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ABSTRACT

Paramecium populations from a clear and a glacier-fed turbid alpine lake were

exposed to solar simulated ultraviolet (UVR) and photosynthetically active radi-

ation (PAR) at 8 and 15 °C. The ciliates were tested for DNA damage (comet

assay), behavioral changes, and mortality after UVR + PAR exposure. High

DNA damage levels (~58% tail DNA) and abnormal swimming behavior were

observed, although no significant changes in cell numbers were found irre-

spective of the lake origin (clear, turbid), and temperatures. We conclude that

environmental stressors such as UVR and their effects may influence the

adaptation of ciliates living in alpine lakes.

ALPINE regions are faced with increasing temperatures

(Vaughan et al. 2013) and the accelerated process of gla-

cial melting due to climate warming will eventually turn

turbid glacier-fed lakes into clear ones when the connec-

tivity to the glacier is lost (Sommaruga 2015). In contrast

to highly turbid lakes, in clear alpine lakes UVR (280–
400 nm) can penetrate the entire water column (Kammer-

lander et al. 2016; Sommaruga and Psenner 1997). The

response to UVR of aquatic organisms originating from

alpine lakes of contrasting UVR transparency was recently

compared in copepods using a single-cell gel electrophore-

sis method (comet assay; Tartarotti et al. 2014). Higher

relative DNA damage accumulation under UVR exposure

was observed in the population from the turbid lake. Adap-

tive traits such as photoprotection by sunscreen com-

pounds and DNA repair mechanisms are seen to be a

prerequisite for these organisms to thrive in clear lakes

(Tartarotti et al. 2014).

However, nothing is known about the extent of UVR-

induced DNA damage in ciliated protists from alpine lakes.

Ciliates are key organisms in microbial food webs,

transferring energy from lower to higher trophic levels

(Sommer et al. 2012). In alpine lakes, ciliate species rich-

ness and abundance are low and differ among clear and

glacier-fed turbid lakes (Kammerlander et al. 2016; Son-

ntag et al. 2011a; Wille et al. 1999). Apart from food (phy-

toplankton) and predatory zooplankton, the available

underwater irradiance significantly influences the ciliate

distribution and may structure the overall protistan com-

munity (Kammerlander et al. 2015, 2016). Generally, UVR

has deleterious direct and indirect effects on organisms at

the molecular and ecological level. UVR can cause single-

and double strand breaks in the DNA and induce the syn-

thesis of 6-4 photoproducts and cyclobutane pyrimidine

dimers, which may interfere with protein biosynthesis

(e.g., H€ader et al. 2015 and references therein). Under

UVR exposure, the motility and cell division/reproduction

rates of ciliates can be significantly affected (Giese 1945;

Giese et al. 1963; H€ortnagl and Sommaruga 2007; Sgar-

bossa et al. 1995; Sommaruga et al. 1999). However, cili-

ate species respond individually to high UVR levels

including avoidance (shading; Slaveykova et al. 2016),
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densely packed cell matter around the nuclei (algal sym-

bionts; Sommaruga and Sonntag 2009; Summerer et al.

2009; Sonntag et al. 2011b), the acquisition of sunscreen

compounds (mycosporine-like amino acids; Sonntag et al.

2007, 2017), and/or effective DNA photorepair processes

(Sanders et al. 2005). For example, photoenzymatic repair

(PER) was reported in Paramecium (Sutherland et al.

1967; Takahashi et al. 2005; Zaar 1968) and experiments

with Glaucoma and Cyclidium revealed that this mecha-

nism was strongly temperature-dependent and signifi-

cantly more effective at higher temperatures (Sanders

et al. 2005).

To shed light on UVR-induced DNA damage and

response (mortality and behavior) in ciliates from alpine

lakes, we hypothesized that UVR-induced DNA damage

and mortality was higher in a Paramecium population from

a less UV transparent glacially turbid lake than in a popula-

tion from a clear lake. Under the assumption that less

DNA damage and lower mortality occurred at a higher

temperature due to the presence of possible temperature-

dependent repair mechanisms, both populations were cul-

tivated and experimentally tested at 8 °C (i.e., mean lake

temperature) and at 15 °C (i.e., close to the lake maxi-

mum temperature). To analyze the extent of DNA dam-

age, we applied a modified alkaline comet assay that

allows detecting and quantifying DNA damage of the

macronucleus by measuring the migration of DNA from

immobilized nuclear DNA (De Lapuente et al. 2015; Lee

and Steinert 2003). Additionally, ciliate mortality and their

swimming behavior were assessed before and after UVR

exposure.

MATERIALS AND METHODS

Sampling and cultivation

During summer 2010, we collected planktonic ciliate sam-

ples from a boat at the deepest point of the clear

Gossenk€ollesee (GKS: 2,417 m a.s.l., max. depth: 9.9 m,

area: 0.017 km²) and the glacier-fed turbid Rifflsee (RIF:

2,234 m a.s.l., max. depth: 24 m, area: 0.269 km²; mean

turbidity: 48.9 NTU, nephelometric turbidity units) by verti-

cal net hauls (10-lm mesh size). We also caught some

individuals of Paramecium cf. putrinum in both lakes,

which is a rare but cultivable ciliate species from these

alpine sites. For cultivation, individual cells were cleaned

with 0.2-lm filtered lake water and grown in Woods Hole

MBL Medium (WC medium) with an initial food concentra-

tion (Cryptomonas strain 26.80, algal culture collection

G€ottingen, Germany) of 7,767 � 154 cells/ml. Cultures

were kept in a climate chamber equipped with five Cool

White lamps (Osram, Germany, L36/W20, emitting

180 lmol/m2/s PAR; 16:8 h light:dark cycle) and one A-

340 Q-Panel lamp (Q-Lab, Cleveland, OH, 290–380 nm,

emitting 1.38 W/m2 UV-B and 5.21 W/m2 UV-A for 1 h/d)

at two temperatures (8 and 15 °C). Growth rates

(Table S1) were determined to identify the experimentally

relevant late exponential growth phase (i.e. 19–21 d at

8 °C, 12–14 d at 15 °C).

Experimental setup

All experiments were performed in a temperature-con-

trolled walk-in chamber equipped with four A-340 Q-

Panel lamps and two F36W/860 daylight lamps (General

Electric Lighting, 400–700 nm). The lamps were placed

25 cm above the well-plates. Two treatments and a con-

trol were exposed for 6 h to simulated natural irradiation

conditions (spectrum available in Sommaruga et al. 1996):

PAR only (well plates covered with Ultraphan-395 foil, UV-

Opak, Digefra, Munich, Germany; sharp cut off: 0% trans-

mittance at 390 nm, 50% at 405 nm), UVR + PAR, and a

DARK control (well plates covered with aluminum

foil).Two independent experiments were conducted each

at 8 and 15 °C. In 12-well culture plates, 400–600 ciliates

per well were kept in WC medium (comet assay: 1 ml per

well, mortality tests: 3.5 ml) with ~500 Cryptomonas/ml.

Analysis of DNA damage

At the beginning of the experiments (t0) and after 6 h of

exposure, six wells of the plate were pooled resulting in

three replicates per treatment. Lah et al. (2004) introduced

a comet assay protocol for ciliates, and since then mainly

genotoxicity studies were conducted using different modifi-

cations (Hong et al. 2015; Kawamoto et al. 2010; Takada

and Mastuoka 2009; Xu et al. 2008), indicating that the pro-

tocol needed to be adapted for every species. Our prelimi-

nary studies revealed that most of the Paramecium cells

were not lysed and that high background DNA damage (80–
90% tail DNA) occurred. Cell lysis was finally successful by

immediately adding the cryoprotectant dimethyl sulfoxide

(DMSO; Roth, Karlsruhe, Germany) at non-toxic levels

(< 10%) to avoid crystal formation (Azqueta and Collins

2013). The samples were frozen at �80 °C (30 min),

thawed in a fridge at 8–10 °C for 30 min and placed in a

water bath (room temperature, 5 min). To concentrate the

cells, the samples were centrifuged (1.4 g 9 1,000 for

1 min), and the supernatant removed. These steps resulted

in a background DNA damage of 23.7 � 11.8% tail DNA

(comet tail length: 36.9 � 12.4 lm; olive tail moment

6.1 � 3.5) at t0, which coincides with previous studies

(Kawamoto et al. 2010; Lah et al. 2004). All subsequent

steps of the alkaline comet assay and the quantitation of

the DNA damage followed a modified protocol of Tartarotti

et al. (2014) and references therein. We applied a short

lysis time (2 h) with a modified lysis buffer by adding Sarco-

syl 0.2% (Sigma-Aldrich, Vienna, Austria), and a short elec-

trophoresis run (5 min). To prevent DNA damage caused by

experimental handling, we kept the slides in the dark.

Assessment of mortality and behavior

For mortality estimates, 0.5 ml of each replicate were pre-

served with 50 ll Lugol’s solution at t0, 4, and 6 h, and

cell numbers were estimated by direct counts (Olympus

SZ 40, 100–400X magnification). The swimming behavior

of the ciliates was recorded prior to preservation (Movies

S1 and S2).

© 2017 The Author(s) Journal of Eukaryotic Microbiology published by Wiley Periodicals, Inc. on behalf of International Society of Protistologists

Journal of Eukaryotic Microbiology 2018, 65, 250–254 251

Kammerlander et al. UVR-induced DNA Damage in Paramecium



Data analysis

To test for significant differences among treatments, the

results from two experiments were summarized and

the DNA damage (i.e. the relative percentage of DNA in

the comet tail, % DNA in tail) was determined. The comet

assay data were arcsin square root transformed and the

data of the mortality tests were square root transformed.

T-tests and analyses of variance (ANOVA) were performed

at a significance level of P < 0.05 (Bonferroni post hoc

method; IBM SPSS Statistics 21.0, Armonk, NY, USA).

RESULTS AND DISCUSSION

Compared to t0, PAR, and DARK, the DNA damage of the

ciliates was significantly higher after exposure to

UVR + PAR (Fig. 1; P < 0.05). Neither between habitats

(clear and turbid lake) nor temperatures (8 and 15 °C) sta-
tistically significant differences were observed in the DNA

damage levels of the UVR-exposed ciliates (RIF and GKS

at 8 °C: 57.3% and 62.1% mean tail DNA; at 15 °C:
58.5% and 57.3%; P > 0.05). The extent of the DNA dam-

age in the ciliates after UVR + PAR exposure was similar

to the DNA damage levels reported for UV-exposed cope-

pods from clear and turbid alpine lakes (Tartarotti et al.

2014). The background damage at t0 was significantly

higher (P < 0.05) at 8 °C and lower in the Paramecium

population from the turbid than from the clear lake (not

statistically significant; Fig. 1). These results support the

findings of Tartarotti et al. (2014) showing that aquatic

organisms such as copepods or ciliates (this study) origi-

nating from environments with less UV stress have low

background damage levels, resulting in higher relative

DNA damage accumulation. The hypothesis that at higher

temperature reduced DNA damage and mortality occurred,

because DNA repair mechanisms were more activated,

could not be supported by our results.

Only UVR-exposed individuals showed an abnormal

swimming behavior (slowdown, see Movies S1 and S2)

and were highly sensitive to further handling. H€ortnagl and
Sommaruga (2007) also observed an erratic swimming

pattern in the aposymbiotic congener Paramecium bur-

saria after UVR + PAR exposure. Abnormal swimming

behavior was probably a consequence of damaged DNA

strands in the macronucleus, which is regarded as the

transcriptionally active center for physiological processes

(Simon and Plattner 2015). In nature, limited motility and

reduced speed velocity may increase the risk of predation.

However, the UVR-induced DNA damage did not cause

significant mortality (P > 0.05; data not shown) and even

Figure 1 UVR-induced DNA damage in Paramecium populations from one glacier-fed turbid (Rifflsee, RIF; A, B) and one clear (Gossenk€ollesee,

GKS; C, D) alpine lake cultivated and tested at 8 and 15 °C, respectively. DNA damage of the ciliates at the beginning of the experiment (t0), after

6 h of exposure to UVR including photo-reactivating PAR (UVR + PAR), PAR only (PAR; UVR excluded), and when kept in the dark (DARK). DNA

damages are presented as mean % tail DNA + standard deviation (two independent experiments were summarized, n = 3–6). Asterisks (*) above

the bars indicates significant differences among the treatments (ANOVA; all pairwise multiple comparison procedure, Bonferroni method,

P < 0.05).
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one week later, the Paramecium were still alive (Kammer-

lander, pers. observ.).

Nevertheless, we cannot exclude long-term effects

such as retarded cell division (Giese 1945; Giese et al.

1963). This was only a short-time experiment and an

extended exposure to UVR might have more detrimental

effects. Nuclear dimorphism may act as an “environmen-

tal stress buffer”, where possible severe effects to the

diploid micronucleus may be buffered by the polyploid

character of the macronucleus (Sperling 2011), as not all

copies of a gene are probably affected by UVR. This is

speculative, but the role of such buffering effects is still

unclear and needs further genomic analyses.

In conclusion, to inhabit clear lakes implies the need of

UVR tolerance/resistance and/or avoidance. Recently, we

showed that some planktonic ciliate species are quite

abundant in both clear and turbid alpine lakes, while other

mainly particle-associated species are only present in tur-

bid habitats (Kammerlander et al. 2016). Here, we found

Paramecium cf. putrinum in both lake types (clear and tur-

bid) and by exposing them to UVR caused similar DNA

damage and swimming deficiencies, but also a certain

degree of survival and tolerance. Finding Paramecium in

the pelagial is rare as these particle-associated ciliates are

typically colonizing benthic environments and detritus

(Foissner et al. 1994). Their occurrence in the turbid lake

may be related to suspended particles, whereas in the

clear lake it appears likely that they were introduced into

the pelagial by “wash out” processes from the littoral.

Our results did, however, not support the initial hypothesis

that UVR responses in Paramecium cf. putrinum

depended on the habitat type (turbid vs. clear). Further

experiments and (epi)genetic analyses are needed to shed

more light on the potential role of UVR in influencing the

occurrence of ciliated protists in alpine lakes.
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SUPPORTING INFORMATION

Additional Supporting Information may be found online in

the supporting information tab for this article:

Table S1. Mean growth rate, mean doubling time, and

time of the late exponential growth phase in days of the

two Paramecium populations from the glacier-fed turbid

lake Rifflsee (RIF) and the clear lake Gossenk€ollesee (GKS)

cultivated at 8 and 15 °C, respectively.
Movie S1. Swimming behavior of Paramecium after 6 h

of exposure to UVR including photo-reactivating PAR

(UVR + PAR).

Movie S2. Swimming behavior of Paramecium after 6 h

of exposure to PAR only (UVR excluded) and when kept in

the dark (DARK), respectively.
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