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SUMMARY
The clinical outcome and disease severity in coronavirus disease 2019 (COVID-19) are heterogeneous, and
the progression or fatality of the disease cannot be explained by a single factor like age or comorbidities.
In this study, we used system-wide network-based system biology analysis using whole blood RNA
sequencing, immunophenotyping by flow cytometry, plasma metabolomics, and single-cell-type metabolo-
mics of monocytes to identify the potential determinants of COVID-19 severity at personalized and group
levels. Digital cell quantification and immunophenotyping of the mononuclear phagocytes indicated a sub-
stantial role in coordinating the immune cells that mediate COVID-19 severity. Stratum-specific and person-
alized genome-scale metabolic modeling indicated monocarboxylate transporter family genes (e.g.,
SLC16A6), nucleoside transporter genes (e.g., SLC29A1), and metabolites such as a-ketoglutarate, succi-
nate, malate, and butyrate could play a crucial role in COVID-19 severity. Metabolic perturbations targeting
the central metabolic pathway (TCA cycle) can be an alternate treatment strategy in severe COVID-19.
INTRODUCTION

Coronavirus disease 19 (COVID-19), caused by severe acute res-

piratory syndrome coronavirus 2 (SARS-CoV-2), presents mild to

moderate symptoms in most of the infected patients. Several

studies, including ours, have indicated altered systems-level

metabolic disruption in SARS-CoV-2-infected patients compared
Cell Systems 13, 665–681, A
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with the healthy individuals, where dysregulated amino acid, cen-

tral carbon, and energy metabolisms were observed as hallmarks

of the disease (Krishnan et al., 2021; Shen et al., 2020; Wu et al.,

2020). Althoughmanypatientswith severeCOVID-19 have under-

lying comorbidities like obesity, diabetes, and cardiovascular dis-

ease related to metabolic syndrome (MetS), there is a high

disparity in COVID-19 severity and mortality. The interplay
ugust 17, 2022 ª 2022 The Authors. Published by Elsevier Inc. 665
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between metabolic and signaling molecular effectors driving dis-

ease severity has not been systematically examined. Further, in

addition to comorbidities, the high physiological heterogeneity

has not been considered when addressing the mechanisms of

population-level predisposition to the severe phenotype.

Viruses are obligatory parasites and entirely rely on their hosts

for replication. This reliance is evidenced by experimental find-

ings showing significant metabolic flux disruption in the host

cells. This is further highlighted by observed variations in the

cell-specific viral replication and production, leading to changes

in the host metabolism (Yu et al., 2011). Virus infection leads to

significant metabolic alterations in the host, such as altered

glycolysis rates and changes in ATP production rates (Aller

et al., 2018). Therefore, the changes in energy metabolism can

be seen as an evolving property of the combined host-virus

metabolic system. This could be related to changes in host

cellular demands arising from viral production, increased de-

mand from immune cell activation, and damage due to toxicities

(e.g., oxidative damage) (Molenaar et al., 2009). Even though the

primary site of infection is the upper respiratory tract, SARS-

CoV-2 can invade several organs, tissues, and cells of the

body (Delorey et al., 2021). Therefore, a systems-level character-

ization of metabolic and signaling dysregulation can comprehen-

sively and quantitatively capture the implications of COVID-19

infection throughout the body.

Systems biology approaches have shown promise in systemat-

ically elucidating complex disease-underlying mechanisms by

integrating different layers of omics information. The application

of themethods, includingmachine learning, biological networkan-

alyses, and multi-omics data integration, has allowed us to

generate multi-omics integrated networks to characterize the

host response to SARS-CoV-2 (Appelberg et al., 2020). Interro-

gating these integrated networks permits identifying and under-

standing thesequenceofspecificbiologicalelementscoordinately

altered in pathological conditions. Further, comprehensive meta-

boliccharacterizationsallowus tosimulatesystem-levelmetabolic

fluxes through genome-wide metabolic modeling in human cells

and tissues (Robinson et al., 2020). Combining biological network

analysis and genome-scalemetabolicmodeling (GSMM) asmulti-

omics integrative approaches can attain holistic and temporally

dynamic characterizations of complex rearrangement in response

to viral infection and can computationally predict potential thera-

peutic targets. Importantly, these characterizations permit a

group-specific and personalized characterization of global meta-

bolism in healthy and progressive disease states.

In the present study, we employ data-drivenmulti-omics, whole

blood transcriptomics, and plasmametabolomics (Krishnan et al.,

2021) characterization and clustering of patient data through the

construction of integrated networks. Further, themultidimensional

stratification ofpatients through similarity network fusion (SNF) en-

ables addressingpopulationheterogeneity and redefining the clin-

ical classification of COVID-19 severity.We also develop aGSMM

encompassing both host and viral metabolic demands that permit

metabolic characterization at a personalized level and attain a

data-driven patient stratification. Subsequently, a combination

ofmetabolic flux prediction, topological network analysis, reporter

metabolite analysis, and in silico target prediction of the personal-

ized networks permits identifying commonalities and patient-spe-

cific targets and hubs. Finally, we measure the intracellular
666 Cell Systems 13, 665–681, August 17, 2022
metabolites that are predicted to be the key regulators during

SARS-CoV-2 infection in the specific cell type identified by digital

cell quantification (DCQ), immunophenotyping, and single-cell

RNA sequencing (scRNA-seq) data (obtained from Zhang et al.,

2020) from COVID-19 patients. We combine integrated network

analysis and personalized GSMM for COVID-19 patients at the

metabo-transcriptomic levels that could pave the way for person-

alized treatment strategies dependent on the patient’s meta-

bolic state.

RESULTS

Study design and patient cohorts
Based on the oxygen (O2) requirement and the clinician’s

decision, we clinically categorized COVID-19 patients into

hospitalized-mild (n = 26, O2 requirement < 4 L/min) and hospi-

talized-severe (n = 11, O2 requirement > 4 L/min). The patient

characteristics were presented elsewhere (Krishnan et al.,

2021). Additional COVID-19 PCR-negative samples were also

collected (healthy control [HC], n = 31) and tested for SARS-

CoV-2 antibody levels. The serology identified 10 participants

as SARS-CoV-2 antibody-positive whose samples were termed

as convalescent. RNA sequencing (RNA-seq) was performed on

the whole blood samples obtained from SARS-CoV-2-infected

and -noninfected patients.We usedDCQ to quantify the different

cell types, followed by differential analysis between clinically

identified groups after adjusting for the high abundant cell types.

Immunophenotyping using flow cytometry further validated the

changes in mononuclear phagocytes (MNPs). To improve the

classification of clinical COVID-19 severity, transcriptomics

and metabolomics data were integrated using SNF, leading to

the re-classification of the patient groups into healthy, mild/mod-

erate, and severe. SNF-classified patient groups led to context-

specific GSMM both at personalized and group levels. The flux

balance analysis (FBA) was performed to study the metabolic re-

arrangement in deeper resolution and identify the essential

genes and metabolites associated with SNF-defined COVID-19

severity in groups. Previously published scRNA-seq data (Zhang

et al., 2020) was re-analyzed to examine the expression of

the essential genes that are associated with disease severity

in specific cell types. Finally, single-cell-type metabolomics

analysis (sctMetabolomics), targeting TCA-cycle intermediates,

confirmed the metabolic rearrangement in the monocytes. The

complete study design is presented in Figure 1.

Distinct changes in immune cell types in hospitalized-
severe patients
The transcriptomics data was generated from whole blood sam-

ples; therefore, the gene expression variation may be due to

altered gene regulation in cell types whose abundances differed

between patient groups. Thus, we have performed DCQ that

computationally estimates the cell type proportions from bulk

blood RNA-seq data. DCQ uses a cell-specific expression profile

of 18 blood cell types obtained from the Human Protein Atlas

(Uhlen et al., 2017) and a deconvolution algorithm adapted

from the method estimation of proportions of immune and can-

cer cells (EPIC) (Racle andGfeller, 2020). Proportions of 18 blood

cell populations in all the samples were computed and analyzed

for groupwise differences. Kruskal-Wallis’s test identified four



Figure 1. The study design and project description

The key methods are marked with bold texts. The dotted arrow indicates the leading experiments. The figure is created with biorender.com.
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cell types, namely classical monocytes (CM), neutrophils, mu-

cosa-associated invariant T (MAIT) cells, and gd-T cells, which

differed among the patient groups (adj. p < 0.05; Figure 2A).

The pairwise analysis identified that in both hospitalized-mild

and -severe groups, neutrophils and CM displayed significantly

increased abundance in COVID-19 patients compared with

HC, whereas gd-T cells, memory B cells, and MAIT cells had

lower abundance in severe COVID-19 patients compared with

HC (adj. p < 0.05; Figure 2B). The pairwise co-expression land-

scape of marker genes of specific cell types showed a preserved

correlation between the signature genes in the immune cell types

in HC (Figure 2C) but a dysregulated correlation in convalescent

(Figure 2D), mild (Figure 2E), and severe (Figure 2F) patients.

Specifically, the associations between marker genes of T cells

and dendritic cells (DC) and the associations between granulo-

cytes (neutrophils/eosinophils) and DC or T cells were altered,

indicating an impaired interaction between these cell types dur-

ing COVID-19 infection at a system level (Figure S1A) that may

lead to an inability of the innate immune cells to elicit an effective

adaptive immune response in severe COVID-19 patients. The

GSEA performed on the lost marker genes associations indi-
cated significant changes in PI3K-Akt signaling, chemokine

signaling pathway, NF-kB, and MAPK signaling pathways

(Figure S1B).

Immunophenotyping of blood MNPs associated with
COVID-19 severity
The loss in the co-expression of the marker genes between the

T cells and myeloid cells observed in the transcriptomics data

prompted us to characterize these populations in peripheral

blood mononuclear cells (PBMCs) of COVID-19 mild and se-

vere patients. We performed immunophenotyping of MNPs

consisting of monocytes and DCs and innate regulatory cells

such as myeloid-derived suppressor cells (MDSCs) and low-

density granulocytes (LDG). We used CD4+ and CD8+ T cells

from our earlier study (Krishnan et al., 2021). The gating strat-

egy and markers used to define the different cell populations

of MNPs are provided (Figure S2; Table S1), and representative

contour plots for HC, mild, and severe patients are shown in

Figure 3A. Integrating all analyzed markers and projection of

the gated populations into the UMAP space revealed differ-

ences in several cell populations between HC and COVID-19
Cell Systems 13, 665–681, August 17, 2022 667
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patients (Figures 3B and S3A), indicating significant alterations

in the phenotype of the MNP compartment during SARS-CoV-2

infection. Differences in relative frequencies of all populations in

all individuals in each group are illustrated in Figures 3C and

S3B. A decrease in G-MDSC and an increase in M-MDSC

(albeit very low levels) and LDG frequencies were observed in

COVID-19 patients, with differences being more pronounced

in patients with severe disease (Figure 3C). In the DC and

monocyte populations, significant decreases in relative fre-

quencies between HC and COVID-19 patients were noted for

plasmacytoid DC (pDC), CD16+ non-classical monocytes,

which also includes monocyte-derived DCs (NCM/MD-DC),

and total CD16� classical DC (cDC). On the contrary, the fre-

quencies of the CD303� DC5 population (Villani et al., 2017)

and of the CM were increased in COVID-19 patients compared

with HC. We also observed a significant decrease in

CD16+CD141lowCD1c� DC4 population in mild COVID-19 pa-

tients compared with HC (Figure 3C). Although the total

CD16� cDCs were decreased, no difference in the relative fre-

quency of CD141+ DC1 or CD1c+ DC2/DC3 populations (Fig-

ure S3B) was observed. In line with the DCQ, the association

between the T cells (CD4+ and CD8+) and some of the MNPs

(e.g., pDC) was altered (Figure 3D). We then assessed the

expression of the chemokine (C-C motif) receptor type 2

(CCR2), CX3 chemokine receptor 1 (CX3CR1), and C-C chemo-

kine receptor type 5 (CCR5) in the MNPs, using flow cytometry

(Figures 3E–3G). Our analysis showed an increase in the fre-

quency of CCR5+ CM, IM, NCM/MD-DC, DC4/NCM cells,

and DC1 cells, especially in the mild COVID-19 patients (Fig-

ure 3G). The frequency of CCR5+ G-MDSCs was significantly

decreased in COVID-19 patients in a severity-dependent way.

Similarly, CCR2+ IM, NCM/MD-DC, DC4, and DC5 were

increased in frequency, and CCR2+ DC1 cells were decreased

in COVID-19 patients, compared with HC (Figure 3G). We also

observed a significant decrease in the frequency of CX3CR1+

pDC (both in mild and severe COVID-19), and in CM (in severe

COVID-19 patients) and NCM/MD-DC (in mild COVID-19 pa-

tients), compared with HC (Figures 3G and S3C). The median

fluorescence intensity (MFI) of the chemokine receptors was

also altered in COVID-19 patients, with altered CCR5 expres-

sion more predominant in mild patients and altered CCR2

expression in all COVID-19 patients, compared with HC

(Figures 3E and S3D). These data highlight essential changes

in the MNP landscape in the blood of COVID-19 patients,

including a phenotype consistent with chemokine-mediated

migration of MNPs (particularly of DCs) in the infected lung

and additionally defective interaction of MNP with lymphocytes,

which probably prevent efficient viral clearance.
Figure 2. Digital cell quantification (DCQ) identified severity-specific s

(A) Bubble plot describing DCQ results of all samples in each patient cohorts (H

severe [n = 11]). Bubble size and color gradient are relative to median cell proport

between the cohorts are labeled by asterisks (adj. p < 0.05).

(B) Boxplot of cell proportion estimated in all cohort samples represented in (A). As

Whitney U test (adj. p < 0.05).

(C–F) Network visualization of co-expression among marker genes of various ce

hospitalized-mild cohort (E), and hospitalized-severe cohort (F). Each node in the

is relative to the mean expression value (TPM). Edge denotes a significant Spearm

hospitalized-mild cohorts while adjusted p < 0.2 in hospitalized-severe.
System-level whole blood transcriptomics signature
differentiates COVID-19 patients
To identify the system-level host response following the SARS-

CoV-2 infection, we performed a transcriptomic profile of the

total RNA isolated from whole blood by RNA-seq. A UMAP pro-

jection of the data showed a clear separation of the COVID-19

patients from HC and convalescent controls but failed to effi-

ciently distinguish between hospitalized-mild and -severe pa-

tients (Figure 4A). Differential gene expression (DGE) analysis

(adj. p < 0.05 and log2-fold change R1.5) identified 581 genes

that were differentially regulated between the HC and COVID-

19 patients (Figure 4B; Data S1) and 154 genes differentially

regulated between hospitalized-mild and -severe patients (Fig-

ure 4C; Data S1). While comparing the HC with the hospital-

ized-mild and -severe groups, 445 and 1,068 genes were signif-

icantly different between the two groups, respectively (Data S1).

The hierarchical clustering analysis (HCA) based on the signifi-

cantly regulated genes also identified distinct patient clustering

but with a heterogeneity among the COVID-19 patients (Fig-

ure 4D). The gene set analysis between the HC and the

COVID19 patients identified distinct upregulations of pathways

related to antiviral response (e.g., NOD-like receptor signaling,

RIG-I-like signaling, and TNF signaling pathways), metabolism

(e.g., fructose mannose metabolism, oxidative phosphorylation

(OXPHOS), and pentose phosphate pathway), and pathways

like C-type lectin receptor signaling pathway, complement,

and coagulation cascades that are related to thromboembolism

(Figure 4E). Interestingly, a comparison betweenmild and severe

patients’ profiles showed that pathways like PI3K-Akt, mTOR,

AMPK, and HIF-1 signaling were distinctly upregulated in severe

patients (Figure 4E). These pathways are themaster regulators of

central carbon and energy metabolism (e.g., TCA cycle,

OXPHOS, and pyruvate metabolism) and are regulated by the

SARS-CoV-2 replication (Appelberg et al., 2020; Codo et al.,

2020; Krishnan et al., 2021). The gene set analysis result for

group-specific (mild and severe) comparisons with HC is pro-

vided (Figures 6 and S4A).

Data-driven patient stratification results in the re-
classification of COVID-19 subgroups
Clinical categorization of COVID-19 patients relies on their oxy-

gen requirement. However, our previous study identified that

O2 need at hospitalization did not predict mortality (Saccon

et al., 2021). Moreover, the HCA analysis identified heterogeneity

among the significantly dysregulated genes in COVID-19 pa-

tients (Figure 4D). Therefore, we sought to improve the classifi-

cation of clinical COVID-19 severity definitions as driven from a

molecular point of view through a data-driven integrative
ignature in COVID-19

C [n = 21], convalescent [n = 10], hospitalized-mild [n = 26], and hospitalized-

ions calculated in each cohort for various cell types. Kruskal-Wallis test results

terisks represent a significant change between cohorts computed by theMann-

ll types in samples of healthy control (HC) cohort (C), convalescent cohort (D),

network represents marker genes of the corresponding cell type, and node size

an correlation (adj. p < 0.001) between marker genes in HC, convalescent, and

Cell Systems 13, 665–681, August 17, 2022 669



Figure 3. Immunophenotyping of blood MNPs associated with COVID-19 severity

(A) Contour plots of the different MNP populations in HC (n = 9), mild (n = 16), and severe (n = 8) COVID-19 patients.

(B) UMAPs on concatenated files of MNPs in HC, mild, and severe COVID-19 patients.

(legend continued on next page)
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approach capable of handling the high patient-patient molecular

heterogeneity. We integrated information from both transcrip-

tomics and metabolomics through SNF, which has been shown

to capture both shared and complementary information from

different data sources and produce clinically relevant subtypes

in multiple studies (Wang et al., 2014). Through SNF, we

observed that while individual omics did not show evident simi-

larity patterns (Figures 5A and 5B), the integrative characteriza-

tion of the samples pointed to four clusters (Figure 5C;

Table S2). Among these, we observed that many HC (52.4%,

11/21;) samples shared high similarities with convalescent

(60%, 6/10) samples (SNF cluster 4; SNF-4) (Figures 5C–5E), in

linewith our observations at transcriptomic-only level (Figure 4A).

Furthermore, 50% of hospitalized-severe samples shared high

similarity with hospitalized-mild samples (SNF-3). In addition,

we observed that SNF-2 included samples from all four groups,

including HC (38%, 8/21), convalescent (40%, 4/10), hospital-

ized-mild (6.9%, 2/29), and hospitalized-severe (27%, 3/11)

samples, suggesting that homogeneous features exist in each

layer of data type. Furthermore, SNF-1 was dominated by hospi-

talized-mild samples (69.0%, 20/29) (Figures 5C and 5D). Based

on the plasma inflammation profile identified by the interleukins

(IL) IL6, IL7, IL8, IL10, IL15, and IL18 (Figure 5F)—measured us-

ing the Olink Immuno-oncology panel (Krishnan et al., 2021)—we

defined SNF-1 as COVID-19 mild/moderate, SNF-3 as COVID-

19 severe, and SNF-4 as HC. In subsequent analyses, we used

these newly defined clusters except for SNF-2 due to its mixed

populations that may share common molecular features.

Multi-omics network topology analysis identifies
severity-specific mechanisms
Integrated networks based on transcriptomics and metabolo-

mics data were generated to identify severity-specific omics

hallmarks and associated mechanisms. Topological network

analysis (adj. p < 10�5, Spearman rank correlation) among fea-

tures from samples of SNF-1, 3, and 4 was used to create a

network, followed by a community identification (Traag et al.,

2019). The analysis highlighted nine communities (c1–c9) of

co-expressed genes and metabolites (Figure 5G). The expres-

sion direction of genes and metabolites in SNF-3 (severe)

compared with SNF-1 (mild/moderate) was mapped to the

network to define severity associations at the feature community

level. Out of the total genes in c1, 42%of themwere found signif-

icantly (adj. p < 0.05) upregulated in SNF-3 (severe) compared

with SNF-1 (mild/moderate), and thus it was termed a severity-

specific community. Among the rest of the genes in c1, 6.6%

were upregulated in SNF-1. We employed centrality analysis to

identify and rank the importance of genes andmetabolites based

on how connected they were to the network (i.e., degree central-

ity). We observed (Data S2) that c1 was themost central commu-
(C) Boxplots showing the relative frequencies of MNP populations in HC, mild, a

p < 0.05, ** p < 0.001.

(D) Spearman correlation analysis between the myeloid cells and CD4+/CD8+ T c

(E) Bubble plots of the different chemokine receptor expressions in MNP. The bub

median fluorescence intensity (MFI).

(F) MFI of chemokine receptors CCR5, CCR2, and CX3CR1 in the UMAP describ

(G) Boxplots showing relative frequencies of MNPs expressing the chemokine r

** p < 0.001.
nity, thus showing that the most connected molecular elements

tended to be associated with coordinated expression changes

related to COVID-19 severity state. Among the top 5%central el-

ements in the network (542 nodes), 290 genes/metabolites were

found in c1 and included the glycolytic genes ADP-dependent

glucokinase (ADPGK), phosphoglycerate mutase 1 (PGAM1),

and the TCA-cycle and OXPHOS gene succinate dehydroge-

nase complex iron-sulfur subunit B (SDHB). We observed that

mannose, a biomarker for COVID-19 (Krishnan et al., 2021),

was also found in c1. Enrichment analysis showed that c1 was

associated with NOD-like receptor signaling, chemokine

signaling, Fc gammaR-mediated phagocytosis and platelet acti-

vation pathways, and other pathways such as NF-k B, Notch,

RIG-I, HIF-1, and FoxO signaling (Figure 5H). The enrichment

analysis of the other communities (c2–c9) is given (Figure S5).

These observations indicate that substantial signaling alterations

in the immune response are closely linked with central meta-

bolism through mannose, ADPGK, PGAM1, and SHDB, all of

which are associated with disease severity.

Metabolic modeling highlights host metabolic
dysregulation in COVID-19
Since prior omics analysis has identified metabolic and signaling

pathway dysregulation in COVID-19 (Figure 4E), we have used

context-specific GSMM to find how the metabolic reactions

are impacted upon COVID-19 and their cellular localization

further to increase the resolution of perception on metabolic re-

arrangement. We have generated group-specific GSMMs based

on the newly defined SNF clusters by integrating transcriptomics

data and constrained the nutrient uptake of themodels based on

metabolomics data. Each model accounted for the intracellular

energy requirements for the growth of host cells (see STAR

Methods). Models were deemed feasible if they passed 57 bio-

logical functions (Agren et al., 2014). After FBA and based on

metabolic flux distributions, we identified 100 reactions differen-

tially active (with or without flux) or with opposite reaction direc-

tions among SNF clusters (Data S3). Further, we identified 15

transporter reactions with unique flux in SNF-1 (mild/moderate)

and SNF-3 (severe) compared with SNF-4 (HC) (Table S3).

Among the transporter reactions, there were reactions involved

in the transport of TCA-cycle intermediates such as cis-aconi-

tate, a-ketoglutarate, succinate, malate, and fumarate between

cytosol and mitochondria. Out of these 15 reactions, 13 had

flux only in SNF-1 (mild/moderate) and SNF-3 (severe), indicating

active transport of the metabolites in COVID-19 patients, which

then potentially feed the TCA-cycle pathway (Figure 6A). We

used previously published single-cell transcriptomics data

(Zhang et al., 2020), which characterized patient groups similar

to ours. The members of the mitochondrial carrier family

(SLC25) (SLC25A1 and SLC25A11) were highly expressed
nd severe COVID-19 patients. p values determined by Mann-Whitney U test, *

ells (* p < 0.05).

ble size denotes cells expressing the receptor, whereas the color denotes the

ed in (B).

eceptors. p values were determined by the Mann-Whitney U test, * p < 0.05,
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Figure 4. System-wide transcriptomics profile in COVID-19 patients identified dysregulated immune and metabolic pathways

(A) Sample distribution using normalized transcriptomics data (log2 counts per million) of all protein-coding genes through UMAP, colored by cohort.

(B) Volcano plot visualizing gene expression changes in SARS-CoV-2-infected individuals (mild [n = 26] and severe [n = 11] in comparison with healthy individuals

[HC, n = 21]). The top five significantly regulated genes are labeled.

(C) Volcano plot visualizing gene expression changes in SARS-CoV-2-infected individuals with severe COVID-19 (n = 11) in comparison with mild disease (n = 26).

The top five significantly regulated genes are labeled.

(D) Heatmap visualizing expression pattern (Z score transformed log2 counts per million) and log2 scaled fold change values of significantly regulated genes in

pairwise comparisons (adj. p < 0.05 and log2-fold change > 1.5). Column annotation represents patient groups, and pairwise differential expression comparisons

and rows represent genes.

(E) Heatmap visualizing significantly regulated Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways (adj. p < 0.05) in SARS-CoV-2-infected individuals

(mild [n = 26] and severe [n = 11] in comparison with healthy individuals [HC, n = 21]) and COVID-19 patients with severe disease (n = 11) in comparison with

patients with mild disease (n = 26). The color scale represents negative log10 scaled adjusted p values of different directionality regulation classes. The non-direc-

tional p values are computed from the gene statistics disregarding the direction of expression. Mix-direction down and mix-direction up p values were computed

by considering the segment of the gene statistics that are downregulated and upregulated, respectively. Distinct-directional p values were calculated using

expression direction along with gene statistics. The distinct-direction up p values is exclusively influenced by the upregulation of genes. By contrast, distinct-

direction down p values is influenced by downregulation of genes and not influenced by upregulation and downregulation together.
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Figure 5. Integrated clustering of transcriptomics and metabolomics using similarity network fusion (SNF) shows novel stratifications for

patients based on molecular data
(A) Heatmap showing sample to sample similarity between all samples in each patient cohorts (HC [n = 21], convalescent [n = 10], hospitalized-mild [n = 26], and

hospitalized-severe [n = 11]) for transcriptomics data. Row annotation denotes patient cohort.

(B) Heatmap showing sample to sample similarity between all samples used in (A) for metabolomics data. Row annotation denotes patient cohort.

(C) Sample to sample similarity of SNF-derived patient clusters. Column annotation denotes SNF clusters and associated clinical categories.

(D) Network fusion diagram of the four integrated patient clusters. Node color indicates the clinical category of the samples; edges indicate a similarity >0.01.

(HC [dark green], convalescent [light green], hospitalized-mild [yellow], and hospitalized-severe [orange])

(E) Sankey plot depicting association of clinical categories, and new clusters defined based on molecular data for each sample.

(F) Mean-scaled interleukins (IL) of plasma inflammation profile identified by the IL6, IL7, IL8, IL10, IL15, and IL18 to define the severity of the data-driven clusters.

(G) Community characterization results obtained from topology analysis of the association network between genes andmetabolites among samples of SNF-1, 3,

and 4. Node size is relative to the centrality (degree) of the feature (gene/metabolite). Node colors denote log2-fold change values of the feature in SNF-3 (severe,

n = 10) compared with SNF-1 (mild/moderate, n = 22). Each edge denotes a significant Spearman correlation (adj. p < 0.00001).

(H) Significantly enriched pathways (adj. p < 0.01) in the most central community found in (F) (community 1) based on average node centrality (degree).
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Figure 6. Flux balance analysis (FBA) and sctMetabolomics identified COVID-19 and severity-specific dysregulated metabolic reaction

(A) Representative diagram of selected transport reactions found to have different flux in SNF-1 (mild/moderate, n = 22) and SNF-3 (severe, n = 10) than SNF-4

(healthy, n = 17). The diagram shows the cellular location of the responses, transporter genes, and the transported metabolic products.

(B) UMAP clustering of cells and their associated cell types generated from the scRNA-seq data published by Zhang et al. (2020). Expression (log expression > 2)

of SLC25A1, SLC25A10, and SLC25A11 in various cell types is shown in subsequent UMAPs.

(C) Single-cell-typemetabolomics (sctMetabolomics) of themonocyte population identified increased a-ketoglutarate (a-KG), citrate, andmalate (HC [n = 12] and

COVID-19 [n = 18]).

(D) Heatmap of metabolic reactions showed different flux among all the samples identified from individual genome-scale modeling and flux balance analysis. The

color scale represents the metabolic flux measurements (mmol/h/gDCW) derived from FBA. Severity-specific (reactions having different flux in more than half of

the samples in SNF-3 [severe, n = 10] compared with more than half of the samples in SNF-1 [mild/moderate, n = 22]; labeled in red) and COVID-19-specific

(reactions having different flux in more than half of the samples in SNF-1 [mild/moderate, n = 22] and SNF-3 [severe, n = 10] compared with more than half of

the samples in SNF-4 [healthy, n = 17]) reactions are labeled.
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(log expression > 2) in more cells in the monocyte populations

(Figures 6B and S6). As we observed that signatures of mono-

cytes were enriched both in the DCQ (Figure 2) and in immuno-

phenotyping analyses (Figure 3) and metabolism in monocytes

plays an important role in regulating innate immune function

(Pence and Yarbro, 2019), we performed sctMetabolomics tar-

geting TCA-cycle intermediates in monocytes. We observed

increased cellular levels of a-ketoglutarate, malate, and citrate

in monocytes in COVID-19 samples (Figure 6C). To further
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handle the individual heterogeneity underlying the molecular

profiles of all patients, we generated personalized GSMMs to

characterize COVID-19-specific and severity-specific metabolic

alterations. FBA identified 274 metabolic reactions with distinct

fluxes across patients (Figure 6D; Data S3), many of which reca-

pitulated the above-described group-specific observations. Re-

actions that had flux in the same direction in more than or half of

the samples in SNF-1 and SNF-3 and opposite or no flux in more

than or half of the samples in SNF-4 were regarded as



Figure 7. Network-based essential gene and metabolite analysis reveal the role of transporter genes and TCA-cycle intermediates in

COVID-19

(A) The essential genes and metabolites are identified based on topology analysis of the network created using metabolites and associated genes of selected

reactions in each sample. The heatmap visualizes the centrality measurements (betweenness) of genes and metabolites in each sample network. Top column

annotation denotes sample classification by SNF clustering. The bottom column annotation denotes original cohorts.

(B) Topology analysis results of the network created using metabolites and associated genes of selected reactions in SNF cluster 3 (severe, n = 10). The figure

shows two communities identified. The color gradient denotes the centrality of the communities (betweenness). Node size is relative to the centrality

(betweenness) of each feature.

(C) UMAP clustering of cells and their associated cell types generated from scRNA-seq data published by Zhang et al. (2020). Expression of top essential genes

identified in (A), in various cell types, is shown in subsequent UMAPs.
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COVID-19-specific reactions. By contrast, reactions that had

flux in the same direction in more than or half of the samples in

SNF-3 and opposite or no flux in more than or half of the samples

in SNF-1 were regarded as COVID-19 severity-specific reac-

tions. The analysis provided 16 reactions as COVID-19 specific

and 10 reactions as COVID-19 severity specific (Figure 6D;

Data S3).

FBA-derived network topology analysis identified
essential genes and metabolites in COVID-19
The results above indicated substantial rearrangement of intra-

cellular metabolic fluxes concomitant with COVID-19 and its

severity. To further explore the biological implications of the me-

tabo-transcriptomic alterations while still considering the biolog-

ically driven characterization provided by the predicted flux dis-
tributions, we performed a topological analysis of the

personalized and group-specific metabolic networks. These

weighted networks were created using reactions that displayed

divergent metabolic fluxes, where nodes were reactants, prod-

ucts, and the associated enzymatic genes (Data S3), and edge

weight was scaled down measurement of the reaction fluxes.

Further, network communities were identified, and centrality

was calculated to prioritize nodes (Data S3). We observed that

7 genes and 51 metabolites showed very high centrality (Fig-

ure 7A; betweenness > mean across samples; 83.9 for genes

and 22 for metabolites). These included the monocarboxylate

transporter SLC16A6 and nucleoside transporter SLC29A1 and

metabolites such as a-ketoglutarate in the cytosol, succinate

and malate in mitochondria and cytosol, and butyrate in the

cytosol and extracellular space, which were identified as
Cell Systems 13, 665–681, August 17, 2022 675
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uniquely essential for COVID-19 samples. Topology analysis of

SNF-3 (severe) networks also identified a-ketoglutarate as the

most central among other intermediate products of the TCA

cycle such as cis-aconitate, malate, fumarate, succinate, and

mitochondrial transporter genes like SLC25A1 and SLC25A11

(Figure 7B). The reactions associated with SLC25A1 and

SLC25A11 displayed fluxes (Figure 6D) only in SNF-1 (mild/mod-

erate) and SNF-3 (severe) but not in any other SNF cluster,

further reinforcing the rearrangement of malate and a-ketogluta-

rate metabolism observed at sctMetabolomic level (Figures 6A

and 6B). Moreover, gene essentiality analysis identified mito-

chondrial genes as essential in COVID-19 patients (Figure S7),

including NADH: ubiquinone oxidoreductase core subunit S2

(NDUFS2) and NADH: ubiquinone oxidoreductase subunit B3

(NDUFB3) in OXPHOS, glycine N-methyltransferase (GNMT) in

glycine metabolism, 5-oxoprolinase, ATP-hydrolysing (OPLAH)

in glutathionemetabolism, and amidohydrolase domain contain-

ing 1 (AMDHD1) in histidine metabolism, all of which were part of

the central community c1 (Figure 5G). To find the cell types

where the top central genes are mostly expressed, we used

the published scRNA-seq data (Zhang et al., 2020). COVID-19-

specific essential gene SLC16A6 was mostly expressed in

monocytes and monocyte-derived DCs (Figures 7C and S8),

whereas SLC29A1wasmostly expressed in NCM and proT cells

(Figures 7C and S8).

DISCUSSION

This study combined system-level transcriptomics, DCQ, blood

cell immunophenotyping of MNPs, integrated network analysis,

and generated personalized and group-specific GSMM of

COVID-19 patients to provide comprehensive systems-level

characterizations in SARS-CoV-2 infection. The transcriptomics

data identified distinct upregulation of pathways related to the

antiviral response and metabolism in the COVID-19 patients.

While comparing the mild and severe COVID-19 patients’, path-

ways that are master regulators of central carbon and energy

metabolism (e.g., TCA cycle, OXPHOS, pyruvate metabolism,

etc.), the PI3K-Akt, mTOR, AMPK, and HIF-1 signaling were

distinctly upregulated, which are also known to be regulated dur-

ing SARS-CoV-2 infection (Appelberg et al., 2020; Krishnan

et al., 2021). Based on DCQ, in both mild and severe COVID-

19 patients, a disease pathogenicity-specific pattern in neutro-

phils and CM was determined. The homeostatic association be-

tween the immune cells like T cells and DCs was dysregulated,

further supported by the immunophenotyping of MNPs and its

association with the T cells (CD4+ and CD8+). Due to the high

molecular heterogeneity displayed by patients, we performed a

sample stratification through SNF, based on both metabolomic

and transcriptomic data. Using the personalized GSMM and

SNF cluster-driven mild/moderate and severe COVID-19

groups, the FBA identified the transporter reactions that fuel

TCA-cycle intermediates, such as the cis-aconitate, a-ketogluta-

rate, succinate, malate, and fumarate, that may play an essential

role in COVID-19, which was further supported by sctMetabolo-

mics of the monocytes. Gene and metabolite prioritization anal-

ysis indicated that monocarboxylate transporters (MCTs or

SLC16 gene family) like SLC16A6 or nucleoside transporter

genes like SLC29A1 that are expressed in the monocytes and
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metabolites such as a-ketoglutarate, succinate, malate, and

butyrate could play a crucial role in COVID-19.

The DCQ predicted an increase in the neutrophils and CM

in COVID-19 patients, which corroborated earlier findings (re-

viewed in Reusch et al., 2021). Following SARS-CoV-2 infection,

an elevated number of both mature and immature neutrophils

were observed in the nasopharyngeal epithelium (Chua et al.,

2020), lung (Liao et al., 2020), and blood (Giamarellos-Bourboulis

et al., 2020; Guan et al., 2020; Lourda et al., 2021). Elevation of

neutrophil counts can lead to excessive formation of neutrophil

extracellular traps (NETs), an extracellular network of chromatin,

oxidant enzymes, andmicrobicidal proteins released by the neu-

trophils to control infection (Zuo et al., 2020), potentially contrib-

uting to hyperinflammation in COVID-19 patients. Moreover, a

myeloid-driven atypical cytokine storm, mediated by the clas-

sical proinflammatory monocytes and neutrophils, could be the

critical mediator of COVID-19 disease severity (Vanderbeke

et al., 2021). The decrease in the number of circulating uncon-

ventional T cells, gd-T cells, and MAIT cells in severe COVID-

19 patients compared with HC was in line with previous studies

(Lei et al., 2020; Parrot et al., 2020). Given that both cell types

are important for antiviral responses, decreases in the blood

could indicate their recruitment to tissue and increased

cell death (Shi et al., 2021). Interestingly, the co-expression

network of the cell-specific markers indicated a gradual loss

(convalescent > mild > severe) of the association between

marker genes of the T cells and DCs, as well as between marker

genes of granulocytes and other immune cells at the system

level. These findings are indicative of dysregulated crosstalk be-

tween T cells and DCs (Hivroz et al., 2012) and granulocytes with

other immune cells (Lourda et al., 2021), which could explain the

insufficient control of the viral replication (Saichi et al., 2021)

leading to severe COVID-19. Interestingly, the COVID-19 conva-

lescent samples also showed the dysregulated crosstalk, further

supporting a recent study where it has been shown that mild

SARS-CoV-2 infection can leave an inflammatory imprint in the

myeloid cells and can affect the macrophage effector functions

(Bohnacker et al., 2022).

Several studies, including ours, have reported alterations in

myeloid cells in blood and tissues of COVID-19 patients—with

increased levels of CM, M-MDSC, and LDG (Cabrera et al.,

2021) and a decrease in NCM, pDC, and DC1 cells—with these

changes linked to platelet activation and degranulation, activa-

tion of the coagulation cascade, and overall disease severity

(Agrati et al., 2020; Chilunda et al., 2021; Falck-Jones et al.,

2021; Krishnan et al., 2021; Lourda et al., 2021; Schulte-Schrep-

ping et al., 2020; Trombetta et al., 2021). In our study, using DCQ

and immune profiling, we report similar changes in the MNP pro-

file, and in addition to that, we also observed altered chemokine

receptor expression in different MNP cells. Chemokines play a

crucial role in modulating the immune landscape during viral in-

fections by regulating innate and adaptive immune responses

(Khalil et al., 2021). Systemic changes in chemokines’ levels

and receptors play critical roles in disease pathogenesis and

progression (Majumdar andMurphy, 2020). Chemokine receptor

signaling controls emigration from the bone marrow, cell sur-

vival, andmigration into inflamed sites. Changes indicate the dy-

namic nature of an ongoing immune response to viral infection.

Changes in MDSC cell subsets could have significant impacts
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on immune responses to SARS-CoV-2 (i.e., decreased T cell re-

sponses, antigen-presenting cell responses, etc.) (Emsen et al.,

2022; Koushki et al., 2021). The fate of circulating monocytes

during infection and inflammation is determined by differential

expression of specific cell surface receptors, including CCR2,

CX3CR1, and CCR5, which are known to modulate monocyte

differentiation, migration, function, and survival (Chen et al.,

2013b; Gschwandtner et al., 2019; K€aufer et al., 2018; Mehta

and Reilly, 2012). SARS-CoV-2 has been shown to upregulate

CCR2, CCR5, and CCR1 expression in the human thoracic dor-

sal root ganglion (Khalil et al., 2021) and could directly or indi-

rectly affect the levels of these receptors also on myeloid cells.

In this study, we observed significantly increased levels of

CCR2 and CCR5 on all monocyte subsets and in some DC sub-

sets in the blood of COVID-19 patients, which are in line with the

high levels of their ligands in the blood of COVID-19 patients

(Kvedaraite et al., 2021; Patterson et al., 2021a) and attraction

to the inflamed lung. SARS-CoV-2-infected lung macrophages

have also been shown to express the chemokine ligand 5

(CCL5), and the CCL5/CCR5 axis disruption by CCR5 blockade

reduced inflammation, restored T cell lymphocytopenia, and

reduced SARS-CoV-2 viremia in COVID-19 patients (Patterson

et al., 2021b). Of note, the significant decrease in pDC frequency

in the blood of COVID-19 patients and the downregulation of

CX3CR1 in the remaining pDC in blood could possibly be ex-

plained by the binding of CX3CL1 (fractalkine) to CX3CR1. Frac-

talkine is a potent lung chemoattractant of immune cells and was

previously found to be elevated in the serum of COVID-19 pa-

tients (Tong et al., 2020). Since DCs were reported in COVID-

19 lungs (Liao et al., 2020), it is possible that DC disappearance

from the circulation is related to their influx in lymph nodes and

lung tissue to initiate and assist in the adaptive immune re-

sponses against SARS-CoV-2.

Another feature observed in COVID-19 disease is the altered

plasma metabolic profile indicating a shift towards amino acid

and fatty acid metabolism, energy, and lipid metabolism (Shen

et al., 2020; Thomas et al., 2020; Wu et al., 2020). Previously,

we and others reported that SARS-CoV-2 modulated the AKT/

mTOR/HIF-1 pathway that is a central regulator of glycolysis

and other central metabolic pathways (Appelberg et al., 2020;

Chen et al., 2020; Codo et al., 2020). We have also shown that

the inhibition of the glycolysis, glutaminolysis, and AKT/mTOR/

HIF-1 pathways inhibited the SARS-CoV-2 replication, as

SARS-CoV-2 utilizes these pathways for its efficient replication

(Appelberg et al., 2020; Krishnan et al., 2021). The solute carrier

(SLC) transporters are membrane-associated proteins that

mediate the influx and efflux of metabolites (Schumann et al.,

2020). Thus, SLCs play a significant role in maintaining glycolytic

balance within a cell and significantly influence the development

of metabolic diseases (Zhang et al., 2019b). In our previous

study, immunophenotyping identified increased expression of

the carbohydrate transporter GLUT1 (SLC2A1) in CD8+ T cells,

IM, and NCM and amino acid transporter xCT (SLC7A11) in all

monocytes in COVID-19 patients compared with HC, high-

lighting the role of metabolite transporters in COVID-19 disease

(Krishnan et al., 2021). Moreover, the alterations of the trans-

porters weremore prominent in themonocytic population, which

could potentially contribute to mediating the disease severity by

modulating its impaired immune function through metabolic al-
terations. In the present study, instead of explicitly looking into

specific transporters, we tried to comprehensively identify the

transporters uniquely associated with COVID-19. For this pur-

pose, we have used metabolic flux-prediction models by inte-

grating the blood transcriptomics and plasma metabolomics

data and determined that SLC transporters, such as SLC29A1

(ENT1; equilibrative nucleoside transporter 1) and SLC16A6

(MCT7; monocarboxylate transporter 7), were uniquely essential

in COVID-19 samples. The SLC29A1 is a nucleoside transporter

and is critical for nucleotide biosynthesis. The SLC16 gene fam-

ily, comprising 14 members of the MCT family, plays an impor-

tant role in energy metabolism as it catalyzes the rapid transport

of lactate and pyruvate across the cell membrane, which are

essential components for glycolysis (reviewed in Halestrap,

2013). Although no study reported the role of the SLC transporter

earlier, a co-expression analysis performed in microarray anal-

ysis data of influenza-infected pediatric patients reported upre-

gulated expression ofSLC16A6 (Zarei Ghobadi et al., 2019), sug-

gesting its potential role in respiratory viral infections. The

SLC16A6 has been reported to act as a transporter of ketone

bodies like b-hydroxybutyrate out of the liver (Newman and

Verdin, 2017) that is again internalized by tissues other than

the liver and is utilized in the TCA cycle in mitochondria or fatty

acid synthesis in the cytoplasm (Sheraj et al., 2021). A more

recent study also reported SLC16A6 as a taurine transporter (Hi-

guchi et al., 2022), indicating its role in energy metabolism. It is

also possible that transporters such as SLC16A6, which was

differentially upregulated in COVID-19, can also regulate the

intracellular and extracellular levels of a-keto acids like a-keto-

glutarate, which are essential components of the TCA cycle.

We have also identified mitochondrial transporters such as

SLC25A1 (CIC; citrate/isocitrate carrier) and SLC25A11 (OCG;

mitochondrial 2-oxoglutarate/malate carrier) along with TCA-cy-

cle intermediates such as a-ketoglutarate, citrate, succinate,

fumarate, and malate differentially represented either in the

cytosol or extracellular space. The prominent expression

of SLC25A11 and SLC25A1 together with the upregulation of

intracellular malate and a-ketoglutarate observed at the sctMe-

tabolomic level is further supported by our GSMMs. Further,

metabolite essentiality analysis identified butyrate, a micro-

biome-derived four-carbon short-chain fatty acid, as an essen-

tial metabolite in severe COVID-19, which plays an essential

role in energy metabolism and intestinal homeostasis (Liu

et al., 2018). Recently our integrative analysis of cytokines, me-

tabolites, and microbiome features suggested a potential role

of microbial-derived immunoregulatory processes in fatal out-

comes in COVID-19 due to the failure of the negative feedback

mechanism that should confine the cytokine storm (Albrich

et al., 2022). Interestingly, MCTs are also involved in the butyrate

transportation (Chang et al., 2014). The role of SLC transporters

in the regulation of energy metabolism has been studied exten-

sively for cancer but requires further attention in the context of

viral infections that affect the metabolic pathways.

The system-wide metabolomics profile in COVID-19 patients

with different disease states identified several biomarkers and

shed mechanistic insight into SARS-CoV-2 infection. Even

though metabolomics is closer to the phenotype, the metabolo-

mics-only approach limits identifying the alterations of the me-

tabolites or the metabolic pathways that can be influenced by
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gender, age, ethnicity, comorbidities, diet, etc. Application of

GSMM by integrating the host transcriptomics and metabolo-

mics and the virus biomass function can provide information

about the altered metabolic reactions. Earlier seminal studies

in the context of SARS-CoV-2, based on host-virus GSMMof hu-

man alveolar macrophages (Renz et al., 2020), human airway

epithelial cells (Bannerman et al., 2021), and liver cancer cells

(Huh7) (Yaneske et al., 2021), reported that the role of biosyn-

thesis and degradation of amino acids, glycolytic shift, and en-

ergy metabolism are essential for progressive viral replication.

As the SARS-CoV-2 was not detected in the blood cell popula-

tions in our cohort, we therefore hypothesized that the systemic

metabolic alterations are most likely because of the bystander

effect of the infection due to the inflammatory conditions. The

specific metabolic environment may differ from the metabolic

alteration during productive replication in the infecting cells.

In addition to using GSMMs for metabolic flux characterization

and reporter metabolites of different COVID-19 subgroups, the

generation of personalized metabolic models enabled the iden-

tification and prioritization of genes and metabolites at a pa-

tient-specific level in our study. We did a comprehensive charac-

terization of COVID-19 at a personalized level integrating

transcriptomic data combining information from biologically

agreeable metabolic flux predictions and topological network

analysis. Our data indicated a system-level altered flux in the

mitochondrial TCA-cycle intermediates that can explain the dys-

regulated central metabolic pathways in COVID-19 and could

potentially be linked with the glycolytic modulation by mTOR/

HIF-1 signaling and mitochondrial dysfunction (Krishnan et al.,

2021). We also reported that by blocking two critical central

metabolic pathways, glycolysis and glutaminolysis, viral replica-

tion and production were inhibited (Krishnan et al., 2021).

Although systemic GSMM was not reported in other respiratory

diseases caused by viruses, in our recent study to understand

the natural control of HIV-1 infection, we observed the regulation

of similar metabolic pathways, but the difference in the meta-

bolic reactions potentiates a disease-specific contextualization

of the metabolic flux (Ambikan et al., 2022). A viral disease-spe-

cific systemic GSMM atlas for other emerging and re-emerging

viruses is underway.

The study has limitations that merit comments. Firstly, the

RNA-seq data were generated fromwhole blood samples, which

can cause bias in DGE analysis due to different blood cell popu-

lations. To overcome the bias, we computationally estimated the

cell type proportions in each sample through DCQ. We used the

information to adjust the bias to a minimum possible while per-

forming DGE analysis. Second, although the DCQ analysis

adapted from the original EPIC algorithm has worked here

because of high sequence depth and sequence quality, it may

not work in data with low sequence depth samples. It is recom-

mended to cross-validate the finding with the original EPIC algo-

rithm or by other phenotypic methods like flow cytometry. Third,

the definition of hospitalized-mild and hospitalized-severe pa-

tient groups was based on oxygen consumption, and clinicians’

definitionsmay leave a great deal of ambiguity as observed in the

HCA. However, one of the strengths of our study was that we

grouped the samples using high-throughput transcriptomics

and metabolomics data by employing the multi-omics SNF

methodology. The new patient groups were exclusively built on
678 Cell Systems 13, 665–681, August 17, 2022
samples’ multi-omics profiles, which brings high confidence

than the clinical definition of the COVID-19 severity. Further,

the group level GSMM and FBA were performed on the new pa-

tient groups (SNF) to minimize the ambiguity in the clinical defi-

nition, which may have caused erroneous results otherwise.

Finally, the GSMMs was created by considering the whole blood

as a single biological system. This poses an additional challenge

as different cells perform metabolic functions in a slightly

different manner. Ideally, the models should have been explicitly

created for each cell type, but due to technological challenges, it

was impossible to generate single-cell-type metabolomics data

to accurately constrain themodel’s nutrient uptake of the system

in various conditions, which is an essential factor in the proced-

ure. Future developments enabling scRNA-seq integration in

metabolic models to overcome the high sparsity that character-

izes this data type will allow disentangling of the distinct meta-

bolic flux distributions displayed by different cell types. Howev-

er, to validate the findings observed, we developed and applied

sctMetabolomics for the critical cell type, i.e., monocytes, further

strengthening our GSMM observation.

In conclusion, with a combination of multi-modal systems-

wide transcriptomics, DCQ, and immunophenotyping of MNPs,

we observed an essential role in coordinating the immune cells

in COVID-19 severity. Novel data-driven patient stratification

recapitulated many clinical properties previously known but

further enabled us to uncover the potential mechanical conse-

quences of COVID-19 infection in immune cells. The systems

biology approaches, including network topology analysis and

personalized GSMM, sctMetabolomics of monocytes, and

gene mapping in published scRNA-seq data, displayed a pro-

gressive dysregulation of the central metabolic pathway (TCA

cycle) concomitant with disease severity. Alterations in central

carbon and energy metabolism, TCA-cycle intermediates like

malate and a-ketoglutarate, and expression of metabolite trans-

porters in monocytes were associated with disease severity at

individual and group levels. These observations prompt the

metabolic modulation of monocytes in specific COVID-19 pa-

tient groups and potentiate personalized targets for treatment

in severe patients.
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K€aufer, C., Chhatbar, C., Bröer, S.,Waltl, I., Ghita, L., Gerhauser, I., Kalinke, U.,
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Saccon, E., Bandera, A., Sciumè, M., Mikaeloff, F., Lashari, A.A., Aliberti, S.,

Sachs, M.C., Billi, F., Blasi, F., Gabriel, E.E., et al. (2021). Distinct metabolic

profile associated with a fatal outcome in COVID-19 patients during the early

epidemic in Italy. Microbiol. Spectr. 9, e0054921.

Saichi, M., Ladjemi, M.Z., Korniotis, S., Rousseau, C., Ait Hamou, Z.,

Massenet-Regad, L., Amblard, E., Noel, F., Marie, Y., Bouteiller, D., et al.

(2021). Single-cell RNA sequencing of blood antigen-presenting cells in severe

COVID-19 reveals multi-process defects in antiviral immunity. Nat. Cell Biol.

23, 538–551.

Schulte-Schrepping, J., Reusch, N., Paclik, D., Baßler, K., Schlickeiser, S.,

Zhang, B., Kr€amer, B., Krammer, T., Brumhard, S., Bonaguro, L., et al.

(2020). Severe COVID-19 is marked by a dysregulated myeloid cell compart-

ment. Cell 182, 1419–1440.e23.

Schumann, T., König, J., Henke, C., Willmes, D.M., Bornstein, S.R., Jordan, J.,

Fromm, M.F., and Birkenfeld, A.L. (2020). Solute carrier transporters as poten-

tial targets for the treatment of metabolic disease. Pharmacol. Rev. 72,

343–379.

Shannon, P., Markiel, A., Ozier, O., Baliga, N.S.,Wang, J.T., Ramage, D., Amin,

N., Schwikowski, B., and Ideker, T. (2003). Cytoscape: a software environment

http://refhub.elsevier.com/S2405-4712(22)00276-9/sref22
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref22
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref22
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref22
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref23
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref23
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref23
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref24
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref24
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref24
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref24
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref25
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref25
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref25
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref26
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref26
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref26
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref27
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref27
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref27
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref28
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref28
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref28
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref28
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref28
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref29
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref29
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref30
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref30
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref30
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref30
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref31
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref31
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref31
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref32
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref32
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref33
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref33
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref33
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref33
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref33
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref34
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref34
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref34
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref35
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref35
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref35
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref35
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref36
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref36
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref36
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref36
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref36
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref37
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref37
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref37
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref37
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref38
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref38
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref38
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref39
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref39
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref39
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref40
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref40
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref41
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref41
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref41
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref41
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref41
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref42
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref42
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref43
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref43
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref44
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref44
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref44
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref45
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref45
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref46
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref46
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref46
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref46
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref47
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref47
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref47
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref47
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref48
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref48
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref48
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref48
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref48
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref49
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref49
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref49
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref50
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref50
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref50
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref51
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref51
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref51
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref51
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref52
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref52
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref52
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref53
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref53
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref53
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref54
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref54
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref54
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref55
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref55
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref55
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref55
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref56
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref56
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref56
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref56
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref56
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref57
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref57
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref57
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref57
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref57
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref58
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref58
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref58
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref58
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref59
http://refhub.elsevier.com/S2405-4712(22)00276-9/sref59


ll
OPEN ACCESSArticle
for integrated models of biomolecular interaction networks. Genome Res. 13,

2498–2504.

Shen, B., Yi, X., Sun, Y., Bi, X., Du, J., Zhang, C., Quan, S., Zhang, F., Sun, R.,

Qian, L., et al. (2020). Proteomic and metabolomic characterization of COVID-

19 patient sera. Cell 182, 59–72.e15.

Sheraj, I., Guray, N.T., and Banerjee, S. (2021). A pan-cancer transcriptomic

study showing tumor specific alterations in central metabolism. Sci. Rep.

11, 13637.

Shi, J., Zhou, J., Zhang, X., Hu, W., Zhao, J.F., Wang, S., Wang, F.S., and

Zhang, J.Y. (2021). Single-cell transcriptomic profiling of MAIT cells in patients

with COVID-19. Front. Immunol. 12, 700152.

Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L.,

Gillette, M.A., Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander, E.S., and

Mesirov, J.P. (2005). Gene set enrichment analysis: a knowledge-based

approach for interpreting genome-wide expression profiles. Proc. Natl.

Acad. Sci. USA 102, 15545–15550.

Thiele, I., Sahoo, S., Heinken, A., Hertel, J., Heirendt, L., Aurich, M.K., and

Fleming, R.M. (2020). Personalized whole-body models integrate metabolism,

physiology, and the gut microbiome. Mol. Syst. Biol. 16, e8982.

Thomas, T., Stefanoni, D., Reisz, J.A., Nemkov, T., Bertolone, L., Francis, R.O.,

Hudson, K.E., Zimring, J.C., Hansen, K.C., Hod, E.A., et al. (2020). COVID-19

infection alters kynurenine and fatty acid metabolism, correlating with IL-6

levels and renal status. JCI Insight 5, e140327.

Tong, M., Jiang, Y., Xia, D., Xiong, Y., Zheng, Q., Chen, F., Zou, L., Xiao, W.,

and Zhu, Y. (2020). Elevated expression of serum endothelial cell adhesion

molecules in COVID-19 patients. J. Infect. Dis. 222, 894–898.

Traag, V.A., Waltman, L., and van Eck, N.J. (2019). From Louvain to Leiden:

guaranteeing well-connected communities. Sci. Rep. 9, 5233.

Trombetta, A.C., Farias, G.B., Gomes, A.M.C., Godinho-Santos, A.,

Rosmaninho, P., Conceição, C.M., Laia, J., Santos, D.F., Almeida, A.R.M.,

Mota, C., et al. (2021). Severe COVID-19 recovery is associated with timely

acquisition of a myeloid cell immune-regulatory phenotype. Front. Immunol.

12, 691725.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

LIVE/DEAD� Fixable Aqua

Dead Cell Stain Kit

ThermoFisher Scientific Cat#L34957

HLADR-PECY7-L243 BD Bioscience Cat#335830; RRID:AB_2868691

CD3- PECF594-UCHT1 BD Bioscience Cat#562280; RRID:AB_11153674

CD19-PECF594-HIB19 BD Bioscience Cat#562294; RRID:AB_11154408

CD56-PECF594-B159 BD Bioscience Cat#562289; RRID:AB_11152080

CD33-FITC-WM-53 BD Bioscience Cat#564588; RRID:AB_2738856

CD11c-BUV737-B-LY6 BD Bioscience Cat#741827; RRID:AB_2871162

CD14-PE-M5E2 BD Bioscience Cat#555398; RRID:AB_395799

CD16-APCH7-3G8 BD Bioscience Cat#560195; RRID:AB_1645466

CD1C-BV421-F10/21A3 BD Bioscience Cat#565050; RRID:AB_2744319

CD141-BV711-1A4 BD Bioscience Cat#563155; RRID:AB_2738033

CD303-BV786-V24-785 BD Bioscience Cat#748000; RRID:AB_2872461

CCR2-BV650-1D9 BD Bioscience Cat#747849; RRID:AB_2872311

CCR5-PECY5-2D7 BD Bioscience Cat#556889; RRID:AB_396529

CX3CR1-BV605-2A9-1 BD Bioscience Cat#744488; RRID:AB_2742268

CD11B-BUV395-ICRF44 BD Bioscience Cat#563839; RRID:AB_2716869

CD15-AF700-HI98 Biolegend Cat#301920; RRID:AB_2728239

CD66B-AF647-G10F5 BD Bioscience Cat#561645; RRID:AB_10894001

Biological Samples

Human blood from COVID-19

patients and COVID-19 negative

samples

This paper and (Krishnan et al., 2021)

Critical Commercial Assays

Global Metabolomics (HD4) Metabolon. Inc., US HD4

Olink Immuno-Oncology Panel Olink, Sweden Immuno-Oncology Panel

EasySep human monocyte isolation kit STEMCELL Technologies, US Cat#19359

Deposited Data

Transcriptomics This paper SRA: PRJNA828431

Metabolomics Krishnan et al. (2021) 10.6084/m9.figshare.13336862

Proteomics Krishnan et al. (2021) 10.6084/m9.figshare.13336862

scRNASeq Zhang et al. (2020) Kindly obtained from the authors

Software and Algorithms

PIANO v2.2.0 V€aremo et al. (2013) https://doi.org/10.18129/B9.bioc.piano

GSEAPY v0.9.16 Subramanian et al. (2005) https://pypi.org/project/gseapy/0.10.8/

Estimating the Proportions of Immune

and Cancer cells (EPIC)

Racle and Gfeller (2020) https://github.com/GfellerLab/EPIC

CellMarker Zhang et al. (2019a) http://bio-bigdata.hrbmu.edu.cn/CellMarker/

PanglaoDB Franzén et al. (2019) https://panglaodb.se/

ggplot2 v3.3.2 Wickham (2016) https://ggplot2.tidyverse.org/

ComplexHeatmap v2.2.0 Gu et al. (2016) https://doi.org/10.18129/B9.bioc.ComplexHeatmap

Cytoscape v3.6.1 Shannon et al. (2003) https://cytoscape.org/

InteractiVenn Chen and Boutros (2011) http://www.interactivenn.net/

RAVEN toolbox v2.4.0 Wang et al. (2018) https://github.com/SysBioChalmers/RAVEN

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

COBRA Toolbox v3.0 Heirendt et al. (2019) https://opencobra.github.io/

RUVSeq v1.28.0 Risso et al. (2014) https://doi.org/10.18129/B9.bioc.RUVSeq

Original source code This paper https://dx.doi.org/10.5281/zenodo.6706499
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Ujjwal

Neogi (ujjwal.neogi@ki.se).

Materials availability
This study did not generate new unique reagents.

Data and code availability
All of the data generated or analyzed during this study are included in this published article and/or the supplementary materials.

Created datasets and code are publicly available. The metabolomics data can be obtained from the https://dx.doi.org/10.6084/

m9.figshare.13336862. All the codes are available at https://dx.doi.org/10.5281/zenodo.6706499. Additional Supplemental Items

are available from Mendeley Data at https://dx.doi.org/10.17632/5prg4tsz7n.1. Any additional information required to reanalyze

the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cohort description
In this study, we included two cohorts of hospitalized-mild (n=26) and severe (n=11) COVID-19 patients and COVID-19 PCR negative

samples (n=31). The cohorts’ clinical and demographic parameters were described elsewhere (Krishnan et al., 2021). The disease

pathogenesis was defined based on oxygen consumption. The study was approved by the Regional Ethics Committee in Stockholm,

Sweden, and performed in accordance with the Declaration of Helsinki.

METHOD DETAILS

Multi-omics analysis
Whole blood was collected in TempusTM blood RNA tubes. The RNA sequencing was performed using Illumina NovaSeq6000 in

S4 mode. The transcriptomics data processing was performed as recently described by us (Appelberg et al., 2020). Differential

gene expression analysis was performed using the R/Bioconductor package DESeq2 v1.26.0 (https://bioconductor.org/

packages/release/bioc/html/DESeq2.html). Confounding factors such as cell type proportions, BMI, and other possible hidden

factors were adjusted while performing differential expression analysis. Bioconductor package RUVSeq v1.28.0 was used to

compute the factor of unwanted variation and added to the DESeq2 design matrix (Risso et al., 2014). KEGG gene set enrich-

ment analysis for differentially regulated genes was performed using PIANO v2.2.0 (V€aremo et al., 2013) (nperm=500, geneset

statistic=mean) and for communities using enrichr module of python package GSEAPY v0.9.16 (Chen et al., 2013a; Subrama-

nian et al., 2005). Metabolomics and proteomics data generation were performed using the Metabolon HD4 (Metabolon Inc, NC,

US) and Olink Immuno-Oncology Panel (Olink, Sweden), respectively (Krishnan et al., 2021). Normalized values of interleukins

from Olink proteomics data are scaled down using the R function scale, and the mean values of each sample were visualized

as boxplots. The single-cell RNAseq (scRNAseq) data was kindly obtained from Zhang et al. (2020), which had similar study

groups to the present study.

Digital cell quantification (DCQ)
The deconvolution algorithm adapted from the method Estimating the Proportions of Immune and Cancer cells (EPIC) (Racle and

Gfeller, 2020) was employed in the digital cell quantification (DCQ) procedure. The DCQ uses a reference cell type-specific gene

expression profile and a list of signature genes specific for the cell types to calculate the cell type proportion. We have used RNA

HPA blood cell gene data obtained from the Human Protein Atlas as a reference profile (Uhlen et al., 2017). The data consists of

gene-level expression data of 18 blood cell types, and it is based on Human Protein Atlas version 20.1 and Ensembl version

92.38. Signature genes for the 18 blood cell types in the reference profile were downloaded from the online database

CellMarker (Zhang et al., 2019a) and PanglaoDB (Franzén et al., 2019). The transcript per million (TPM) transformed gene

expression data of all genes from the samples were inputted to EPIC along with reference profile and signature gene list to es-

timate the cell proportion.
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SARS-CoV-2 virus detection in blood
We used two approaches in the study to detect viral RNA as described by us previously (Appelberg et al., 2020). Firstly, the genome

alignment method was employed for virus detection. Adapter trimmed and quality filtered (Q>30) transcriptomics reads were aligned

against the SARS-CoV-2 virus genome (GenBank: MT093571.1). The alignment percentage (>0%) was used to determine the pres-

ence of the virus. TrimGalore v0.6.3_dev (DOI:10.5281/zenodo.5127899) was used for data pre-processing, and STAR v2.7.3a (Do-

bin et al., 2013) was used for the alignment process. The detection of the viral RNA in the plasma was performed using the primers as

described by us previously (Appelberg et al., 2020).

Similarity network fusion and network analysis
The Similarity network fusion (SNF) (Wang et al., 2014)) was based on transcriptomics and metabolomics from 68 individuals. First,

we generated similarity matrices using features derived from each platform individually; we filtered out lowly-expressed features

(TPM<5) for transcriptomics and features with variance less than 0.01 in both transcriptomics and metabolomics, followed by

SNF (K=6, T=20, alpha=0.7). Association networks of transcriptomics and metabolomics data were built by computing pairwise

Spearman rank correlations between and among all genes and metabolites after removal of non-expressed (row median TPM<1)

and lowly variant (row variance<0.1) genes and metabolites. Top 10% significant correlation (FDR<0.00005) was analyzed in igraph

(https://igraph.org) using correlation coefficient as edge weight. Centrality analysis was performed by computing degree and

betweenness centralities. Communities were identified by modularity maximization through the Leiden algorithm (Traag et al.,

2019). A similar approach was employed for topological analysis after flux distribution prediction.

Genome-scale metabolic model (GSMM), flux balance analysis (FBA), and essentiality analysis
Personalized (individual sample) and group-specific human metabolic models were reconstructed by integrating transcriptomics

data on human reference genome-scale metabolic model obtained from Metabolic Atlas (Robinson et al., 2020). Personalized

models were generated using the gene expression table of each sample, whereas the average gene expression value was used

for group-specific model generation. Task-driven Integrative Network Inference for Tissues (tINIT) algorithm was used for the meta-

bolic model reconstruction (Agren et al., 2012; Agren et al., 2014; Robinson et al., 2020). The threshold expression of TPM1was used

for the process. Firstly, the metabolic reference model was converted to closed-form by adding boundary metabolites. After model

reconstruction, biological feasibility was examined by checking their capability to perform essential metabolic tasks that are known to

occur in all cell types. A list of 57 metabolic tasks (Agren et al., 2014) which are expected to be carried out by cells to be viable was

used for the purpose.Matlab implementation of tINIT algorithmwas used for the entire analysis (https://github.com/SysBioChalmers/

Human-GEM). To emulate the energetic demands construed by virus growth onto host cells, SARS-CoV2 specific viral biomass

objective function (VBOF) was incorporated into models created for COVID-19 positive samples to account for the host metabolic

requirement for the virus. A unidirectional pseudo-reaction consisting of the products of VBOF and ATP hydrolysis as reactants

was used as the objective function. For the remaining models, ATP hydrolysis was used as the objective function for flux balance

analysis (FBA). FBA was also performed without VBOF function and ATP hydrolysis as the objective function to study the influence

of VBOF in the model. The addition of VBOF did not show any change in FBA results. Matlab function solveLP implemented in the

RAVEN toolbox v2.4.0 (Wang et al., 2018) was used for FBA. Essentiality analysis was performed in COBRA Toolbox v3.0 utilizing a

single-gene deletion function (Heirendt et al., 2019) and the same objective functions used for FBA. The exchange reactions in the

model were constrained using plasma metabolomics data as a reference. We considered that all exchange reaction fluxes are pro-

portionally affected by the availability of extracellular metabolites, i.e. that transport reactions are limited by metabolite abundance,

effectively approaching first-order kinetics with respect to extracellular metabolites. We computed log2 fold changes between each

group against the control group, and reaction bounds were constrained proportionally to the computed increase or decreases. The

bounds were validated based on literature data (Thiele et al., 2020).

Network topology analysis was performed on the set of reactants, products, and enzymatic genes for all reactions found to have

flux from FBA. Networks were analyzed in igraph using the absolute value of flux scaled between 0 and 1 as edge weight. The cen-

trality analysis was performed by calculating betweenness and degree centralities. Communities were identified using the Leiden

algorithm (Traag et al., 2019).

Visualization
R package ggplot2 v3.3.2 (Wickham, 2016) was used to create bubble plots, scatter plots, and boxplots. R/Bioconductor package

ComplexHeatmap v2.2.0 (Gu et al., 2016) was used to create all the heatmaps. Network diagramswere drawn in Cytoscape ver 3.6.1

(Shannon et al., 2003). Venn diagrams were generated using the online tool InteractiVenn (Chen and Boutros, 2011).

Flow cytometry
Peripheral blood mononuclear cells (PBMCs) were subjected to flow cytometry analysis. All samples were stained with live/dead

fixable aqua dye (Invitrogen), and cell surface markers (listed in key resources table) were detected by incubating cells with relevant

antibodies for 20 min at room temperature in a flow cytometry buffer. All cells were fixed with 2% paraformaldehyde before acquiring

on a BD FACS Symphony flow cytometer (BDBioscience) and data were analyzed and compensatedwith FlowJo 10.8 (TreeStar Inc).

The gating strategy is given in Figure S2. Dimensionality reduction was performed with the UMAP FlowJo plugin v3.1.
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Single cell-type metabolomics analysis (sctMetabolomics) of TCA-cycle metabolites
Monocytes were purified from stored PBMCs by using a magnetic-based EasySep human monocyte isolation kit (STEMCELL Tech-

nologies, US) as per the manufacturer’s guidelines with specific modifications of the amount of specified reagents used based upon

the starting cell numbers that yielded a purity of more than 85% and viability of more than 90% (Figure S9). Following isolation of the

monocytes, they were washed three times in PBS at room temperature for downstream metabolomics analysis. Absolute quantifi-

cation of the TCA-cycle intermediates was measured by gas chromatography coupled to triple-quadrupole analyzers operating in

tandem mass-spectrometer (GC-QQQ-MS) at Swedish Metabolomics Centre, Umea,

For GCMS analysis, an 11-point calibration curve (cis-aconitic acid, a-keto-glutaric acid, citric acid, fumaric acid, glucose, glucose

6-phosphate, isocitric acid, lactic acid, malic acid, shikimic acid, succinic acid, sucrose, urea) spanning from 25-2500 pg/mL was

prepared by serial dilutions and spiked with internal standards: Fumaric acid (13C4), L-Malic acid (13C4), D-Glucose (13C6), a-ke-

toglutaric acid (13C4), Succinic acid (D4), citric acid (D4), Sucrose (13C12) at a final concentration of 350 pg/mL. For metabolite

extraction 275mL of ice-cold extraction mixture of 80%MeOH, was added to each sample. The metabolites were extracted using

a mixer mill set to a frequency 30 Hz for 3 min, with 1 tungsten carbide bead added to each tube. Obtained extracts were centrifuged

at 14000 r.p.m (18 620g) for 10 min. 260 mL of the supernatant was transferred into GC-vials, spiked with 1050 pg of each GCMS

internal standard, and evaporated until dryness under a stream of nitrogen.

Derivatization was performed according to Gullberg et al. (2004). In detail, 10mL of methoxyamine (15 mg/mL in pyridine) was added

to the dry sample that was shaken vigorously for 10 minutes before being left to react at room temperature. After 16 hours 10 mL of

MSTFAwas added, and the sample was shaken and left to react for 1 hour at room temperature. 10 mL of methyl stearate (1050 pg/mL

in heptane) was added before analysis.

One mL of the derivatized sample was injected by an Agilent 7693 autosampler, in splitless mode into an Agilent 7890A gas chro-

matograph equipped with a multimode inlet (MMI) and 10 m x 0.18 mm fused silica capillary column with a chemically bonded

0.18 mm DB 5-MS UI stationary phase (J&W Scientific). The injector temperature was 260 �C. The carrier gas flow rate through

the column was 1 ml min-1, the column temperature was held at 70 �C for 2 minutes, then increased by 40 �C min-1 to 320 �C
and held there for 2 min. The column effluent is introduced into the electron impact (EI) ion source of an Agilent 7000C QQQ

mass spectrometer. The thermal AUX 2 (transfer line) and the ion source temperatures were 250 �C and 230 �C, respectively.
Ions were generated by a 70 eV electron beam at an emission current of 35 mA and analyzed in dMRM-mode. The solvent delay

was set to 2 minutes. The list of MRM transitions is provided (Table S4).

Data were processed using MassHunter Qualitative Analysis and Quantitative Analysis (QqQ; Agilent Technologies, Atlanta, GA,

USA) and Excel (Microsoft, Redmond,Washington, USA) software. Methyl stearate was used as the internal standard for compounds

lacking a stable isotope internal standard.
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