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Phenome- wide identification of therapeutic genetic 
targets, leveraging knowledge graphs, graph neural 
networks, and UK Biobank data
Lawrence Middleton1, Ioannis Melas1, Chirag Vasavda2, Arwa Raies1, Benedek Rozemberczki3, 
Ryan S. Dhindsa2,4,5, Justin S. Dhindsa6, Blake Weido7, Quanli Wang2, Andrew R. Harper1,  
Gavin Edwards3, Slavé Petrovski1,8, Dimitrios Vitsios1*

The ongoing expansion of human genomic datasets propels therapeutic target identification; however, extracting 
gene- disease associations from gene annotations remains challenging. Here, we introduce Mantis- ML 2.0, a frame-
work integrating AstraZeneca’s Biological Insights Knowledge Graph and numerous tabular datasets, to assess gene- 
disease probabilities throughout the phenome. We use graph neural networks, capturing the graph’s holistic 
structure, and train them on hundreds of balanced datasets via a robust semi- supervised learning framework to 
provide gene- disease probabilities across the human exome. Mantis- ML 2.0 incorporates natural language process-
ing to automate disease- relevant feature selection for thousands of diseases. The enhanced models demonstrate a 
6.9% average classification power boost, achieving a median receiver operating characteristic (ROC) area under curve 
(AUC) score of 0.90 across 5220 diseases from Human Phenotype Ontology, OpenTargets, and Genomics England. No-
tably, Mantis- ML 2.0 prioritizes associations from an independent UK Biobank phenome- wide association study 
(PheWAS), providing a stronger form of triaging and mitigating against underpowered PheWAS associations. Results 
are exposed through an interactive web resource.

INTRODUCTION
Identifying and prioritizing genetic targets for treating a disease is a 
complex undertaking that involves carefully weighing various argu-
ments and lines of evidence. One effective strategy is to focus on 
mechanisms with a clear genetic basis, as therapies targeting such 
mechanisms are more likely to succeed in clinical trials and regula-
tory processes (1, 2). While identifying genetic targets is not trivial, 
genome- wide association studies, advances in next- generation se-
quencing, and precompetitive public- private collaborations have all 
substantially advanced our understanding of the genetics of biology 
and pathology. However, the flurry of data has already become too de-
tailed to digest manually, with important discoveries effectively hidden 
in plain sight. The emergence of newer phenome- wide studies, which 
test for associations among tens of thousands of phenotypes, further 
necessitate a more high- throughput approach to parsing genome- 
phenome data. Here, we propose the need for sophisticated machine 
learning methods to assist in efficiently unifying disparate troves of 
research to find meaningful and actionable genetic correlates of disease.

In our first attempt to do so, we previously introduced an auto-
mated machine learning framework termed Mantis- ML that lever-
aged a few known disease- associated genes against publicly annotated 
genetic data to then predict candidate genes of interest (3). Mantis- ML 
models the underlying biology of a disease using a set of generic and 

disease- specific features (e.g., genic intolerance, tissue- specific ex-
pression, animal knockout models, and others) across known asso-
ciated genes. By inferring the genetic, functional, and systems 
biology landscape of disease from these known genes, Mantis- ML 
then attempts to generalize these findings across all other genes, es-
timating the probability that each gene has biological relevance to 
the disease. With this approach, Mantis- ML prioritized several pre-
viously unidentified associations for a range of diverse diseases, 
including chronic kidney disease, amyotrophic lateral sclerosis, 
epilepsy, idiopathic pulmonary fibrosis, and spontaneous coronary 
artery dissection (3–5). Mantis- ML outperformed previous state- of- 
the- art methods (6, 7) and additionally accurately predicted associ-
ations derived from other large- scale cohort studies (3).

Despite its utility, however, the first generation of Mantis- ML 
(Mantis- ML 1.0) relies on manually curated lists of disease- specific 
features and seed genes (i.e., well- established disease- associated 
genes). This curation process limits the scalability of Mantis- ML and 
its potential to unbiasedly uncover otherwise undiscovered genetic 
associations. Here, we report an evolution to Mantis- ML 2.0 in 
which we adopt and expand on several machine learning approaches 
to develop a fully streamlined and automated version of Mantis- ML, 
scaled across the phenome (5220 diseases; Fig. 1). Mantis- ML 2.0 
now incorporates the AstraZeneca Biological Insights Knowledge 
Graph (BIKG) (8), a comprehensive network of known relationships 
among genes, proteins, diseases, and compounds, assembled across 
55 different data sources. In addition, Mantis- ML 2.0 deploys natu-
ral language processing (NLP), eliminating the need to manually 
input the relevant features for a disease or phenotype. With this now 
automated and multidimensional foundation, we find that Mantis- 
ML 2.0 is ripe for discovering previously unidentified gene- disease 
associations that, when coupled with human genetic evidence, can 
serve as launchpads for future research and development programs. 
We report the phenome- wide Mantis- ML scores, as well as a number 
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of follow- up analyses, through the introduction of a publicly avail-
able web resource at: http://mantisml.public.cgr.astrazeneca.com.

RESULTS
Mantis- ML 2.0: Methodological improvements leveraging 
knowledge graphs and GNNs
To derive an automated and holistic view of gene- disease probabili-
ties from genome- wide and phenome- wide studies, we redesigned 

and extended the machine learning framework underlying Mantis- 
ML 1.0. First, we incorporated AstraZeneca’s BIKG containing 
14 million nodes (representing genes, proteins, diseases, and 
compounds) and 136 million edges connecting these nodes, of 
which 8.7 million correspond to gene- gene interactions. Like other 
knowledge graphs, the BIKG summarizes data across multiple sourc-
es and depicts various relationships among biological entities; by 
integrating them together, these relationships may then be used to 
infer potentially previously unknown connections between genes 
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Fig. 1. Phenome- wide Mantis- ML deployment. Schematic of Mantis- Ml workflow leveraging knowledge graphs, Gnns, and semantic similarity calculation. each dis-
ease term from one of the resources (hPO, Ot, and Gel) is chosen. From here, a set of relevant features is selected as outlined in the right branch, while the set of posi-
tively associated genes is identified. Mantis- Ml then classifies each gene as associated or not based on the features identified in the left branch, which includes a 
comprehensive gene- gene network along with hundreds of tabular- based gene- level features. calculation of semantic similarity between disease names and ontology 
terms for automated feature selection: Between any two terms I and j, the semantic similarity is calculated using the euclidean distance between BioWordvec embeddings 
to produce a distance Dij. the distance between two groups of words (e.g., “Abnormal circulating lipid concentration” and “lipid metabolism”) can then be calculated by 
averaging over all pairwise distances.

http://mantisml.public.cgr.astrazeneca.com
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and diseases. To expose deeper relationships within the knowledge 
graph, we trained a graph neural network (GNN) (9, 10) to propa-
gate features to neighboring nodes such that the resulting feature 
vectors represent spatial proximity among nodes in the knowledge 
graph. We also now include additional single- cell transcriptomic 
data from a recent study (11).

Mantis- ML performance was measured by monitoring the area 
under the curve (AUC) of the classical receiver operating charac-
teristic (ROC) curve. We implemented several advances to increase 
its performance over a number of iterations (Fig. 2A). To visualize 
how the change to Mantis- ML 1.0 affects its evolution, we set the 

Mantis- ML 1.0 default classifier to XGBoost (12). By first incorpo-
rating human tissue–specific data and NLP, we scaled the number 
of diseases from just a handful to thousands; we see a mild but 
nonsignificant reduction in the AUC from 0.84 to 0.81 (P = 0.30, 
two- sided Mann- Whitney U), suggesting that automating and stan-
dardizing Mantis- ML did not compromise prediction performance. 
The subsequent iteration—replacing InWeb (13) features with BIKG 
features—increases the median AUC relative to the first iteration 
(0.86 compared to 0.84; P  =  0.07, one- sided Mann- Whitney U). 
With the addition of a graph convolutional network (GCN) in the 
subsequent iteration, this median AUC increased further to 0.88 
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Fig. 2. Mantis- ML 2.0 performance improvements and phenome- wide Mantis- ML performance. (A) iterations of Mantis- Ml, successively introducing additional 
features and updating the modeling framework, using Gnns in the last three iterations, specifically Gcn and SGc. (B) validation of Mantis- Ml results using automatically 
identified annotation terms and seed gene lists. (C) ROc curves for Mantis- Ml predictions for each disease in each resource. Bands represent the lower 5th and upper 95th 
percentile in true- positive rate for a given false- positive rate (i.e., pointwise).
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(P = 0.005, one- sided Mann- Whitney U). We then tested whether 
stripping Mantis- ML of all graph- derived features, such as node de-
gree and centrality (see Materials and Methods), and leaving only 
the graph structure could improve its predictive power. The AUC 
rose to 0.89, demonstrating that the GNN can capture the full sig-
nal just by leveraging the full structure of the graph. Thus, the 
graph- derived features were dropped from the final feature set. To 
then optimize Mantis- ML 2.0 to interface with phenome- wide data, 
we replaced the GCN with the lower- cost simple graph convolu-
tions (SGCs) (14). The median AUC rose again to 0.90 (P = 0.0005, 
one- sided Mann- Whitney U compared to v1 AUC of 0.84), yielding 
a total 6.9% rise in predictive power overall from Mantis- ML 1.0. 
This improved AUC was accompanied by a 35- fold increase in pro-
cessing speed (fig. S10).

With the ultimate goal of automating Mantis- ML 2.0, we explored 
the effect of introducing NLP approaches to identify and recognize 
features of a disease or phenotype. NLP was used to parse terms from 
MSigDB (15), MGI (16), and GTEX (17) related to the disease of in-
terest. In addition, seed genes are now parsed automatically from the 
Human Phenotype Ontology (HPO) (18), Open Targets (OT) (19, 
20), and Genomics England (GEL) (21) resources, further streamlin-
ing the use of the next- generation Mantis- ML (Fig. 1). To evaluate the 
reliability of NLP automation, we first compared the outcomes of 
Mantis- ML with NLP methods versus manually curated inputs. We 
find that the scores from Mantis- ML are remarkably similar in both 
situations with a median Pearson’s coefficient of 0.98 when tested over 
13 heterogeneous diseases (Fig. 2B and table S1). In contrast, Mantis- 
ML performs substantially worse when fed random disease- specific 
features or random seed genes, suggesting that NLP automation does 
steer the model to incorporate valid disease- specific features. Mantis- 
ML also performs worse when fed random disease- specific features 
than with manually inputted features, but still exhibits a Pearson’s 
coefficient of 0.80; this somewhat healthy correlation emphasizes that 
Mantis- ML is predominantly driven by genetic and physiologic vari-
ables, such as intolerance, lethality, and the BIKG graph. However, the 
improvement from 0.80 to 0.98 with NLP underscores that an auto-
mated Mantis- ML 2.0 performs as if manually executed with expert 
curation, paving the way for large- scale deployment of Mantis- ML 
across thousands of diseases.

Performance of Mantis- ML phenome- wide
Because Mantis- ML generates probability scores per gene, we test-
ed its reliability by cross- validating scores for well- known disease- 
associated genes across three resources. We subsequently plotted 
these tests as ROC curves (3), thereby allowing us to measure how 
well Mantis- ML performs in individual datasets. The AUC provides 
a measure of how accurately Mantis- ML distinguishes between as-
sociated and nonassociated genes based on the original input seed 
genes. We deployed Mantis- ML to precalculate gene- disease prob-
ability scores for 5220 diseases catalogued among three resources: 
HPO (n = 2575), OT (n = 2500), and GEL (n = 145). Across all 
tested diseases in all three resources, the median AUC was 0.90 
(Fig. 2C). Mantis- ML 2.0 performed best in GEL diseases with an 
AUC of 0.96.

Phenome- wide informed gene and disease networks
With Mantis- ML 2.0 in hand, we first set out to explore whether 
plotting gene- disease probability scores may reveal distinct patterns 
or clusters of diseases, thereby uncovering phenotypes with shared 

genetic or molecular fingerprints. The closer that two diseases are in 
such a plot, the greater the overlap in the genes associated between 
them. When scores are plotted for HPO, GEL, and OT, we observe 
meaningful clusters in each network, with HPO (Fig. 3A) and GEL 
exhibiting multiple disease clusters and OT exhibiting a distinct 
cluster for cancer physiology (figs. S11 and S12). Manual inspection 
of HPO disease scores reveals tight clusters of salient clinical traits 
(Fig.  3A), such as cerebellar with hepatic cysts, palpitations with 
arrhythmias, and intellectual disability with attention deficit hyper-
activity disorder. By instead recategorizing these nonspecific or iso-
lated clinical characteristics as features consistent with a molecular 
pathology, clinicians may be empowered to leverage Mantis- ML as a 
tool in diagnostic reasoning and treatment.

To identify what shared genetic architecture underlies each clus-
ter, we subsequently regrouped diseases in a cluster based on their 
semantic similarities. For example, diseases in the “kidney” cluster 
contain five semantically similar terms, including “horseshoe kid-
ney,” “chronic kidney disease,” “ectopic kidney,” “enlarged kidney,” 
and “renal tubular dysfunction.” By prioritizing these subgroup fea-
tures, we sought to glean additional insight into the pathophysiology 
that may relate the diseases to one another. In parallel, gene ontology 
(GO) analyses of these clusters also hint at aspects of shared physiol-
ogy and may aid in discerning their genetic associations. In a liver 
HPO cluster, “GO_SMALL_MOLECULE_METABOLIC_PROCESS” 
ranks 8th, whereas “GO_REGULATION_OF_BODY_FLUID_
LEVELS” ranks 16th in a hematologic disease OT cluster. “GO_RE-
NAL_TUBULE_DEVELOPMENT” ranks 13th in a kidney disease 
GEL cluster (fig. S13 to S18).

Since genes that score similarly in their gene- disease probabili-
ties share a phenotypic signature, we then considered whether we 
could calculate pathway enrichment analyses for a gene based on the 
other genes surrounding it. To do so, we performed an enrichment 
analysis for each gene in the exome with its 19 closest neighbors (for 
a total of 20 genes per analysis) in the transformed space of gene 
embedding distances. To test whether gene sets from Mantis- ML 2.0 
can predict known pathways, we trialed analyses for the well- studied 
genes PKD1, BRCA1, and APOB. Kidney, breast carcinoma, and 
metabolic processes were enriched as expected (figs.  S19 to S24), 
suggesting that Mantis- ML 2.0 disease probability scores can be ex-
ploited to generate meaningful gene networks. We report results for 
the rest of the exome for exploration in the Mantis- ML 2.0 web re-
source (http://mantisml.public.cgr.astrazeneca.com).

We also sought to extract the most contributing features during 
Mantis- ML training across the phenome. We focused on summariz-
ing the feature importance scores across all diseases from HPO, re-
porting the top 30 features (Fig.  3B and table  S4). Information 
derived from the BIKG graph (seed gene overlap) ranks as the most 
important feature indicating the value that can be derived from 
data- rich representations such as knowledge graphs. NLP- derived 
features, such as phenotype- specific animal knockout models, and 
GO generic terms introduced in this version of Mantis- ML also 
rank highly, demonstrating the importance of automation in feature 
selection by Mantis- ML.

Prioritizing less- studied genes in the knowledge graph
Akin to testing whether Mantis- ML 2.0 can infer genetic networks, 
we then explored whether Mantis- ML can be leveraged to identify 
promising yet lesser- studied genes of interest. We find that a gene’s 
Mantis- ML 2.0 score partially correlates with how many BIKG nodes 

http://mantisml.public.cgr.astrazeneca.com
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it intersects with, a proxy of how well it is annotated and studied (me-
dian correlation across all diseases = 0.69, median P value of all cor-
relations < 1 × 10−308) (Fig.  4A); accordingly, genes with high 
Mantis- ML scores (>0.9) but fewer BIKG annotations may be ripe for 
inquiry. We first considered genes in a collated set of seven diabetes phe-
notypes (“diabetes insipidus,” “diabetes mellitus,” “insulin- resistant 
diabetes mellitus,” “maternal diabetes,” “neonatal insulin- dependent 
diabetes mellitus,” “type II diabetes mellitus,” and “type I diabetes mel-
litus”) and observed that there is a correlation of 0.81 between Mantis- 
ML 2.0 scores and BIKG connectivity. Among genes with a Mantis- ML 
score  >  0.9, the gene BMP4 has curiously low BIKG connectivity. 
Similar analysis of a set of two atherosclerosis phenotypes (“athero-
sclerosis” and “coronary artery atherosclerosis” terms from HPO) 
suggests that the genes APOC2 and LIPA are understudied despite 
being likely associated with cardiovascular disease. Notably, BMP4 
was recently reported to mediate insulin signaling (22), while loss of 
either APOC2 (23) or LIPA (24) in rodents led to atherosclerosis and 
may be worthwhile avenues of research. Similar analyses between 
Mantis- ML and BIKG may uncover and prioritize previously uniden-
tified candidate genes for future study. Furthermore, we observe two 
diseases (both in GEL) that exhibit negative correlations with BIKG 
node degree (“Laterality disorders and isomerism” and “Primary ciliary 

disorders”). We see that in these two cases, the fraction of input genes 
that were also included in the BIKG gene- gene graph was only 87.5 
and 93.1%, respectively, placing them in the bottom 5th percentile of 
all GEL diseases by this measure. Moreover, in neither case was the 
seed gene overlap in the top 20 features learned by Mantis- ML 2.0. 
Both of these observations suggest that the effect of the graph in these 
two diseases may have a comparably smaller contribution than for 
other diseases and, instead, other tabular features may be dominating 
the predictions.

Validation of top Mantis- ML predictions with NLP- inferred 
gene- disease associations from literature
To identify more understudied gene candidates for diseases beyond 
diabetes and atherosclerosis, we automated our manual method above 
by integrating the existing machine learning tool AMELIE (Automatic 
Mendelian Literature Evaluation) (25). AMELIE crawls PubMed and 
scores the strength of queried gene- disease relationship based on the 
literature and other preexisting association scores. AMELIE also out-
puts a list of relevant PubMed articles for researchers to parse prior 
studies (Fig. 4D). By applying AMELIE to high- scoring Mantis- ML 
genes with low BIKG connectivity, AMELIE may accelerate research 
into understudied but promising genetic links to disease.
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Since AMELIE and Mantis- ML are two distinct approaches to 
scoring gene- disease associations, we first verified whether AME-
LIE favors a similar set of genes as Mantis- ML for a particular dis-
ease. We examined whether genes that score highly in Mantis- ML 
(>0.9 for a given disease) were enriched among those ranked highly 
by AMELIE compared to a random sample of genes output by 
Mantis- ML. The size of the random gene set was matched to the 
number of genes scoring >0.9 for a given disease. Compared to ran-
dom gene sets, we find that there is an approximately threefold en-
richment of highly scoring Mantis- ML genes among those favored 
by AMELIE (P < 1 × 10−308 subject to machine precision, one- sided 
t test), implying that Mantis- ML and AMELIE agree that certain 
genes are promising leads (Fig. 4E).

To shed light on more understudied candidates, we then ap-
plied AMELIE to high- scoring Mantis- ML 2.0 genes with low 
BIKG connectivity. We focused on the 20 genes with a Mantis- ML 
score >  0.9 but the lowest BIKG connectivity per HPO disease. 
We find that poorly connected genes are consistently favored by 
AMELIE compared to a random gene set as well, suggesting that 
AMELIE can help prioritize gene subsets for a broad set of pheno-
types (Fig. 4E).

Phenome- wide validation of Mantis- ML predictions using 
exome- wide association studies
With the ever- increasing number of genetic datasets, we are identi-
fying more gene-  and variant- level relationships. However, more 
sequencing does not always lead to clearer answers. With large- scale 
genomic datasets, a major challenge is that some candidates fail to 
meet genome- wide significance after correcting for multiple hy-
pothesis testing; among those that do not, it is not always clear 
which to prioritize for further experimental validation. In common 
variant studies, one of the biggest challenges that remain is the 
variant- to- function challenge of understanding the causal gene for a 
given significant locus. To test whether Mantis- ML can improve tri-
aging among the highly ranked but not statistically significant ge-
netic associations or among the many genes that could be driving a 
common variant loci signal, we cross- referenced genes with Mantis- 
ML predictions to associate with a trait against genes nominally sig-
nificant (P < 0.05) for the trait in a recent phenome- wide association 
study (PheWAS) of 454,669 exomes from the UK Biobank (UKB) (2).

To compare gene sets between Mantis- ML and UKB, we first had 
to map the original disease terms in HPO, OT, and GEL to their 
most relevant ICD10 (International Classification of Diseases, 10th 
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revision) codes in UKB. We matched disease terms to ICD10 codes 
by their semantic similarity as measured by BioWordVec (26), an 
established projection of millions of words mined from biomedical 
literature to a 200- dimensional Euclidean space (Fig.  5A). Ninety 
percent of disease terms (4688 of the original 5220) were validated, 
subject to filtering criteria designed to minimize the number of 
times semantic similarity was reassessed between disease terms and 
ICD10 codes (described further in Materials and Methods). We find 
that ICD10 chapter 17 (“Congenital malformations, deformations, 
and chromosomal abnormalities”) represents many disease terms, 
comprising between 10 and 20% of each resource. In contrast, chap-
ter 20 (“External causes of morbidity and mortality”) matches to 
the fewest terms in each resource, as expected, since the indications 
included in the analysis must have some genetic basis. Our final 

compendium mapping disease terms across HPO, OT, and GEL to 
the most relevant ICD10 codes is available as fig. S25.

To gauge the agreement between Mantis- ML and UKB PheWAS, 
we evaluated the overlap between the highest- ranking Mantis- ML 
genes from each resource (top 5% in HPO, OT, and GE) and genes 
that achieve genome- wide significance (P  <  10−8) in the UKB 
PheWAS by Fisher’s exact test. We tested overlap between genes that 
associate with a Mantis- ML trait and the 20 most semantically simi-
lar ICD10 codes because mapping traits to ICD10 codes is imper-
fect, and restricting overlap to only one ICD10 code may overlook 
more biologically relevant codes. We then compared how much 
more the gene sets derived from Mantis- ML overlap with the 
PheWAS of the relevant ICD10 codes. We find that genes derived 
from HPO and OT Mantis- ML significantly overlap with their relevant 
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PheWAS counterpart traits (P = 9.6 × 10−10 and P = 7.4 × 10−46 for 
HPO-  and OT- derived genes, respectively) (Fig.  5B). In contrast, 
GEL- derived genes do not significantly overlap with the relevant 
UKB PheWAS traits (P  =  0.28), although this is not unexpected 
since GEL emphasizes data from pediatric patients who are not en-
riched for in the UKB.

Stepwise hypergeometric enrichment with UKB PheWAS
With greater confidence that Mantis- ML can corroborate UKB 
human PheWAS, we explored whether Mantis- ML may guide how to 
interpret and prioritize more equivocal and not yet statistically sig-
nificant highly ranked PheWAS gene results. Here, we expanded our 
enrichment analysis to measure the overlap between a trait’s top 5% 
Mantis- ML candidates and all genes ranked by their PheWAS sig-
nificance, rather than only those meeting genome- wide significance 
(Fig. 5C). We perform a series of enrichment analyses that measure 
the overlap between top Mantis- ML candidates with increasingly re-
laxed PheWAS thresholds and then estimate how likely the overlap is 
due only to chance (described further in Materials and Methods).

We again used pretrained word2vec embeddings to map the dis-
ease terms underlying Mantis- ML to relevant UKB ICD10 codes, 
identifying the n most semantically similar codes. This allowed for 
the introduction of n stepwise hypergeometric enrichment tests for 
each qualifying variant (QV) collapsing model. Data from the cor-
responding ICD10 codes and QV model were aggregated for each 
disease. Since both Mantis- ML and PheWAS contain thousands of 
phenotypes, many gene sets for unrelated phenotypes overlap by 
chance. To estimate this background overlap, we compared Mantis- 
ML outputs with PheWAS results obtained from randomly sampled 
ICD10 codes (Supplementary Methods). A gene that ranks highly in 
the background analysis might be associated stochastically with un-
related ICD10 codes, while a gene that ranks lower may be tied to 
semantically similar codes. This approach is limited by imprecise 
semantic maps between phenotypes, the absence of a genetic com-
ponent for a disease, and/or the statistical power of patient cohorts.

As illustrated in Fig.  5D, more genes rank highly in the back-
ground analysis as the filtering requirements become more strin-
gent, with the median percentile increasing from 64 to 100% as n 
increases. This may be because fewer ICD10 codes map to a disease 
term at higher values of n.

Our accompanying web resource includes enrichment curves to 
demonstrate validation results and a robust gene prioritization ap-
proach. It examines genes that show strong associations in both 
PheWAS and are also supported with high Mantis- ML probability 
scores. The resource enables users to explore validation results for 
the top- ranked Mantis- ML genes associated with different ICD10 
codes. These codes are selected on the basis of their semantic simi-
larity to the original disease from a pool of the 100 closest codes.

Benchmarking with other knowledge graph–based and 
pathogenicity tools
To determine how Mantis- ML 2.0 may aid researchers alongside 
other gene prioritization instruments, we compared Mantis- ML 2.0 
to two recently published tools, PhenoApt (27) and Knowledge 
Graph Analytics Platform (KGAP) (28). As a trial, we measured 
how well each tool ranked genes for 14 different diseases/pheno-
types by calculating how well the top 500 hits from each resulting 
gene set overlapped with top- ranked (P < 0.05) genes from a UKB 
PheWAS (2). We chose to test each tool in 14 diseases across various 

therapeutic areas: “abnormality of the immune system,” “acute 
myeloid leukemia,” “anxiety,” “asthma,” “cardiomyopathy,” “chronic 
kidney disease,” “congestive heart failure,” “cystic liver disease,” 
“dementia,” “diabetes mellitus,” “hypercholesterolemia,” “parkinson-
ism,” “pulmonary fibrosis,” and “ventricular arrhythmia.”

Mantis- ML outperformed both PhenoApt and KGAP, overlap-
ping with more genes in the PheWAS validation set for 13 of the 14 
diseases (Fig. 6A). Notably, KGAP did not yield any genes for three 
diseases: “chronic kidney disease,” “abnormality of the immune sys-
tem,” and “cystic liver disease.” In side- by- side comparisons, Mantis- 
ML 2.0 was enriched for more PheWAS hits than PhenoApt in 8 of 
13 diseases and outmatched KGAP in 8 of 11 diseases (two- sided 
t test, P < 0.05) (Fig. 6A and table S2). When considering all UKB 
PheWAS hits in the aggregate, top- ranked Mantis- ML genes were 
also significantly more enriched for top- ranked PheWAS genes than 
PhenoApt (two- sided t test, P = 1.5 × 10−5) and KGAP (two- sided 
t test, P = 7.3 × 10−40) (Fig. 5B).

We also investigated which of the three tools better predicts the 
genes that will achieve greater significance as the size of a genetic 
cohort increases. Using the same set of 14 HPO phenotypes as 
above, we evaluated whether Mantis- ML, PhenoApt, or KGAP iden-
tified the more promising PheWAS hits (P  <  0.001) from a UKB 
study that increased in sample size from 150,000 to 450,000 exome- 
sequenced participants (29). We compared each tool’s scoring across 
a set of up to four biologically similar ICD10 codes per phenotype 
(table S3). Compared to a null model with a random gene set of the 
same size, Mantis- ML 2.0 was successfully enriched for genes that 
achieved higher significance as the UKB cohort size increased from 
150,000 to 450,000 samples. PhenoApt performed similarly for 8 of 
the 10 top percentile thresholds but fared worse than Mantis- ML in 
8 of 10 cases (Fig. 6C). In contrast, KGAP did not perform better 
than the null model. Overall, Mantis- ML 2.0 outperformed Pheno-
Apt (two- sided t test, P = 0.041) and KGAP (two- sided t test, P = 1.8 
× 10−7) across all 14 phenotypes and all examined top percentile 
thresholds (Fig. 6D). These results underscore the power of Mantis- 
ML 2.0 to identify promising biological candidate genes among the 
top- ranked genes that are not yet statistically unequivocal in large 
human genetic studies.

Last, in addition to the preceding benchmarks, we also examine 
whether an aggregate measure of gene pathogenicity derived by 
Mantis- ML’s predictions correlates with existing intolerance met-
rics or pathogenicity tools (see Materials and Methods and fig. S37). 
Broken down by resource, we see that the highest measure of 
Mantis- ML–derived pathogenicity incurs a correlation of 0.43 
(P < 1 × 10−308) with AlphaMissense (30), demonstrating that we 
are able to capture some degree of aggregate pathogenicity profile 
per gene using the derived scores.

Web resource overview
The web resource provides an interactive interface to query Mantis- 
ML probability scores computed phenome- wide as well as follow- up 
analyses (figs. S26 to S29). The web resource presents extrapolated 
disease and gene networks, suggesting additional candidate genes 
and phenotypes for future research. Mantis- ML can be explored 
from two perspectives—disease- centric or gene- centric.

In the disease- centric view, users can search for a specific disease 
to identify genes with the greatest probability scores for biological 
relevance. Mantis- ML provides raw scores, GO enrichments for the 
top- ranking genes, and a comparison with PheWAS results. The 
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gene- centric view provides a comprehensive profile of diseases as-
sociated with a gene, helping determine the extent of phenotypes 
the gene has a high probability of biological relevance. Users can 
also access information on the feature set used for gene classification 
and the initial list of positively associated seed genes adopted to con-
struct the corresponding probability scores.

DISCUSSION
The phenome- wide application of Mantis- ML offers a tangible ma-
chine learning framework to organize and absorb the growing array 
of genetic data, representing a powerful tool for prioritizing genetic 
targets for further experimental research. Whereas Mantis- ML 1.0 

relied on manually inputting features of a phenotype or disease, 
Mantis- ML 2.0 now uses NLP reasoning across three sets of ontolo-
gies to enable automated selection of disease- specific features and 
integrates a far more comprehensive knowledge graph capturing 
gene- gene interactions. Our results demonstrate a high degree of 
predictability across diseases within each ontology. Compared to 
other contemporary tools, Mantis- ML is a major step forward in tri-
aging among the top- ranking signals from genetic studies without 
clear- cut statistically significant findings.

Since Mantis- ML 2.0 is a semi- supervised learning framework, 
the selection of seed genes plays an important role in determining 
the gene- disease prediction scores across the whole exome. We have 
used three diverse phenotype resources for selecting seed genes 
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(HPO, OT, and GEL), capturing a broad spectrum of diseases and 
phenotypes. Some of the disease terms Mantis- ML has been 
trained on may not directly correspond to clinical disease terms 
but rather refer to more generic phenotypes, some of which may 
still be relevant to clinical phenotypes. Thus, the translational 
utility and further application of the Mantis- ML predictions are 
influenced by the clinical relevance of the seed genes provided as 
input. To this end, we accompany this work with an open- source 
release of the Mantis- ML 2.0 software package so that researchers 
can train additional models using custom sets of seed genes that 
are directly related to their diseases and/or subphenotypes of 
interest.

Mantis- ML 2.0 was rigorously validated by comparing high- 
scoring genes against specific ICD10 codes in an independent 
UKB PheWAS. Compared to randomly sampled ICD10 codes 
from the UKB PheWAS, Mantis- ML agreed more with semanti-
cally similar codes. Such strong concordance with large- scale hu-
man genetic studies supports the applied utility of Mantis- ML to 
triaging the top- ranked gene- disease associations to identify the 
signals with the greatest biological plausibility in an entirely 
human- unbiased manner for further experimental study.

Limitations to validating Mantis- ML 2.0 scores stem from noise 
introduced at different stages of the pipeline, particularly when 
NLP mapping between the three resources (HPO, OT, and GEL) 
and those in PheWAS; it is unlikely that all high- ranking Mantis- 
ML genes were well matched to semantically similar PheWAS terms. 
Mantis- ML and PheWAS studies are also only as reliable as the 
underlying data. Although human genetic studies are uninfluenced 
by prior literature, they are limited by the statistical power afford-
able to a given genetic study. Mantis- ML probabilities, on the 
other hand, are the result of a powerful synthesis of large volumes 
of existing public knowledge beyond what a human could achieve. 
However, the theoretical constraints may come in finding truly 
unprecedented human biological discoveries to which there is 
no/little prior literature. Together, however, they are highly com-
plementary approaches that enable better informed and un biased 
decisions.

Furthermore, a number of nontrivial methodological exten-
sions exist, going beyond the phenome- wide deployment of 
Mantis- ML described here. First, we have focused on gene- gene 
subgraphs of the entire BIKG; however, a full incorporation of all 
the different entities (e.g., disease- gene and disease- disease links) 
may better capture the underlying disease biology and allow in-
formation sharing between the different node types. A full treat-
ment of this is outside the scope of this article; however, it may be 
feasible to refine the scores beyond their current predictions us-
ing edge prediction methodology, such as generic node embed-
dings (31) or learning link heuristics using GNNs (32). Second, it 
may be possible to additionally exploit NLP techniques to ex-
pand the input gene lists used by Mantis- ML, thereby enhancing 
score robustness, with gene lists from semantically similar dis-
eases aggregated (taking, e.g., the union) to ensure a larger num-
ber of positive examples in training. Third, it could be instructive 
to include additional datasets, leveraging results from any num-
ber of preexisting knowledge graph databases to further enhance 
predictions (33, 34). Last, it may also be possible to integrate 
PheWAS results directly in training, taking their association in-
dicator as another gene feature and predicting scores across the 
exome using a form of cross- validation, ensuring that final scores 

are “out of fold.” This is left as further research for the future ver-
sions of Mantis- ML.

In addition to our findings and methods detailed here, we have 
developed an accompanying interactive web resource for research-
ers to explore Mantis- ML 2.0 in detail. This resource facilitates 
gene prioritization, detailing top- scoring Mantis- ML genes that are 
highly ranked signals in UKB cohort studies. We have also created 
interactive networks of diseases and genes derived from Mantis- 
ML; these clusters represent similarities between diseases or genes 
based on their reciprocal genetic or phenotypic components and 
may serve as reservoirs for research into further genetic interac-
tions. As a bridge for the community to Mantis- ML, we hope that 
this resource will provide insights into the relationships between 
genes, diseases, and their shared genetic components to advance 
treatment strategies.

MATERIALS AND METHODS
Gene prioritization using stochastic 
semi- supervised learning
Mantis- ML leverages the following types of information to priori-
tize genes related to a disease of interest and potentially uncover 
previously unidentified gene- disease associations: (i) known gene- 
disease associations in the form of a seed gene list; (ii) known dis-
ease mechanisms such as tissue, pathways, and processes in the 
form of free text provided by the user; (iii) extensive gene annota-
tion such as genic intolerance and tissue expression; and (iv) gene 
connectivity in the form of a knowledge graph.

On the basis of the data above, the problem of gene prioritiza-
tion can be formulated as a semi- supervised classification prob-
lem, where the structured gene features correspond to the features/
predictors matrix (genes as rows, features as columns) and the 
seed genes correspond to the positive labeled samples (genes) of 
the response vector. For negatively labeled genes, we randomly 
sample genes not present in the seed list. The sampling is repeated 
as many times as needed to guarantee full coverage of the exome, 
and the whole process is repeated for 10 stochastic iterations to 
provide robustness in the results. While knowledge graphs them-
selves are capable of capturing heterogeneous data types, we focus 
on a subset of the knowledge graph capturing connections be-
tween entities of gene type only. The working hypothesis is that 
genes that are highly connected according to the knowledge graph 
may have a higher likelihood of affecting the same biological path-
ways—and so incur similar disease associations. We incorporate 
this connectivity through GNNs, exploring a sophisticated (but 
computationally expensive) model as well as a simpler but compu-
tationally cheaper model—GCNs and SGCs, respectively. In addi-
tion, we note that the semi- supervised learning is inherited directly 
from the original Mantis- ML method (i.e., repeatedly sampling 
random partitions and then aggregating predicted scores). Mantis- 
ML 2.0 refines on this by converting the traditional feature classi-
fier to a graph- structured node classifier (fig. S33).

Newly implemented gene features in Mantis- ML 2.0
Here, we discuss the newly implemented gene features in Mantis- 
ML 2.0: (i) graph- derived features, (ii) generic GO (35, 36) signature, 
(iii) disease- specific GO signature, (iv) single- cell transcriptomics 
data as gene features, and (v) user specified—custom gene features.
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Graph- derived features
Network science is the application of graph theory to understand 
complex systems (37). The subfields of network biology (38) and 
network medicine (39) aim to better understand the behavior of 
molecular networks and the role networks play in human dis-
ease. By applying the ideas of graph theory to biomedical knowl-
edge graphs and generating graph- based features, it can capture 
important information about a node’s roles within the network. 
For example, its popularity, influence, and communities, which 
correspond to how influential a gene is or identifying dis-
ease modules.

Therefore, the incorporation of the following graph- derived fea-
tures was explored in Mantis- ML 2.0: (i) Leiden cluster centrality 
(40) for communities, (ii) core number (41) for identifying cohesive 
subgroups with relatively strong links, (iii) node degree (in, out, and 
total degree) for highlighting highly connected node hubs and spe-
cifically out degree for how outwardly interactive the node is, (iv) 
Louvain cluster centrality (42) also for communities, (v) Katz clus-
ter centrality (43) for the influence of a node, (vi) and PageRank 
(44) for node importance. Despite the seemingly more flexible na-
ture of introducing more graph- derived features, we ultimately did 
not use any except the seed gene overlap (defined as the percentage 
overlap between one- hop neighbors and the seed gene input list) as 
the rest of graph- derived features did not contribute to an increased 
AUC (Fig. 2).
Generic GO signature
To derive a generic GO signature across the exome, we first built a 
GO similarity network based on the genes each GO term/set in-
cludes. Specifically, for each gene, we created a binary vector 
where each element corresponds to the presence or absence of a 
specific GO term. We calculated gene similarity based on the Jac-
card index for each pair of genes (represented as binary vectors). 
To define the presence of an edge between a pair of genes, we as-
sessed whether their Jaccard similarity score fell in the top 50th 
percentile of the whole distribution, eventually translating simi-
larity scores into binary values, i.e., presence (upper 50th percen-
tile, represented by value of 1) or absence (lower 50th percentile, 
represented by value of 0) of an edge. We then clustered the GO 
similarity network using k- means (n = 20) and selected from each 
cluster the GO term with the maximum number of genes. With 
this approach, we aim to maximize both variance (sampling one 
term from each cluster) and coverage across the exome (sampling 
the largest GO set from each cluster). Eventually, we managed to 
capture ~10,000 genes among the 20 derived clusters, which rep-
resent more than 50% of the entire exome, and using only 20 in-
stead of ~12,500 GO terms.

The set of 20 GO terms that we have extracted are the follow-
ing: cell adhesion, cell cycle, chemical synaptic transmission, im-
mune system process, innate immune response, ion transport, 
lipid metabolic process, mRNA processing, neutrophil degranu-
lation, oxidation- reduction process, phosphorylation, positive 
regulation of guanosine triphosphatase (GTPase) activity, post-
translational protein modification, protein dephosphorylation, 
protein transport, proteolysis, regulation of ion transmembrane 
transport, regulation of transcription by RNA polymerase II, sig-
nal transduction, and translation. Within Mantis- ML, the GO 
signature of each gene is then calculated as its membership (Bool-
ean values) to the respective GO terms, yielding 20 additional 
binary gene- level features.

Disease- specific GO signature
Here, we use the seed genes to identify GO terms they are significantly 
enriched in. Enrichment is calculated using Fisher’s exact test. The top 
N significantly enriched terms are extracted where N is defined by the 
user (N  =  10 was used throughout this paper). Then, the disease- 
specific GO signature of each gene is calculated, defined as its mem-
bership (Boolean) to the respective highly enriched GO terms.
Single- cell transcriptomics
Here, we use single- cell transcriptomics data as gene features (11). 
The single- cell transcriptomics is summarized as the average expres-
sion value of each gene across the available cell populations. Each 
cell population yields a new gene feature in the features matrix. Spe-
cifically, the datasets were pulled from publicly available single- cell 
data resources that have already been gone through extensive qual-
ity checks, including the Human Protein Atlas, the UCSC cell 
browser, and Azimuth. Using Seurat (45), we first normalized read 
counts using the NormalizeData function and then computed the 
average expression of each gene in each cell type using the Average-
Expression function. These datasets are derived from putatively 
healthy tissues, specifically blood, brain, breast, colon, esophagus, 
heart, kidney, liver, lung, lymph, bone marrow, muscle, ovary, pan-
creas, prostate, skin, spleen, stomach, and testis (table S5). Thus, this 
comprehensive list includes most of the relevant cell types for hu-
man disease. Identification of the most suitable tissue for the disease 
of interest is carried out using NLP. More details about how NLP is 
used are included in the section “NLP for automated selection of 
disease- specific features.”
Custom gene features
In addition to the gene features integrated in Mantis- ML 2.0, we 
allow the user to provide their own custom gene features in csv for-
mat. Rows in the csv correspond to genes, while columns corre-
spond to the custom features. Missing values are by default imputed 
with zeros, but the user may select to impute using the median 
or the mean.

Biological Insights Knowledge Graph
The previously published BIKG (46) aims to model the fundamental 
interactions within biological systems by combining data from 55 
public, licensed, and internal AstraZeneca data sources into a uni-
fied knowledge graph that can then be used for drug development 
tasks (46–48). The full BIKG includes 14 million entities covering 25 
node types such as gene targets (genes and proteins), pathways, bio-
logical processes, diseases, and compounds. The entities are linked 
together by over 146 million edges that describe many biological re-
lationships such as protein- protein interaction, drug- drug interac-
tion, and gene- disease association, as well as relationships extracted 
from the scientific literature.

The knowledge graph we use in Mantis- ML 2.0 is a subset of 
BIKG. The chosen subgraph is composed of gene targets (genes and 
proteins) and the relationships between them. In total, the specific 
knowledge graph we use contains 8.7 million edges between 17,197 
genes. Graph- derived features are then calculated on the BIKG sub-
graph to capture the structural information.

In addition, for 13 heterogenous diseases, we perform a direct 
comparison between BIKG- derived scores and InWeb- derived scores. 
We see, first, that InWeb requires more iterations (30 rather than 10) 
for the stochasticity robustness in the scores to be comparable with 
those derived from BIKG (fig. S35). With this configuration, we do 
observe lower AUC for InWeb; however, despite the differences in 
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graphs, we do see that diseases can share up to 40% overlap in the top 
10 to 10,000 genes (fig. S36). We note, however, that InWeb is compa-
rably smaller—with only 600,000 edges, compared to BIKG’s 8.7 mil-
lion edges.

Modeling gene prioritization using GNNs
GNNs are used to effectively leverage the connectivity (such as 
gene- to- gene) in the BIKG network within a semi- supervised learn-
ing framework for the prioritization of gene- disease associations. 
GNNs in this context take as an input a graph, a node features ma-
trix, and a response vector. Their predictive power comes from us-
ing the graph to propagate the node features and response variable 
to neighboring nodes.

We consider two classes of GNN models, principally, GCNs 
and SGCs (14). The former uses deep learning to capture non-
linear dependencies in graph- structured data, while the latter 
reduces to a linear model capturing network features with im-
proved computational efficiency (though with a potential cost 
of lower model expressivity). Both may be used to perform 
node classification, which is later exploited within Mantis- ML 
to perform semi- supervised learning—classifying genes as ei-
ther “associated” or “not associated” to a given disease based on 
a set of positive examples and an assembled list of gene- level 
features (fig. S31 to S33).

In Mantis- ML, as the graph, we use the BIKG network, and as 
node features, we use a wide range of gene features such as graph- 
derived features, GO, biological processes, gene- disease associa-
tions from genome- wide association study, Online Mendelian 
Inheritance in Man (OMIM), HPO, and gene expression across 
different tissues. As a response vector, we use a binary variable 
denoting whether the corresponding gene is known to be associ-
ated with the disease of interest (positive labeled genes) or not 
(negative labeled genes).

Since the number of negative labeled genes is much greater 
than the number of positive labeled genes, the negative labeled 
genes are subsampled to a ratio 3:2 (three negative labeled genes 
for every two positive labeled genes), yielding a more balanced 
dataset better suited for binary classification. This subsampling 
happens multiple times, generating an equal number of predic-
tions for each gene. Gene predictions are finally averaged across 
samplings to yield a single gene prediction (fig. S33). The subsam-
pling is implemented in the GCN framework by setting the value 
of the corresponding sample weights to 0 (for genes left out) or 1 
(for genes included in the sampling). This is preferred over re-
moving the genes from the response vector as this would lead to 
gaps in the graph, hindering performance. For SGC, model pa-
rameters are learned on a subset of the graph used only in train-
ing, and predictions are made on a graph that includes nodes in 
both the training and test data.

The GCN implementation we use is the one in Stellargraph. 
We have experimented with various configurations in terms of the 
number of hidden layers, number of filters, dropout ratio, learn-
ing rate, and number of epochs. The configuration we decided on 
for the bulk of the runs here uses two hidden layers, 16 filters in 
each hidden layer, dropout ratio of 0.5, 200 epochs, and a learning 
rate of 0.01. ReLU activation was used in the hidden layers, and 
sigmoid activation was used in the output layer (49). The Adam 
(50) optimizer was used and binary cross entropy as a loss 
function.

Fine- tuning SGCs
SGCs provide a computationally efficient alternative to GCNs, with 
the caveat that they only offer a simpler linear dependence between 
features and responses. Nonetheless, we explore them as a potential 
modeling alternative after a degree of parameter and architecture 
tuning. At their core, SGCs in the classification framework com-
prise logistic regression classifiers using features matrices X (rows 
represent independent samples, columns represent different fea-
tures) premultiplied by a matrix related to the graph adjacency ma-
trix. Denoting the latter matrix as Ã , we see that the classifier acts 
on features by

where K is a power of the modified adjacency matrix Ã . The power 
controls the size of the neighborhood influencing predictions at 
each node—the higher the power, the larger the neighborhood. 
Such an approach is designed to mimic GCNs but without the non-
linearities between layers.

We identify three possible ways in which the methodology can 
be modified and tune each on a subset of the diseases processed by 
Mantis- ML 2.0. These are the following:

1. The matrix power, K
2. The regularization parameter used by the logistic regression
3. The adjacency matrix Ã
For tuning the matrix power K, we consider a random subset of 

20 diseases from each resource and compare the AUC predictive 
performance of each. We see, overall, that there is a comparatively 
small effect on the median AUC of changing the matrix power. That 
being said, we identify the optimal value to be K = 2 (figs. S1 to S3).

Logistic regression has relatively few tuning parameters com-
pared to deep learning methods; however, it is possible to tune the 
regularization parameter. The regularization parameter controls the 
penalty of the norm of the weights in the linear classifier. Tuning 
this on 10 of the previous 20 diseases (the reduced number required 
for computational expediency), we see that across the resources the 
optimal value of the regularization parameter is C= 1 (fig. S2).

Last, we explore tuning the adjusted adjacency matrix Ã . The 
original SGC framework sought to average information from 
neighboring nodes. Instead, it is possible to sum information. An-
other dimension explored is that the adjacency matrix from BIKG 
has entries >1, as it is possible to have multiple edges between the 
same two nodes (representing different types of gene- gene rela-
tionships). We therefore also explore thresholding the adjacency 
matrix to take values in {0,1}, proposing a potentially more robust 
set of relations between the genes. We assess these four different 
combinations—mean/sum neighbors and thresholding/no thresh-
olding of the adjacency matrix—and observe that no configuration 
outperforms the default as originally proposed (14).

Disease and gene networks from phenome- wide 
Mantis- ML scores
Disease and gene networks were generated using Mantis- ML scores 
across diseases in a given resource. Disease networks were generated 
by projecting the 18,626 gene association scores per disease into 
a two- dimensional (2D) vector using t- distributed Stochastic 
Neighbor Embedding (t- SNE). Before the nonlinear transforma-
tion, the values were first rank- transformed. Such a transformation is 

Y ∼ LogisticRegression(Ã
K

X)
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invariant on whether it uses the raw scores or the normalized scores, 
as the latter is just an affine transformation of the former (trans-
formed to ensure mean zero and unit variance). Gene networks 
were generated by taking the m- dimensional vectors of disease as-
sociations for each gene and projecting them into 2D again using t- 
SNE. Here, m depends on the resource, but taking OT, for example, 
it would be 2500 long, each entry corresponding to a different dis-
ease in the resource. As for the previous network, values were rank 
transformed before the nonlinear transformation. For gene net-
works, perplexity of 10 was used. For disease networks, perplexity of 
20 was used except for GEL, which was 10. These values were subse-
quently validated in the case of the gene networks through inspec-
tion of neighborhoods around small gene clusters (figs. S4 to S9).

NLP for automated selection of disease- specific features
Mantis- ML receives as user input a list of terms (free- text) that cap-
ture certain aspects of the disease biology, e.g., relevant tissue, bio-
logical/signaling pathways, and biological processes. These free- text 
terms are then matched against the resources integrated in Mantis- 
ML such as MSigDB (15), MGI (16), and GTEX (17) to extract their 
associated genes. In Mantis- ML v1, this matching was implement-
ed using regular expressions; however, this ignored the semantic 
similarity between terms, e.g., kidney and renal have similar mean-
ing, although they would not be matched using regular expressions. 
To this end, in Mantis- ML 2.0, we use NLP for the identification of 
relevant annotation terms.
Robustness analysis of ICD10 chapter assignment by semantic 
similarity
To examine the breakdown of diseases considered in each resource, 
each disease was assigned an ICD10 chapter based on semantic 
similarity. Such a technique was also used when exploring the break-
down of PheWAS overlaps by ICD10 chapter. To assign each dis-
ease an ICD10 chapter, the semantic similarity was used between 
ICD10 codes and each disease term across all resources. On this 
basis, the ICD10 chapter was extracted from the ICD10 code and 
a majority vote was taken within the closest 5, 10, and 20 codes to 
each disease.

We see that the assigned chapters are highly robust to this choice 
of tuning parameter and the relative counts of each chapter do not 
vary substantially between these values of n (fig. S25). The agree-
ment between chapter assignments at each value of n can be mea-
sured by examining the fraction of diseases that share exactly the 
same chapter assignment across each value. However, in some cases, 
the majority vote results in a tie between two or more chapters. Un-
der the most stringent policy of requiring all chapter assignments to 
match across all diseases and for diseases with tied chapters to also 
be tied with the same values, the fraction of diseases in agreement is 
67.5%. Under a less stringent policy of requiring only that there is at 
least one common chapter among the set of ties across each value of 
n, this figure rises to 80.2%.
Semantic similarity between disease names and 
annotation terms
To extract the most relevant annotation terms for the disease of in-
terest, we use the BioWordVec (26) word2vec embeddings. Bio-
WordVec embeddings is a mapping/projection of millions of words 
mined from biomedical literature to a 200- dimensional Euclidean 
space. The projection was created in such a manner that words with 
similar meanings are mapped closer together in the Euclidean space 
(fig. S34).

For the disease of interest, each word separately is embedded us-
ing the BioWordVec embeddings into the Euclidean space. Then, its 
pairwise distance is calculated against all available annotation terms 
in MSigDB, MGI, and GTEX and also embedded using the Bio-
WordVec embeddings. The top 2 annotation terms from MGI and 
GTEX and the top 20 terms from MSigDB with smaller distance to 
the disease name are extracted and used in the disease- specific 
features.

Phenome wide Mantis- ML deployment across 
>5000 diseases
Mantis- ML is deployed on HPO (n = 2575), OT (n = 2500), and 
GEL (n = 145).
Automated feature selection summary
We summarize deployment as follows: Starting from the diseases in 
one of the three resources, we calculate its semantic similarity to 
the available gene sets in MSigDB (15), MGI (16), and GTEx (17) 
by leveraging the BioWordVec (26) word2vec embeddings. Seman-
tic similarity between terms of varying length can be estimated by 
calculating an average of the pairwise distances between individual 
word embeddings (Fig. 2B). The best- matching gene sets from each 
resource will be used as annotation terms in the disease- specific 
features. After compiling the disease- specific features and input 
gene lists, Mantis- ML is deployed to all available diseases/pheno-
types, including on average (median over diseases) 138 features of 
16,497 (0.8%).
Selection of diseases from each resource
The input gene lists are extracted from either HPO, OT, or GEL. For 
HPO, we are using a local installation, while for OT we are using 
the OT Application Programming Interface (API). The top (N) 
most associated genes are used for each disease based on a series 
of thresholds as follows. For each disease, gene- disease associa-
tions are extracted either from a local installation (HPO and GEL) 
or using the OT API. For HPO and GEL, we only consider dis-
eases with a minimum of 30 associated genes. All the gene- disease 
associations provided in the two resources are taken into account. 
For OT, we only consider diseases with a minimum of 100 associ-
ated genes. Gene- disease associations are sorted on the basis of 
their overall association score, and only associations with a score 
greater or equal to 0.2 are taken into account. If more than 500 
gene- disease associations are provided, then the top 500 are 
considered.

Validation with UKB PheWAS results
UKB PheWAS disease- gene associations
Mantis- ML disease- gene associations are compared with a rare- 
variant collapsing analysis performed on UKB data, phenome- wide. 
The UKB PheWAS consists of 454,669 sequenced individuals and 
can be found at https://azphewas.com. Sequencing data have been 
aggregated and collapsed on the gene level with variants split into 
the following categories: protein truncating variants (ptv), rare dam-
aging variants (raredmg), protein- truncating rare damaging vari-
ants (ptvraredmg), ultra- rare variants (UR), synonymous variants 
(negative control), etc. In addition to the genotype data, the clinical 
presentation of each individual is captured using the ICD10 codes. 
There are ~7000 ICD10 codes numbering one or more patients in 
UKB. The association between each gene to the available ICD10 
codes is quantified using Fisher’s exact test, with P values capturing 
the degree of association between genotypes and phenotypes.

https://azphewas.com
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Stepwise hypergeometric test for external validation
Validation made routine use of a stepwise hypergeometric test be-
tween Mantis- ML and genes associated under a PheWAS rare- 
variant collapsing analysis. The test itself proceeds by going down 
the ranking of Mantis- ML predictions, one by one, and calculating 
the overlap of the top N, N + 1, N + 2, …, etc. genes of the ranking 
against the statistically significant genes in the external resource. 
The overlap is quantified via Fisher’s exact test, where at each itera-
tion the total number of genes is held constant and only the number 
of genes to include in the first list increases incrementally. We ex-
tract the P value and calculate the PHRED score. PHRED scores 
define the stepwise enrichment curve showing the overlap of the 
Mantis- ML gene ranking with the PheWAS across the different po-
sitions in the ranking.
Stepwise hypergeometric tests for validation with 
UKB PheWAS
Mantis- ML association scores were validated using data derived 
from an independent large- scale cohort study of ~455,000 exomes 
contained in the UKB. In general, there is no clear mapping between 
the phenotypes measured in UKB organized in the ICD10 ontology, 
with disease terms in HPO, OT, or GEL. Hence, we identify the n 
most similar ICD10 codes to each disease (using BioWordVec em-
beddings as before) and calculate the overlap with significant asso-
ciations in PheWAS using a stepwise hypergeometric test (3).

The test relies on, first, a list of genes ranked by PheWAS signifi-
cance for a given ICD10 code and QV model and, second, a subset 
of high- ranking Mantis- ML genes. The former is defined on the ba-
sis of one of the n most semantically similar ICD10 codes, thereby 
eliminating the need to manually curate which ICD10 codes pertain 
to which diseases in HPO, OT, and GEL. For a given ICD10 code, 
the overlap with all genetic architectures—i.e., across 10 QV mod-
els—is calculated. The significance threshold for PheWAS was set 
to 0.05.
Summarizing stepwise enrichment curves across multiple 
ICD10 codes and QV models
Stepwise hypergeometric curves were calculated between high- 
ranking Mantis- ML genes and ranked lists of significant genes 
according to PheWAS. This was performed and aggregated over 
multiple QV models. Specifically, for a user- defined disease, the n 
most semantically similar ICD10 codes are identified. For each of 
these codes, stepwise enrichment curves are calculated between the 
ranked list of genes by Mantis- ML score and those genes that are 
significant under PheWAS. This is repeated for each of the 11 ge-
netic architectures (including a synonymous model), resulting in 
11n enrichment curves for each disease term. To summarize the re-
sult of this procedure, each of these curves is reduced to a single 
number, using either the AUC or taking the maximum of the curve 
(excluding curves that involved the synonymous QV model), and 
then aggregated into a single number for a given disease (taking, 
e.g., the median). This statistic represents the “average” overlap of 
high- ranking Mantis- ML genes and PheWAS significant genes over 
a number of semantically similar ICD10 codes and across a range of 
genetic architectures. This was repeated with n varied in a grid of 
[1, 10, 25].

For the purposes of comparison, we calculate average measures 
of overlap with randomly selected ICD10 codes, rather than semantically 
similar ICD10 codes. In particular, we are able to estimate the rank 
of the summary statistic derived using semantic similarity within 
those generated by randomly sampling ICD10 codes, termed “null 

statistics.” Details of the precise sampling procedure for generating 
null statistics are described in detail in Supplementary Methods. 
Null statistics were calculated by computing stepwise enrichment 
curves with randomly sampled ICD10 codes and across all QV 
models (excluding the synonymous model). Mimicking the way the 
original method relied on aggregating over the “n ICD10 codes, null 
statistics were calculated by sampling sets of n (nonoverlapping) 
ICD10 codes and aggregating over these in a similar fashion. All QV 
models were included with the exception of the synonymous model, 
and each curve was summarized using either the AUC or its maxi-
mum. In some instances, a filtering procedure was performed to 
both the original statistics and the null statistics.
Disease filtering criterion when validating with UKB PheWAS
Different filtering criteria were used depending on the statistical 
test, i.e., whether it was Fisher’s exact test or the stepwise hypergeo-
metric test. In the case of the former, we impose a weak genetic basis 
for selecting ICD10 codes initially, in that the 100 most semantically 
similar ICD10 codes are first identified of all the ICD10 codes with 
at least one significant gene at 0.05. Following this, the 20 most sim-
ilar ICD10 codes that have at least one significant gene are identi-
fied. For a given QV model and ICD10 code, a gene was considered 
significant if its P value under the collapsing analysis was less 
than 10−8 . In some cases, this will mean that none of the original 
100 ICD10 codes are sufficient, in which case we exclude the disease 
from validation. In addition, for a given disease- ICD10- QV triplet 
to be included in the final analysis, the overlap (quantified by Fish-
er’s exact test) P value must satisfy a relaxed threshold of P < 0.5 to 
eliminate any clearly nonsignificant enrichments that may occur in 
either the positive and null sets due to noise in ontology mapping 
and/or lack of statistical power from PheWAS. Such a criterion was 
included on the basis of the observation that many of the overlaps 
referring to unrelated phenotypes (in both the analysis and negative 
control) were either close to or equal to 1. Hence, the threshold is 
applied equally in the main analysis and negative control (provided 
by the null distribution). After all this filtering, the total number of 
diseases reduced from 5220 to 4688 (90.0%).

Benchmark against machine learning tools
We compared the performance of Mantis- ML 2.0 against two re-
cently published tools: (i) PhenoApt (27), which uses a directional 
graph of genes, diseases, and phenotypes and applies graph embed-
ding to prioritize candidate genes per disease, and (ii) KGAP (28), 
which uses a graph database to prioritize drug targets for associated 
diseases. We compared the performance of the three tools in rank-
ing genes for 14 diseases by calculating the overlap of the top 500 
ranked genes per disease from each method against significant 
(P < 0.05) genes from PheWAS on ~455,000 exomes contained in 
the UKB (2). We used PhenoApt web application to retrieve genes 
for each disease. As for KGAP, we installed and queried the database 
for each disease.

Benchmark against gene- level pathogenicity tools
As an additional validation, we compare an approximate measure of 
pathogenicity derived using phenome- wide Mantis- ML 2.0 scores 
with AlphaMissense’s (30) mean pathogenicity per gene (fig. S37). 
To construct the Mantis- ML gene- level score, we average the scores 
for a given gene across all diseases in each resource, while for Al-
phaMissense we consider the mean pathogenicity per gene as its 
gene- level representation. We observe a relatively high degree of 
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correlation between the transformed scores from Mantis- ML and 
AlphaMissense (Pearson r = 0.43, 0.36, and 0.38 for HPO, OT, and 
GEL, respectively; P < 1 × 10−308 across all three comparisons). We 
also compared the gene- level Mantis- ML scores with another estab-
lished gene- level intolerance metric: Residual Intolerance to Varia-
tion Score (RVIS) (51). We observe that across all three resources, 
the correlation of pathogenicity is higher with AlphaMissense than 
it is with RVIS (fig.  S37D). Correlations were obtained after log- 
transforming AlphaMissense and Mantis- ML’s pathogenicity scores. 
In total, 92.3% of AlphaMissense Entrez transcript IDs could be 
mapped to HUGO Gene Nomenclature Committee (HGNC) using 
gProfiler (52). Of these, 90.0% shared a gene name with Mantis- ML, 
leaving 15,536 genes included ultimately in the analysis.

Code availability
We expose the code used to generate the phenome- wide Mantis- ML 
2.0 scores on a public Zenodo repository: https://zenodo.org/re-
cords/10465793, as well as on a public GitHub repository: https://
github.com/astrazeneca- cgr- publications/mantis- ml- release- 2.0. 
The repositories include the InWeb gene- gene interaction graph as 
the default knowledge graph to be used during learning. However, 
any other knowledge graph may also be provided as input to Mantis- 
ML 2.0. The “Custom Features” option (Fig.  1) is also available 
should a user wish to use additional structured gene- level features in 
their own analyses.

Supplementary Materials
This PDF file includes:
Supplementary Methods
Figs. S1 to S37
tables S1 to S5
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