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Purpose of review

Several members of the fibroblast growth factor (FGF) family have been identified as key regulators of
energy metabolism in rodents and nonhuman primates. Translational studies show that their metabolic
actions are largely conserved in humans, which led to the development of various FGF-based drugs,
including FGF21-mimetics LY2405319, PF-05231023, and pegbelfermin, and the FGF19-mimetic
NGM282. Recently, a number of clinical trials have been published that examined the safety and efficacy
of these novel therapeutic proteins in the treatment of obesity, type 2 diabetes (T2D), nonalcoholic
steatohepatitis (NASH), and cholestatic liver disease. In this review, we discuss the current understanding of
FGFs in metabolic regulation and their clinical potential.

Recent findings

FGF21-based drugs induce weight loss and improve dyslipidemia in patients with obesity and T2D, and
reduce steatosis in patients with NASH. FGF19-based drugs reduce steatosis in patients with NASH,
and ameliorate bile acid-induced liver damage in patients with cholestasis. In contrast to their potent
antidiabetic effects in rodents and nonhuman primates, FGF-based drugs do not appear to improve
glycemia in humans. In addition, various safety concerns, including elevation of low-density lipoprotein
cholesterol, modulation of bone homeostasis, and increased blood pressure, have been reported as well.

Summary

Clinical trials with FGF-based drugs report beneficial effects in lipid and bile acid metabolism, with clinical
improvements in dyslipidemia, steatosis, weight loss, and liver damage. In contrast, glucose-lowering
effects, as observed in preclinical models, are currently lacking.
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Fibroblast growth factor (FGF)15/19, FGF21, and more
recently FGF1 have emerged as key regulators of bile
acid, lipid, and carbohydrate metabolism [1–3]. These
‘metabolic FGFs’ are members of the FGF superfamily,
which consists of 18 closely related genes, and of
which the encoded proteins can be functionally
classified as autocrine/paracrine or endocrine acting
growth factors [4]. FGF1 is an autocrine/paracrine
growth factor that binds locally to cell surface heparan
sulfate proteoglycans (HSPG) [5]. FGF19 and FGF21
have reduced affinity for HSPG, which allows them to
escape into the circulation and act as endocrine hor-
mones [6]. Instead of binding to HSPG, endocrine
FGFs bind to the transmembrane protein b-klotho
(KLB) [6]. Recruitment of FGFs by HSPG or KLB pro-
motes FGF receptor (FGFR) transphosphorylation,
followed by activation of various signaling cascades,
including the mitogen-activated protein kinase,
uthor(s). Published by Wolters Kluwe
pholipase C gamma, and signal transducer and activa-
tor of transcription (STAT) pathways [4]. In both
humans and mice, four FGFR genes (FGFR1–4) have
been identified, which differ in their ligand-binding
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KEY POINTS

� FGFs potently interfere with bile acid, lipid, and
carbohydrate metabolism in rodents and
nonhuman primates.

� Translational studies support a role for FGFs in
metabolic regulation and disease in humans.

� Clinical studies demonstrate that FGF-based drugs
effectively ameliorate dyslipidemia, hepatic steatosis,
and bile acid-related liver damage, whereas their
glycemic actions are not recapitulated in humans.

Lipid metabolism
specificities [7]. As FGFs and FGFRs are ubiquitously
expressedandregulatebasic cellular functions, includ-
ing growth, proliferation, and differentiation [8],
many FGF/FGFR mutations lead to defective embry-
onic development [4]. However, the phenotypes of
Fgf15, Fgf21, and Fgf1 knockout mice revealed that
these genes also play important roles postnatally in
controlling metabolic homeostasis [9–11]. The meta-
bolic function of these genes is also highlighted by
FIGURE 1. The physiological and pharmacolgical actions of FG
different target organs. This figure was created using Servier Med
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their identification as targets of nutrient-sensitive
transcription factors, including farnesoid X receptor
(FXR) and peroxisome proliferator-activated receptors
alpha and gamma (PPARa, PPARg) [1]. Translational
studies further demonstrated that FGFs regulate simi-
lar metabolic pathways in humans, which led to the
development of various FGF-based drugs, of which the
safety and efficacy are currently being evaluated [3]. In
this review, we will give an overview of the current
understanding of FGFs in metabolic regulation (Fig. 1)
and discuss the therapeutic effects of FGF-based drugs
in human disease (Table 1).
FIBROBLAST GROWTH FACTOR 15/19:
BIOLOGICAL FUNCTIONS

Despite the low sequence similarity between mouse
Fgf15 and its human orthologue Fgf19 [12,13], their
genes are syntenic and their biological function in
the regulation of bile acid homeostasis is conserved
[9,14]. Postprandial release of bile acids activates ileal
FXR and results in the production of FGF15/19 [9,14].
Once secreted, FGF15/19 travels to the liver where it
F19, FGF21, and FGF1 are driven by activation of FGFRs in
ical Art (http://smart.servier.com/).
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Table 1. Key findings of clinical trials using FGF-based drugs

FGF-based drug Dose Disease Key findings Reference

NGM282 (FGF19) 3 mg/day (7 days) Healthy volunteers #C4 and serum BAs [40]

3 or 6mg/day (12 weeks) NASH #Liver fat content, ALT, AST, C4, Pro-C3,
TIMP-1, triglycerides, body weight

" LDL

[42&&]

0.3 or 3mg/day (28 days) PBC #ALP, GGT, ALT, AST, LDL, C4, IgM,
IgG, GCA

[47&&]

1 or 6mg/day (14 days) Functional constipation #GE T1/2, fecal Bas
"Colonic transit, #bowel movements,

stool form, ease of passage

[49&]

1 or 3mg/day (12 weeks) PSC # C4, serum BAs, ALT, AST, GGT, pro-
C3, PIIINP

[48&&]

NGM282þ
rosuvastatin
(FGF19)

0.3, 1 or 3mg/day (12 weeks)
þ20–40 mg/day (10 weeks)

NASH #7-Alpha-hydroxy-4-cholesten-3-one,
serum BA, triglycerides, total
cholesterol, LDL, liver fat content

" HDL

[44&&]

LY2405319
(FGF21)

3, 10, or 20mg/day (28 days) T2D # LDL, ApoA2, ApoB, ApoC3,
triglycerides, total cholesterol, insulin,
body weight

" HDL, adiponectin, b-hydroxybutyrate

[109]

PF-05231023
(FGF21)

0.5–200 mg/single dose T2D # Triglycerides, LDL, total cholesterol
" HDL

[110]

5–140 mg (twice a week, for 5
weeks)

T2D # Body weight, triglycerides, total
cholesterol, LDL

" HDL, adiponectin, IGF-1

[113]

25, 50, 100, or 150 mg (once
weekly for 4 weeks)

Obese people # Triglycerides
" HDL, adiponectin

[112&]

BMS-986036
(FGF21)

10 mg daily or 20 mg weekly (for
16 weeks)

NASH # Body fat, hepatic lipids, Triglycerides,
LDL, ALT, AST, pro-C3

"adiponectin

[115&&]

1, 5, 20 mg daily or 20 mg
weekly (for 12 weeks)

Obesity and T2D #Triglycerides, pro-C3
" HDL, adiponectin

[114]

ALP, alkaline phosphatase; ALT, alanine aminotransferase; ApoA2, apolipoprotein A2; ApoB, apolipoprotein B; ApoC3, apolipoprotein C-III; AST, aspartate
aminotransferase; Bas, bile acids; GCA, glycocholic acid; GE T1/2, gastric emptying; GGT, g-glutamyl transpeptidase; IGF-1, insulin-like growth factor 1; NASH,
nonalcoholic steatohepatitis; PBC, primary biliary cholangitis; PIIINP, N-terminal propeptide of type III collagen; Pro-C3, neoepitope-specific N-terminal pro-peptide
of type III collagen; PSC, primary sclerosing cholangitis; T2D, type 2 diabetes; TIMP-1, tissue inhibitor of metalloproteinase 1.
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binds the KLB/FGFR4 complex to inhibit the activity
of cholesterol 7-a-hydroxylase (CYP7A1), the first
and rate-limiting enzyme in the conversion of cho-
lesterol to bile acids [9]. As bile acids are strong
detergents, their synthesis needs to be tightly regu-
lated to prevent enterohepatic damage [15]. As dis-
cussed later, the ability of FGF15/19 to inhibit bile
acid synthesis is therapeutically exploited to prevent
bile acid-induced tissue damage in cholestasis and
nonalcoholic steatohepatitis (NASH).

FGF15/19 signaling also modulates lipid- and car-
bohydrate metabolism [16]. Transgenic mice that
overexpress FGF19 display increased energy expendi-
tureandareprotectedagainstdiet-inducedobesityand
steatosis, at least partly by increasing fatty acid oxida-
tion, but also by decreasing de-novo lipogenesis [17–
20].A role forFGF19 inglucosehomeostasis is reflected
by its ability to reduce plasma glucose levels in diabetic
mice [21]. This glucose-lowering effect has been mech-
anistically linked to a glycogen synthase kinase 3-
0957-9672 Copyright � 2019 The Author(s). Published by Wolters Kluwe
dependent increase in hepatic glycogen storage [22]
and a cyclic adenosine monophosphate regulatory
element binding protein/peroxisome proliferator-acti-
vated receptor g coactivator-1a-dependent decrease in
hepatic gluconeogenesis [23]. However, extrahepatic
mechanisms, in particular KLB/FGFR1-dependent
neuronal effects, also appear to contribute to FGF19-
driven glucose lowering [24–26].
FIBROBLAST GROWTH FACTOR 19:
HUMAN ASSOCIATION STUDIES

Altered plasma levels of FGF19 are observed in sev-
eral physiological and pathophysiological states.
Physiologically, FGF19 follows a diurnal rhythm
and is increased postprandially following bile
acid-induced FXR activation, as evidenced by the
effects of primary bile acids and bile acid-binding
resins that increase and decrease serum FGF19 lev-
els, respectively [14]. Apart from its presence in
r Health, Inc. www.co-lipidology.com 237



Lipid metabolism
serum, FGF19 is expressed in cholangiocytes and
secreted into human bile; yet, the physiological
relevance of this is not known [27,28]. Reduced
levels of FGF19 are generally observed in obesity
and related disorders, including T2D, gestational
diabetes, and nonalcoholic fatty liver disease
(NAFLD) and NASH, but also in conditions of bile
acid malabsorption such as cystic fibrosis [29–34].
During cholestasis, both hepatic and serum FGF19
are dramatically increased, indicating an adaptive
response aimed to reduce bile acid-induced liver
damage [34–36]. Although FGF19 levels sometimes
normalize after bariatric surgery, its contribution
to surgery-dependent diabetes remission is still
debated [31,32,37].
FIBROBLAST GROWTH FACTOR 19:
CLINICAL TRIALS

Although preclinical and translational studies with
FGF19-mimetic drugs have shown promising results,
the clinical application has been impeded by the fact
that chronic FGF19 exposure in mice induces hepa-
tocyte proliferation and the development of hepato-
cellular carcinomas, mediated through activation of
the FGFR4/IL6/STAT3 pathway [38,39

&&

]. Extensive
protein engineering produced a nonmitogenic
FGF19 variant (NGM282, also referred to as M70)
[19] which lacks FGFR4/IL6/STAT3 activity while
retaining the ability to suppress CYP7A1 and bile
acid synthesis in animal models [40]. A proof-of-
concept study involving healthy volunteers exam-
ined the ability of NGM282 to suppress bile acid
synthesis in humans and reported strongly reduced
serum 7a-hydroxy-4-choleston-3-one (C4) levels,
a surrogate marker of hepatic CYP7A1 activity
[41,42

&&

]. In the fed state, decreased serum C4 levels
were associated with significantly lower serum bile
acid concentrations, providing direct evidence of the
role of the FGF19 pathway in human bile acid metab-
olism [40]. In a follow-up study, NGM282 was
reported to have multiple beneficial effects in NASH.
In this phase 2 trial, biopsy-confirmed NASH patients
were treated with NGM282 for 12 weeks, which
resulted in a clinically relevant decrease in liver fat
content in up to 86% of the patients and this was
accompanied by a reduction in plasma triglyceride
levels and markers of liver damage and fibrosis [42

&&

].
In contrast to rodent studies, glucose, hemoglobin
A1C (HbA1c), and insulin levels were unaffected
[42

&&

,43]. A possible safety concern of NGM282 in
NASH is its ability to increase plasma low-density
lipoprotein cholesterol (LDLc) levels [42

&&

]. Never-
theless, NGM282-dependent elevations in choles-
terol levels can be effectively managed by
concomitant use of rosuvastatin [44

&&

].
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Two recent studies evaluated the effect of
NGM282 in patients with primary biliary cholangi-
tis (PBC) and primary sclerosing cholangitis (PSC),
which are chronic liver diseases characterized by bile
acid-induced liver damage and limited therapeutic
options [45]. In PBC patients, NGM282 significantly
reduced alkaline phosphatase (ALP) levels [46,47

&&

],
a serum marker that strongly correlates with disease
progression [48

&&

,49
&

]. In addition, NGM282 also
robustly reduced liver damage markers, including
g-glutamyl transpeptidase (GGT), alanine amino-
transferase (ALT), and aspartate aminotransferase,
and lowered immunoglobulin levels, suggesting
reduced disease-related immune activity [47

&&

]. Sim-
ilarly, in PSC patients, NGM282 reduced serum
levels of C4 levels, bile acids, and markers of liver
damage and fibrosis [48

&&

]. However, plasma ALP
levels were only transiently reduced [48

&&

].
Even though NGM282 was well tolerated in

most patients, a dose-dependent increase in abdom-
inal cramping and diarrhea was observed in all study
populations [42

&&

,47
&&

,49
&

]. This appears to be
caused by an effect of NGM282 on bowel function,
gastric emptying, and colonic transit and is specu-
lated to be mechanistically unrelated to its effects on
bile acids, but rather by actions on nerve cells [49

&

].
In addition, rodent studies suggest that FGF19 can
activate metabolic pathways that are utilized by
FGF21 [24], indicating that additional mechanisms
could play a role as well.
FIBROBLAST GROWTH FACTOR 21:
BIOLOGICAL FUNCTIONS

The metabolic activity of FGF21 was originally dis-
covered in a cell-based screen in which it stimulated
glucose uptake in adipocytes [50]. Subsequent in-vivo
studies demonstrated that FGF21 improved insulin
sensitivity and lowered triglyceride levels in diabetic
rodents [50]. Long-term FGF21 treatment largely
recapitulates these metabolic improvements but also
lowers body weight by enhancing energy expendi-
ture without affecting food intake [51–53]. Similarly,
transgenic or adenoviral overexpression of FGF21
protects against diet-induced obesity and steatosis,
improves insulin sensitivity and even enhances lon-
gevity in mice [50,54–56]. Conversely, genetic defi-
ciency or knockdown of FGF21 induces weight gain,
glucose intolerance, and dyslipidemia [57,58]. In
diabetic rhesus monkeys, therapeutic administration
of FGF21 induced similar metabolic improvements,
including decreased plasma levels of glucose, insulin,
triglyceride, and LDLc, whereas it increased plasma
high-density lipoprotein cholesterol (HDLc) [59].
Several mechanisms have been implicated in the
pharmacological actions of FGF21, in particular the
Volume 30 � Number 3 � June 2019
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activation of the KLB/FGFR1 complex in adipose
tissue and brain [24,60–63,64

&&

,65–68].
In addition to its intricate pharmacological

effects, the physiological actions of FGF21 appear
equally complex. Although FGF21 is predominantly
expressed in the liver, it is also expressed in other
tissues, including white and brown adipose tissues
(WAT and BAT), pancreas, and muscle [69]. Various
types of nutrient stress have been shown to induce
FGF21 expression in a tissue-specific manner. Both
prolonged fasting and ketogenic diets strongly
increased hepatic FGF21 expression [56,57,70]. Fast-
ing increases FGF21 expression in PPARa-dependent
manner and is closely linked with changes in lipol-
ysis, ketogenesis, growth, torpor, and female repro-
duction, all considered to be aspects of the adaptive
starvation response [56,57,71]. A role for FGF21 in
fasting is further supported by its mutual interac-
tions with glucagon [50,72,73]. Apart from fasting,
high-carbohydrate diets and fasting-refeeding regi-
mens also stimulate FGF21 expression in liver and
WAT [74–79]. However, the physiological signifi-
cance of feeding-mediated induction of FGF21 is not
fully understood [74]. Finally, cold exposure
increases FGF21 in BAT and WAT, where it appears
to modulate thermogenic activity and browning
[65,80–82].
FIBROBLAST GROWTH FACTOR 21:
HUMAN ASSOCIATION STUDIES

Although FGF21 mediated aspects of the adaptive
starvation response in rodents, it remains unclear if
it has a similar function in humans. A ketogenic diet
or fasting up to 72 h does not appear to increase
serum FGF21 levels in humans [83–85]. Even in
anorexia nervosa, a state of chronic nutritional dep-
rivation, serum FGF21 levels are only slightly
reduced as compared to normal-weight controls
[86,87]. Only after prolonged fasting for 7 or 10
days, circulating FGF21 levels appears to be moder-
ately increased [88,89]. In contrast to starvation, a
variety of other metabolic stressors, including high-
carb diets, fructose, and protein restriction, appear
to modulate circulating FGF21 levels more clearly
[90–95]. The identification of an FGF21 gene variant
that is associated with increased sugar intake further
highlights a role for FGF21 in the central regulation
of carbohydrate consumption [92].

Increased levels of FGF21 are generally associ-
ated with obesity-related diseases including T2D,
hypertension, coronary heart disease, and NAFLD/
NASH [85,96–98]. In addition, FGF21 levels are
mainly associated with BMI and adiposity, but not
with insulin resistance [85,99,100]. At the same
time, obesity is associated with a decrease in FGFR
0957-9672 Copyright � 2019 The Author(s). Published by Wolters Kluwe
and KLB expression, possibly reflecting a state of
receptor desensitization that is counteracted by
enhanced FGF21 production [101]. It remains con-
troversial, however, whether chronically elevated
FGF21 levels reflect a state of ‘FGF21 resistance’,
in particular as therapeutic strategies that enhanced
FGF21 levels, such as gastric bypass, dietary inter-
ventions, and pharmacological administration,
improve metabolic health [102–106,107

&

].
FIBROBLAST GROWTH FACTOR 21:
CLINICAL TRIALS

Although the development of an FGF21-based drug
has not been hampered by potential mitogenic
effects, native FGF21 has poor pharmacokinetic
properties because of proteolytic degradation and
its tendency to aggregate [108]. Efforts to optimize
production and stability led to the development of
LY2405319 by Eli Lilly, the first FGF21-based drug
tested in humans [108]. In patients with obesity and
T2D, daily injections of LY2405319 for 28 days
resulted in a less atherogenic apolipoprotein profile,
reduced body weight and fasting insulin levels, and
increased adiponectin levels [109]. In contrast to
rodents and nonhuman primates, however, no glu-
cose-lowering effects were observed [109].

Similar efforts by Pfizer to improve FGF21 bio-
availability led to the development of PF-05231023,
which consists of two recombinant FGF21 molecules
linked to the Fab portion of a scaffold antibody
[110,111]. In obese people with T2D, PF-05231023
significantly reduced body weight, plasma triglycer-
ides, and LDLc, while increasing HDLc. Although PF-
05231023 also potently stimulated plasma adiponec-
tin levels, glycemia was not improved [112

&

,113].
Possible safety concerns of PF-05231023 treatment
are its ability to affect markers of bone homeostasis
and blood pressure [112

&

].
More recently, the outcomes of clinical trials with

pegbelfermin (BMS-986036), a polyethylene glycol-
modified (PEGylated) recombinant human FGF21
analog developed by Bristol-Myers Squibb, have been
published. A 12-week phase 2 study, with daily or
weekly administration of pegbelfermin in patients
with obesity and type 2 diabetes mellitus, showed
significant improvements in HDLc and triglycerides,
whereasnostatistically significant improvementswere
found in HbA1c levels, weight loss, fasting insulin, C-
peptide, and measures of hepatic insulin sensitivity
(homeostatic model assessment of insulin resistance
andquantitative insulin-sensitivitycheck index) [114].
In a 16-week phase 2a clinical trial with NASH patients,
pegbelfermin significantly decreased the hepatic fat
fraction, which was associated with a reduction in
markers of hepatic injury and fibrosis [115

&&

].
r Health, Inc. www.co-lipidology.com 239
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Collectively, these studies show that FGF21-
based drugs have the ability to control dyslipidemia
and steatosis in humans, whereas their ability to
control glycemia, similar to FGF19-based drugs,
appears limited. The ongoing development of novel
FGF-based therapeutics, such as the KLB/FGFR1
directed monoclonal antibody NGM313 [116–
119] and FGF1-based drugs [120,121], may provide
the ability to target glycemia more effectively.
FIBROBLAST GROWTH FACTOR 1:
BIOLOGICAL FUNCTIONS

A role for FGF1 in metabolism was uncovered by its
identification as a target of nuclear receptor PPARg

[11]. FGF1 is highly upregulated in WAT following a
high-fat diet (HFD) challenge, and FGF1 knockout
mice display an aggressive diabetic phenotype in
response to an HFD, caused by defective adipose
remodeling and expansion [11]. In a follow-up
study, it was demonstrated that pharmacological
administration of recombinant FGF1 effectively
lowers blood glucose levels in diabetic mouse mod-
els [120,121]. Mechanistically, this glucose-lowering
effect was dependent on adipose FGFR1, highlight-
ing the role of adipose tissue function in this process
[120]. The intriguing finding that intracerebroven-
tricular injections of FGF1 can normalize blood
glucose levels up to 18 weeks indicates that FGF1
also has central actions, similar to FGF19 and FGF21
[26,122,123

&&

].
In addition to its potent glucose-lowering

effects, peripheral FGF1 injections also reduced obe-
sity-related hepatic steatosis and inflammation
[120,121,124]. In ob/ob mice, FGF1 reduced steatosis
in a zonated manner, with a pronounced reduction
in the periportal zone, but not pericentrally, arguing
for a role of FGF1 in stimulating either fatty acid
oxidation or VLDL secretion [124]. Supporting this
notion, choline-deficient mice, which are defective
in hepatic lipid catabolism, were refractory to the
antisteatotic effects of FGF1 [124]. In contrast, the
anti-inflammatory effects of FGF1 were still pre-
served in choline-deficient mice, suggesting that
FGF1-mediated suppression of hepatic inflamma-
tion is independent of its antisteatotic effects [124].
FIBROBLAST GROWTH FACTOR 1: HUMAN
ASSOCIATION STUDIES

Obesity is associated with increased FGF1 expression
in both omental and subcutaneous adipose tissue
[125–127]. In both humans and rodents, adipocytes
have been identified as the main FGF1 producing
cell type [125–127]. In contrast to the endocrine
FGFs, locally produced FGF1 is not secreted into the
240 www.co-lipidology.com
circulation [125–127]. Interestingly, although obe-
sity increases FGF1 expression in adipose tissue,
weight loss does not reduce adipose FGF1 levels
[127], supporting the notion that, in addition to
promoting adipose tissue expansion, FGF1 also has a
role in its contraction [11]. Different cell types and
processes may be underlying the autocrine/para-
crine effects of FGF1 on adipose tissue function,
including activation, differentiation, and prolifera-
tion of adipocytes and endothelial cells [11,127–
129].
FIBROBLAST GROWTH FACTOR 1:
CLINICAL TRIALS

Owing to its potent angiogenic effects, clinical trials
with FGF1 have primarily focused on the treatment
of ischemia and wound healing, whereas its thera-
peutic potential in the development of metabolic
disease in humans has not yet been reported
[128,130–133]. Apart from poor stability, potential
mitogenic effects of FGF1 are an important obstacle
in the development of FGF1-based drugs as well
[121]. Attempts to reduce mitogenic activity have
yielded several FGF1 variants including R50E [134],
FGF1dNT [120], and FGF1dHBS [121]. Although quan-
titative differences in FGF1–FGFR dimer stability
clearly contribute to the mitogenic effects of wild-
type and mutant FGF1 [121], qualitative differences
in pathway activation, or differences in nuclear
translocation [135,136], could also play a role.
CONCLUSION

Current evidence shows that FGF-based drugs can
effectively ameliorate dyslipidemia,hepatic steatosis,
and bile acid-related liver damage. However, antidia-
betic effects, as observed in rodents and nonhuman
primates, are currently not recapitulated in humans
studies. The lack of these antidiabetic effects might be
because of the existence of differences in glucose
regulation between species [137]. In addition, it is
well described that numerous pathological condi-
tions, such as obesity [101] and inflammation
[138], are associated with reduced KLB expression,
which might limit FGF19 and FGF21 responsiveness.
Furthermore, the use of FGF-based drugs is associated
with various safety issues that might require further
optimization or supportive therapies.
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