), with l ¼ 50 for the tumor locations and l ¼ 150 for
the healthy locations. rS varied from 0:1l to 0:3l; re varied between
0:05l and 0:15l.

5 Results

5.1 Results for the simulated datasets
Taking as input tissue-level annotations, mi-CNN accurately classi-
fied subtissue labels. We compared the ability of mi-CNN and mi-
SVM, and that of the classical CNN and SVM, to classify subtissue
labels on Simulated Dataset 1. Table 1 shows that SVM and CNN
had high accuracy when comparing the classified locations to tissue-
level annotations in the training set. This is expected, as the methods
were trained to minimize the classification loss with respect to

tissue-level annotations. However, these predictive patterns were
undermined by the mislabeled healthy locations in the tumor-
annotated tissues of the training set. When comparing the classifica-
tions to the ground truth at the location level, the methods had
worse accuracy (and worse balanced accuracy, that accounts for dif-
ferences in the number of tumor and healthy locations) in both the
training and the validation dataset. Figure 6 details the predictions
on the validation set. It illustrates that SVM had poor predictions
for both tumor and healthy locations, while CNN had poor predic-
tions for healthy locations.

Although the accuracy of mi-SVM and mi-CNN classification
compared with tissue-level annotations was lower than that of SVM
and CNN (Table 1, Row 1 and 2), their results were closer to the
ground truth location labels, both on the training (Table 1, Rows 3
and 4) and the validation sets (Table 1, Rows 5 and 6). Figure 6
illustrates that mi-SVM, and in particular mi-CNN, classified the
labels of the individual locations more correctly.

Table 2 shows that the results are not limited to situations when
the predictive analyte is differentially abundant. Qualitatively simi-
lar results are obtained with the predictive pattern in Simulated
Dataset 2.

mi-CNN improved subtissue classification by leveraging changes
in relative abundances of features from a same analyte. Tables 1 and
2 show that mi-CNN and CNN had higher classification accuracy
with respect to the location labels as compared to mi-SVM and
SVM. To evaluate whether the improved accuracy was due to the
CNN’s ability to capture the contextual relationships between
related m/z, we ranked the predictive features by their importance in
these methods using LIME. Figure 7 compares the relative

Fig. 6. Simulation Dataset 1: subtissue-level classification on the validation set

Table 2. Simulated Dataset 2: classification accuracy

Compare with SVM CNN mi-SVM mi-CNN

Training Tissue annotations 0.532 (0.530) 0.778 (0.777) 0.860 (0.856) 0.700 (0.690)

Subtissue labels 0.565 (0.538) 0.734 (0.810) 0.758 (0.776) 0.877 (0.800)

Validation Subtissue labels 0.530 (0.449) 0.869 (0.896) 0.771 (0.500) 0.912 (0.701)

Note: As Table 1, for Simulated Dataset 2.

Fig. 7. Simulated Dataset 1: LIME-based importance of m/z features when classify-

ing a tumor location in the validation set. A location in the simulated tissue

UH9912_01 was classified correctly by both mi-SVM and mi-CNN. However, only

mi-CNN captured the four m/z features (407, 425, 447 and 463) from the synthetic

differentially abundant analyte. (a) mi-SVM and (b) mi-CNN

MSI classification i305



importance of the top five features, when classifying a tumor loca-
tion in one tissue with mi-SVM and mi-CNN. Both methods classi-
fied this location correctly. However, while in mi-SVM the most
predictive feature is part of the background, mi-CNN ranked the m/
z features (407, 425, 447 and 463) of the synthetic differentially
abundant analyte among the top five most predictive.

Out of 200 randomly selected locations, mi-CNN consistently
ranked all these features among the top five most predictive in
32.3% of the locations, and at least one of these features among the
top five most predictive in 99.3% of the locations. The respective
numbers for mi-SVM were very low, 0% and 6%. This illustrates
the utility of incorporating the domain-specific information in the
size of the convolution filter in the neural network.

In presence of larger variation, accurate subtissue-level classifica-
tion with mi-CNN required a larger sample size. We evaluated the
accuracy of mi-CNN with respect to subtissue labels on Simulated

Dataset 3. Figure 8a shows that, in situations where both between-
tissue and within-tissue variation is relatively small, mi-CNN can
have a high classification accuracy on the validation set, even when
trained on a relatively small number of 12 biological replicates.
Figure 8c and d illustrates that the between-tissue variation domi-
nates the classification accuracy, and the within-tissue variation has
a relatively small impact. Including more biological replicates is
beneficial when variation is large.

5.2 Results for the experimental datasets
RCC experiment. Although subtissue-level ground truth was not
available for the RCC experiment, we used the fact that the tissue
sections annotated as healthy were expected to be free from tumor.
Therefore, we evaluated the classifications with respect to the homo-
geneity of subtissue classification of the healthy sections. Figure 9
illustrates that, on the training set, mi-SVM and mi-CNN both had
homogeneous predictions of healthy on healthy tissue. On the valid-
ation set, mi-CNN had slightly more homogeneous predictions of
healthy on healthy tissues than mi-SVM. The predictions of SVM
and mi-SVM had no substantial difference in this dataset. CNN has
less homogeneous predictions of healthy on healthy tissues than mi-
CNN in both training and validation set. This indicates that mi-
CNN can improve prediction on healthy locations by considering
healthy locations in the tumor tissues.

LIME-based interpretation of mi-SVM and mi-CNN highlighted
different features as highly predictive. For mi-SVM, m/z 181, 215,
760, 865 and 898 were ranked as the top 5 most important. For mi-
CNN, these were m/z 217, 751, 773, 885 and 886. These results in-
dicate that the choice of the classifier plays an important role in
both predictive accuracy and the choice of predictive features in this
dataset.

Human bladder cancer experiment. Figure 10 compares the classifi-
cation of SVM, CNN, mi-SVM and mi-CNN with the ground truth
subtissue-level labels on selected heterogeneous tumor tissue and
pure stroma tissue. Similar to results on Simulated Datasets 1 and 2,
SVM and CNN classified many stroma locations in the tumor tissue
as tumor in the training dataset (see Fig. 10). Not surprisingly, both
SVM and CNN had poor predictions in the validation set, present-
ing mixture predictions of tumor and stroma in the stroma tissue.

mi-SVM and mi-CNN improved the classification of SVM and
CNN in terms of both accuracy and balanced accuracy (Table 3).
From Figure 10, mi-CNN correctly classified more stroma locations
in the tumor tissues than mi-SVM for both training and validation
tissues. In addition, mi-CNN had the smallest number of false posi-
tives on the stroma tissues, showing most clean classifications in
stroma tissues in Figure 10.

(a) (b)

(c) (d)

Fig. 8. Simulated Dataset 3: impact of biological (a,b) and technological variation

(c,d) of the synthetic analyte, and of the number of training set tissues, on the accur-

acy of mi-CNN with respect to subtissue labels. When biological variation is rela-

tively small, mi-CNN correctly classified subtissue locations, even with a small

number of biological replicates in the training set. Including more biological repli-

cates is beneficial when variation is large

Fig. 9. Classification accuracy: the RCC experiment. (a) Tissue-level pathology annotations. (b) Optical images of H&E stained tissues. (c-f) Subtissue-level classifications
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LIME analysis of mi-CNN classifications of a subset of 200 loca-
tions in validation set selected m/z 925.44, 944.44, 946.44, 1105.54
and 1198.69 as most predictive. Among those, m/z 944.44 is likely
to be Histone 2 A, which is known to be upregulated in tumors, and
m/z 1105.54 is likely to correspond to Collagen I which is known to
be upregulated in stroma. LIME analysis of mi-SVM selected five
different predictive features, m/z 1669.73, 1475.72, 1529.7, 963.44
and 1054.49.

6 Discussion

We introduced mi-CNN, a deep MIL approach for classifying sub-
tissue locations in MSI experiments. The multiple instance aspect of
the approach enabled training the classifier with weak supervision,
using rough tissue-level annotations in the training set. The convolu-
tional architecture of the CNN captured contextual dependencies
between the spectral features. Evaluations on simulated and experi-
mental datasets demonstrated that mi-CNN improved the subtissue
classification as compared with traditional SVM and CNN.

The approach assumed that, in a binary classification problem, a
tissue labeled as tumor had at least one tumor location, but the tis-
sues labeled as non-tumor were tumor-free. This assumption is rea-
sonable for MSI, as homogeneous healthy tissue biopsies are
relatively easy to obtain, however tumor biopsies are more likely to
contain a mix of tumor and non-tumor regions. In a case where
both non-tumor and tumor tissues are heterogeneous, the proposed
approach is no longer suitable since the reliable label of non-tumor
is crucial to the method. Although we only discussed binary

classification, mi-CNN can also be adapted to multi-class classifica-
tion, such as different grades of tumor tissues or multiple tissue
types.

In contrast to the typical applications of CNN in computer vi-
sion, the CNN architecture in this work did not include spatial con-
volution of tissues. This is a consequence of typically high
heterogeneity of the microenvironment within a tumor, and of lack
of spatial smoothness of location labels.

At the same time, the CNN architecture took advantage of the
mass spectral patterns to alleviate the high dimensionality and the
high correlations in the predictive feature space. In this work, the
size of convolutional filters captured one of the most common sour-
ces of correlations between m/z, i.e. the presence of molecular ions
and their adducts. The m/z dependencies can become more compli-
cated and ambiguous in other cases, e.g. with larger mass ranges.
The convolutional aspects can be easily adapted to such situations
types by changing the size of filter and the network depth.

Although neural networks have a large parameter space and
need large training datasets, we found that mi-CNN worked well on
the relatively small numbers of biological tissues. This may be due
to a combination of the CNN architecture, which uses locally con-
nected neurons and weight sharing filters to reduce the parameter
space and the computational cost, and a relatively large number of
heterogeneous subtissue locations available for training.

Overall, we found that mi-CNN is well-suited for training
subtissue-level classifiers on datasets with tissue-level annotations.
This is particularly important in situations where tumor and non-
tumor tissues are tightly connected, making manual labeling of the
training sets difficult or even impossible at all. The approach is an
important step toward taking a full advantage of MSI’s capability of

Fig. 10. Classification accuracy: the human bladder cancer experiment. (a) Tissue-level pathology annotations. (b) Subtissue-level pathology labels on optical images. (c)

Subtissue-level labels on MSI (viewed as ground truth). (d–g) Subtissue-level classifications

Table 3. Classification accuracy: the human bladder cancer experiment

SVM CNN mi-SVM mi-CNN

Training Tissue annotations 0.959 (0.946) 0.827 (0.946) 0.939 (0.946) 0.800 (0.855)

Subtissue labels 0.801 (0.793) 0.767 (0.759) 0.847 (0.842) 0.941 (0.941)

Validation Subtissue labels 0.755 (0.750) 0.779 (0.774) 0.827 (0.823) 0.928 (0.928)

Note: Values without the parentheses are accuracy calculated by Equation (4). Values in parenthesis are balanced accuracy calculated by Equation (5).
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providing molecular information, and minimizing manual labor for
tissue imaging and classification.
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