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We introduce a weighted graph model to investigate the self-similarity characteristics of eubacteria

genomes. The regular treating in similarity comparison about genome is to discover the evolution

distance among different genomes. Few people focus their attention on the overall statistical

characteristics of each gene compared with other genes in the same genome. In our model, each

genome is attributed to a weighted graph, whose topology describes the similarity relationship among

genes in the same genome. Based on the related weighted graph theory, we extract some quantified

statistical variables from the topology, and give the distribution of some variables derived from the

largest social structure in the topology. The 23 eubacteria recently studied by Sorimachi and Okayasu

are markedly classified into two different groups by their double logarithmic point-plots describing the

similarity relationship among genes of the largest social structure in genome. The results show that the

proposed model may provide us with some new sights to understand the structures and evolution

patterns determined from the complete genomes.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The success of human genome project has pushed newly
discovered biological sequences to grow in an explosive rate
(Chou, 2009). Facing the explosive growth of DNA and protein
sequences, experimental, mathematical and graphical approaches
have been employed to study the structure, function, evolution
and attribution (Chou, 2011) of these sequences. As a powerful tool,
the graphical methods can help people gain useful insights in an
intuitive or visual manner. Many graphic approaches have been
successfully used to study complicated biological topics, such as
enzyme-catalyzed reactions (Chou, 1980, 1989, 1990; Chou and
Forsen, 1980, 1981; Chou and Liu, 1981; Andraos, 2008), protein
folding kinetics (Chou, 1990; Chou and Shen, 2009; Shen et al., 2009),
drug metabolism kinetics (Chou, 2010), analysis of codon usage
(Zhang and Chou, 1993, 1994), analysis of base frequencies in the
anti-sense strands (Chou et al., 1996), prediction of protein subcellular
location (Xiao et al., 2006a, b), HBV virus gene missense mutation
(Xiao et al., 2005), hepatitis B viral infections (Xiao et al., 2006a, b),
G-protein coupled receptors (Lin et al., 2009; Xiao et al., 2009a,
2011) and prediction of protein structure (Xiao et al., 2008a,b,
2009b,c, 2010). Recently, several graphical method applications
were also used to examine the similarities/dissimilarities among
the coding sequences of different species (Randic�et al., 2003a, b;
Randic�, 2006; Yao et al., 2006, 2008, 2010; Qi et al., 2007; Qi
and Qi, 2007, 2009; Qi and Fan, 2007), study cellular signaling
ll rights reserved.

. Qi).
networks (Diao et al., 2007), analyze the network structure of the
amino acid metabolism (Shikata et al., 2007), provide web-server
for protein sequences (Wu et al., 2010), study the fingerprint of
SARS coronavirus (Wang et al. 2005; Gao et al., 2006) and
discover codon position patterns of eubacteria (Qi and Wei, 2011).

Another graphical method, radar chart, has been used to
predict protein subcellular localization (Chou and Elrod, 1999).
In addition, radar charts have been applied in a similar manner to
classifying organisms (Sorimachi and Okayasu, 2004, 2008a, b;
Okayasu and Sorimachi, 2009). In Sorimachi and Okayasu (2004),
the amino acid compositions of 11 Gram-positive and 12 Gram-
negative eubacteria were determined from their complete gen-
omes. They were classified into two groups, ‘S-type’ represented
by Staphylococcus aureus and ‘E-type’ represented by Escherichia

coli, based on their patterns of amino acid compositions by radar
charts determined from the complete genome. Then, in Qi et al.
(2009), the 23 eubacteria were also classified into ‘‘S-Type’’ and
‘‘E-Type’’ by dimensionality reduction method. These results
determined by different methods show that the classification
about the eubacteria is a reasonable conclusion.

In the present study, we analyze self-similarity characteristics of
the 23-eubacteria genomes based on weighted graph theory. Simi-
larity is a concept from signal similarity theory. It describes the
similarity degree when one signal is compared with another signal.
Here, the concept about similarity degree of signals is used to describe
the similarity degree between two genes. Then we obtain the
similarity information between any pair of genes in a genome when
every gene of the genome is compared with other genes in the same
genome. The overall statistical results about similarity degree are
called as self-similarity characteristic of genome. The self-similarity
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analysis of genome can discover some interesting biological informa-
tion hidden in genome. Generally, gene evolution includes three main
approaches: gene point mutation, gene recombination and horizontal
gene transfer (Syvanen and Kado, 2002). The same result from
different evolution approaches is that every gene of genome perhaps
has its similar genes within the same genome. If one gene has many
similar genes within genome, it is relatively active in its evolution
pathway. Otherwise, this gene is comparatively conservative. Then,
how many active genes does a genome have? What differences do
there exist among different genomes? Here, we introduce weighted
graph method to investigate these problems about the 23 eubacteria
genome studied in Sorimachi and Okayasu (2004) and Qi et al. (2009).
The rest of the paper is organized as follows. Section 2 presents the
self-similarity analysis model of genome based on weighted graph
and some statistical information of this model. Section 3 mainly
discusses some quantified statistical variables about the self-similar-
ity characteristic of different genomes and several distributions about
the statistical variables. Section 4 gives the conclusion of this paper.
2. Materials and methods

2.1. Materials

Complete genome sequences were downloaded from NCBI Gen-
Bank (ftp://ftp.ncbi.nih.gov/genomes/Bacteria/). In Sorimachi and
Okayasu (2004), these bacteria are grouped into two main classes:
S. aureus ‘S-Type’ and E. coli ‘E-type’, based on their genomic
structures through different classifying schemes. In this paper, we
will investigate the self-similarity characteristics of these bacteria
genomes to reveal the possible evolution patterns about genome
itself. The genome sequences used for this study are summarized
in Table 1.

2.2. Methods

2.2.1. Weighted graph theory

In the past decades, the idea of graph has turned out to be
widespread in computer science, and physical, biological, social and
man-made systems. In graphs, each element is treated as a vertex
Table 1
Genomes used for this study.

Strain Accession (GenBank)

Staphylococcus aureus Mu50 BA000017.4

Streptococcus pyogenes M1 AE004092.1

Bacillus subtilis AL009126.2

Clostridium perfringens 13 BA000016.3

Listeria monocytogenes AL591824.1

Mycoplasma pulmonis AL445566.1

Mycoplasma genitalium L43967.2

Mycoplasma pneumoniae U00089.2

Ureaplasma urealyticum CP001184.1

Mycobacterium tuberculosis AE000516.2

Mycobacterium leprae AL450380.1

Rickettsia prowazekii AJ235269.1

Borrelia burgdorferi AE000783.1

Campylobacter jejuni CP000538.1

Helicobacter pylori 26695 AE000511.1

Helicobacter pylori J99 AE001439.1

Escherichia coli U00096.2

Salmonella typhi AL513382.1

Vibrio cholerae AE003852.1

AE003853.1

Yersinia pestis AL590842.1

Neisseria meningitidis AL157959.1

Haemophilus influenzae L42023.1

Treponema pallidum AE000520.1
(or node, or point). The links (or connections) between vertexes
denote their interactions and correlations. Recently, two seminal
models about graph theory, ‘‘small-world’’ network (Watts and
Strogatz, 1998) and ‘‘BA’’ network (Barabási and Albert, 1999) were
proposed. The models brought about the naissance of complex
networks theory as a new branch about graph theory. In the past
ten years, the new branch received an increasing attention. Here,
we introduce weighted graph theory to investigate the self-simi-
larity characteristics of the 23 eubacteria genomes. In a weighted
graph, a specific value is associated with each connection and the
value describes the strength of the connection. An adjacency matrix
corresponding to a weighted graph is a weight matrix. The weight is
used to describe the strength of each different links. Of course, 0 is
set to stand for nothing if there is no connection.

2.2.2. Self-similarity analysis model of genome based on weighted

graph

As for a genome, there are hundreds of genes. Large genome even
has tens of thousands of gene sequences. These sequences such as
nucleotide or amino acid from GenBank are commonly indexed by
their sequence IDs. In the proposed model, each gene of a genome is
used to construct the weighted graph corresponding to the genome.

Firstly, in a graph a node associated with a sequence ID is used to
identify a specific gene. The connection (or link) between any pair
of nodes is represented as their interaction and correlation. As for
a genome with n genes, the number of the vertexes and the links are
n and C2

n ¼ ðnðn�1Þ=2Þ, respectively. Fig. 1 shows how a graph is
constructed according to a genome, where Gi denotes the ith
gene, i¼ 1,2,. . .,n. Fig. 1 is a full-connected graph because there is a
connection between any pair of genes. Then a specific value is
assigned to each connection to describe the similarity degree between
two genes. There are several methods such as BLAST (Altschul et al.,
1997; http://blast.ncbi.nlm.nih.gov/bl2seq/wblast2.cgi) and Smith–
Waterman algorithm-needle (Needleman and Wunsch, 1970;
http://www.ebi.ac.uk/Tools/emboss/align/index.html) to calculate
the similarity of two genes. The schemes ensure the optimal local
alignment by exploring all possible alignments and choosing the best.
The gap insertion penalty, gap extension penalty and substitution
matrix used to calculate the alignments are specified. We do not
choose the global alignment algorithms because they perhaps
RefSeq identifier Total length (bp) Genes

NC_002758 2,878,529 2775

NC_002737 1,852,441 1811

NC_000964 4,214,630 4225

NC_003366 3,031,430 2786

NC_003210 2,944,528 2940

NC_002771 963,879 815

NC_000908 580,076 525

NC_000912 816,394 733

NC_011374 874,478 692

NC_002755 4,403,837 4293

NC_002677 3,268,203 2770

NC_000963 1,111,523 886

NC_001318 910,724 875

NC_008787 1,616,554 1707

NC_000915 1,667,867 1630

NC_000921 1,643,831 1535

NC_000913 4,639,675 4467

NC_003198 4,809,037 4711

NC_002505 2,961,149 2889

NC_002506 1,072,315 1119

NC_003143 4,653,728 4103

NC_003116 2,184,406 2065

NC_000907 1,830,138 1789

NC_000919 1,138,011 1095

ftp://ftp.ncbi.nih.gov/genomes/Bacteria/
http://www.ebi.ac.uk/Tools/emboss/align/index.html
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Fig. 2. An example for a weighted graph related to Treponema pallidum. (a) All

links of the gene ‘‘gi93322290’’ of Treponema pallidum connected to other genes.

The E-value form the detailed statistics information is used as the weighted value.

(b) The overall weighted graph related to Treponema pallidum.
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Fig. 1. A full-connected and weighted graph.
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produce some results but much of the alignments may have little or
no biological significance. Here, we use BLAST, a local alignment
algorithm, to calculate the similarity degree of two genes by the
consideration for speed and efficiency.

The similarity degree of any pair of genes in genome is deter-
mined by BLAST (bl2seq) (http://blast.ncbi.nlm.nih.gov/bl2seq/
wblast2.cgi) for pairwise protein–protein sequence comparison. The
detailed view for each segment of alignment includes the statistics
with the percentage of identities, positives and gaps, schematic view,
and the text alignment view. We can obtain the detailed statistics
information for two closely related sequences by BLAST (bl2seq) with
a given expectation value (E-value). As for two distantly related
sequences, we cannot possibly get any statistics information. There
are no similar areas between the two sequences. In order to simplify
the graph structure, we remove the links with zero value from the
weighted graph. Similarly, the node is also removed from the graph if
a node has no any links connected to other nodes. Then in the graph,
every link is associated with a real value derived from the detailed
statistics information by BLAST (bl2seq) with a given E-value. The
graph becomes a weighted graph related to a genome. For example,
Fig. 2(a) shows all links of the gene ‘‘gi93322290’’ of Treponema

pallidum connected to other genes by BLAST (bl2seq) with E-value
0.001. We extract the E-value from the detailed statistics information
as the weighted value. Fig. 2(b) illustrates the overall weighted graph
related to Treponema pallidum by Pajek (http://vlado.fmf.uni-lj.si/
pub/networks/pajek/). In order to clarify the figure, in Fig. 2(b) we do
not illustrate the E-values related to links.

A close look at Fig. 2 reveals that the main characteristics among
genes show clustering features. Some small social structures only
have several genes. However, most of all genes are clustered in a very
large social structure. From the biological point of view, these
clustering features reveal some insights about gene evolution. Gene
evolution includes three main approaches: gene point mutation,
gene recombination and horizontal gene transfer (Syvanen and Kado,
2002). Obviously, the accumulation of point mutation and gene
recombination are the important reasons leading to large social
structure. By the accumulation of point mutation and gene recombi-
nation, the genes in structure obtain similarity relation with others.

However, all genes in Fig. 2 only are a part of Treponema pallidum

genome. There are 609 genes in Fig. 2. The total number of genes in
the genome is 1095. There approximately exist 44.4% of the genes
unrelated to other genes in similarity. These genes are relatively
conservative in genome. They rarely interact with others in the
evolution pathway, or do not generate new genes by mutation. Next,
we will continue to discuss the following problems. How many
relatively conservative genes does every different genome have?
How do we determine the degree of similarity among those
relatively active genes in the evolution pathway?
2.2.3. Some statistical information about self-similarity analysis

model of genome

In Fig. 2, we illustrate the graph structure of Treponema pallidum

genome. The clustering feature is the main characteristic. The E-value
derived from the detailed statistics information by BLAST (bl2seq) is
used to describe the similarity degree between genes. It is well
known that E-value is a statistical calculation based on the score that
gives the number of hits of this score that this search would return by
chance using a database of this size. According to BLAST tutorial, if the
E-value is less than 1�10�50, the hit is very similar to the query
sequence and is very likely to be evolutionarily related. If the E-value
is between 1�10�50 and 1�10�2, the hit has some similarity to the
query sequence and may be related. The E-values in the range can
indicate that the sample sequence is in the same family as the hit or it
may have closely related functional domains. Here we set the E-value
less than 1�10�3 to obtain results that are more reasonable.

Now, we obtain the detailed statistics information for two
sequences by BLAST (bl2seq) with a given E-value threshold. We
choose the best High-scoring segment pair (HSP) when there are
many hits in an alignment. The reported results still include other
outcomes besides E-value such as Score, Identities and Positives.
Obviously, only the E-value does not fully reflect the similarity degree
between genes. Here, we analyze the reported results by BLAST
(bl2seq) in order to obtain a weighted value (w-value) to describe the
similarity degree. Table 2 lists some alignment results of the gene
‘‘gi93322290’’ of Treponema pallidum by BLAST (bl2seq) with E-value
threshold 0.001. In Table 2 L1 and L2 are the length of Gene1 and

http://blast.ncbi.nlm.nih.gov/bl2seq/wblast2.cgi
http://blast.ncbi.nlm.nih.gov/bl2seq/wblast2.cgi


Table 2
Some alignment results of the gene ‘‘gi93322290’’ of Treponema pallidum by BLAST (bl2seq) with E-value 0.001.

Gene1 ID Gene2 ID L1 L2 Score Expect Identities Positives

gi93322290 gi93322384 238 269 73.6 4e�018 49/192(0.25) 86/192(0.44)

gi93322290 gi93322406 238 220 52.0 9e�012 47/194(0.24) 85/194(0.43)

gi93322290 gi93322432 238 266 89.0 9e�023 66/203(0.32) 106/203(0.52)

gi93322290 gi93322495 238 255 48.1 2e�010 47/200(0.23) 85/200(0.42)

gi93322290 gi93322575 238 516 45.1 3e�009 31/92(0.33) 49/92(0.53)

gi93322290 gi93322598 238 533 37.4 6e�007 31/104(0.29) 54/104(0.51)

gi93322290 gi93322806 238 960 35.4 4e�006 27/84(0.32) 40/84(0.47)

gi93322290 gi93322874 238 226 51.6 1e�011 52/207(0.25) 87/207(0.42)
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Gene2, respectively. The denominator of Identities or Positives is the
length of similar region in the hit.

Then we define several new parameters. Let Lregion denote the
length of similar region of two genes. Let Sscore, Ppositive and Evalue be the
score, the positive and E-value, respectively. As for the default choice
of BLAST, the E-value 1�10�10 is used as the E-value threshold. Here,
the new parameter Evalue is defined as 0.8 when the E-value ranges
from 0.001 to 1�10�10. If the E-value is more than 1�10�10, the
value is set to ‘‘1’’. There are two reasons: (i) When the E-value of
BLAST program is small, the similarity degree between genes is
better. This is not consistent with other parameters and our custom-
ary understanding; (ii) The E-value is the probability due to chance,
that there is another alignment with a similarity greater than the
given score Sscore. Here, our definition is a normalization process. The
value ‘‘1’’ denotes the probability is very satisfactory. The value ‘‘0.8’’
means the probability is also acceptable.

Then we propose a new parameter Wvalue to describe the
similarity degree of two genes according to the main statistics
parameters in the reported results by BLAST (bl2seq). The Wvalue is
SscorePpositiveEvalueðLregion=minfL1,L2gÞ. The parameter comprehen-
sively integrated with various statistics information can fully
reflect the reported results by BLAST. Of course, people often
use the E-value derived from the detailed statistics information to
describe the similarity degree of genes. Here, the proposed
parameter Wvalue includes the various statistics information and
shows the overall result of an alignment. This consideration
possibly provides a directly quantitative comparison for the
similarity degree of genes. It can also avoid the inconvenience
in describing the quantitative similarity comparison by the
E-value. Then by the parameter Wvalue we can obtain a weighted
graph to describe closely the self-similarity characteristics of a
genome.

In the next section, we will discuss in detail some statistical
information related to weighted graph to describe the self-similarity
characteristic of different genomes.
3. Results and discussion

3.1. Some quantified statistical variables about the self-similarity

characteristic of different genomes

In the above section, Fig. 2 reveals that the main characteristics
among genes show clustering features. The genes are clustered into
many social structures. These social structures have different scales.
Here, as for every genome of Table 1 we calculate some quantified
statistical variables. To simplify the description in Table 3, let NS be
the number of social structures. Let NS-genes and PS-genes be the total
number of genes in all social structures and their proportion in
genome, respectively. Let NLS-genes and PLS-genes be the total number of
genes in the largest social structure and their proportion in genome,
respectively. Let NLS-links and ALS-links be the total number of links in
the largest social structure and the average of links of every gene.
From Table 3 we can get some interested conclusions:
(i)
 From the fourth and the fifth column of the table, we find out
that the genes clustered into social structures occupy the
majority proportion of complete genome. The proportion PS-genes

of clustering genes of 17 species in the table are more than 70%.
The proportion in Clostridium perfringens 13 has the highest
percentage 92%. There are only three species with a percentage
less than 60%. These data indicate that most of genes in genome
are relatively active in their evolution pathways. As for a genome,
it is impossible for point mutation to reach so large social
structures. The statistic data give a possible explanation that
some genes continuously exchange some segments each other.
Perhaps segment reassortment (or recombination) and associa-
tion in genome, that is to say, are the main evolutionary
approaches.
(ii)
 In the sixth, seventh, eighth and ninth column of the table, we
calculate the statistic information about the largest one in all
social structures. The statistic data shows that the genes in
the largest social structure occupy the majority proportion of
complete genome. The other social structures only occupy a
small percentage in genome except for the largest social
structure. The statistic data shows that most of genes in
genome are associated with each other. The ninth column in
the table illustrates the average number of links of every gene
in the largest social structure. Obviously, the genes are more
active when their links are high. The species with the largest
number of connections is Clostridium perfringens 13 in which
the average number of links reaches 6.96. The average links
can discover the comprehensive trend about relation among
different genes. In the following section, we will further
reveal more details about the largest social structure such
as degree distribution and edge-weight distribution.
3.2. Several distributions about statistical variables in the largest

social structure

In this section, we use several statistical variables in weighted
graph (Watts and Strogatz, 1998; Barabási and Albert, 1999), to
analyze the self-similarity characteristics of genome. Here we only
discuss the statistical characteristics in the largest social structure
instead of all social structures because the genes in the largest social
structure occupy the majority proportion of complete genome as
shown in Table 3.

3.2.1. Degree distribution

A gene’s degree in genome is a connection degree granted to the
individual gene that it denotes the number of other genes associated
with the gene by BLAST (bl2seq) with E-value 1�10�3. A gene with
a large degree means that it may be a more active gene. Some
segments in the gene may be transferred to other genes, or come



Table 3
Some quantified statistical variables; NS: the number of social structures; NS-genes: the total number of genes in all social structures; PS-genes: the proportion of NS-genes in

genome; NLS-genes: the total number of genes in the largest social structure; PLS-genes: the proportion of NLS-genes in genome; NLS-links: the total number of links in the largest

social structure; ALS-links: the average of links of every gene in the largest social structure.

Strain Genes NS NS-genes PS-genes NLS-genes PLS-genes NLS-links ALS-links

Staphylococcus aureus Mu50 2775 12 2533 0.91 2505 0.90 10822 4.32

Streptococcus pyogenes M1 1811 51 1379 0.76 1264 0.70 3615 2.86

Bacillus subtilis 4225 16 3845 0.91 3812 0.90 18850 4.94

Clostridium perfringens 13 2786 4 2577 0.92 2571 0.92 17891 6.96

Listeria monocytogenes 2940 12 2679 0.91 2657 0.90 11665 4.39

Mycoplasma pulmonis 815 3 702 0.86 698 0.86 4493 6.44

Mycoplasma genitalium 525 20 335 0.64 295 0.56 646 2.19

Mycoplasma pneumoniae 733 32 493 0.67 403 0.55 1555 3.86

Ureaplasma urealyticum 692 5 560 0.81 550 0.79 2647 4.81

Mycobacterium tuberculosis 4293 12 3901 0.91 3879 0.90 22217 5.73

Mycobacterium leprae 2770 44 1253 0.45 1149 0.41 2290 1.99

Rickettsia prowazekii 886 20 622 0.70 573 0.65 1074 1.87

Borrelia burgdorferi 875 4 754 0.86 748 0.85 2979 3.92

Campylobacter jejuni 1707 9 1497 0.88 1481 0.87 4860 3.28

Helicobacter pylori 26695 1630 16 1323 0.81 1291 0.79 3634 2.81

Helicobacter pylori J99 1535 20 1265 0.82 1225 0.80 3473 2.84

Escherichia coli 4467 34 3793 0.85 3712 0.83 16643 4.48

Salmonella typhi 4711 45 3987 0.85 3892 0.83 15688 4.03

Vibrio cholerae 4008 59 2238 0.56 2101 0.52 6849 3.26

Yersinia pestis 4103 54 3486 0.85 3351 0.82 20108 6.00

Neisseria meningitidis 2065 92 1483 0.72 1243 0.60 2126 1.03

Haemophilus influenzae 1789 68 1316 0.74 1145 0.64 2546 2.22

Treponema pallidum 1095 82 609 0.56 352 0.32 695 1.97
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from other genes by gene recombination. Let ki be the degree of node
(gene) i in the largest social structure. Then we can use distribution
function P(k) to describe the degree distribution of node in the graph.
The distribution function P(k) denotes that the probability of the
node degree is just k as for a randomly chosen node. The patterns of
the distribution function P(k) based on the complete genomes of
various eubacteria are ‘double logarithmic point-plot’, as shown in
Fig. 3.

Double logarithmic point-plot: The logarithm of a number to a
given base is the exponent to which the base must be raised in order
to produce that number. For example, the logarithm of 1000 to base
10 is 3, because three factors of 10 must be multiplied to yield a
thousand: 10�10�10, also written as 103, equals 1000. The double
logarithmic point-plot is a figure in which all data points are plotted
on the logarithmic scales on both axes. Here, the distribution
function P(k) possibly ranges from 10�4 to 1. The parameter k ranges
from 1 to 103. The data-points plotted on linear scales (Cartesian
coordinate system) would be very close to the axes. Therefore, for
sake of comparison, all data points are plotted on the logarithmic
scales on both axes, as shown in Fig. 3.

According to the scale-free network BA model (Barabási and
Albert, 1999), the power law phenomenon about the degree dis-
tribution of node in double logarithmic coordinates is one of the
most important characteristics of the model. Based on the rule
eubacteria can be mainly classified into two groups by the double
logarithmic point-plots calculated from their complete genome. The
pattern of double logarithmic point-plot of Bacillus subtilis resembles
that of Escherichia coli, compared with that of Campylobacter jejuni.
The pattern of the double logarithmic point-plot of Campylobacter

jejuni is similar to the power law distribution. The eubacteria similar
to Campylobacter jejuni include Helicobacter pylori J99, Mycobacterium

tuberculosis, Rickettsia prowazekii and so on, as shown in Fig. 3.
However, the other pattern of the double logarithmic point-plot has
a different appearance, an upward tail at the end of the point-plot.
The eubacteria with this special pattern include Bacillus subtilis,
Escherichia coli, Listeria monocytogenes, Salmonella typhi and so forth.
In order to give a clear comparison among different point-plots in
Fig. 3, we draw a fitting power-law curve ck�b without considering
the upward tail, where c and b are constant and power law exponent,
respectively. Then we give the power law exponent b of each figure.

In fact, in Sorimachi and Okayasu (2004) and Qi et al. (2009)
the 23 eubacteria are markedly classified into two main groups:
‘‘S-Type’’ represented by Staphylococcus aureus Mu50 and ‘‘E-Type’’
represented by Escherichia coli. The classification into two groups
by different approaches shows the evolutionary distance among
different eubacteria. Here we draw a different conclusion. Our
classification into two groups by the double logarithmic point-plot
cannot show their evolution distances. However, we can discover
the evolution patterns among the different eubacteria. The follow-
ing are the details:
(i)
 If ignoring the upward tails of some curves, all double logarith-
mic point-plots in Fig. 3 are similar to the power law distribu-
tion. This shows that the relations among genes of the largest
social structure are neither random nor homogeneous. They
show some features similar to ‘‘small world’’. From a biological
view, this reflects on a possible evolution pattern. Most of genes
are relatively conservative and merely have a little chance to
interact with others in their evolution pathways. However, a few
genes with very high degree perhaps exchanged gene pieces
with quite a number of other ones.
(ii)
 Some double logarithmic point-plots of Fig. 3, such as Bacillus

subtilis and Escherichia coli, have upward tails at the end of the
curve. This shows that there is a high increase in the number
of genes with very high degree. This increase is so high that
the corresponding dot-set of the double logarithmic point-
plot departs from the power law distribution. These genes are
quite active and perhaps exchanged gene pieces with quite a
number of other ones in their evolution pathways.
3.2.2. Edge-weight distribution

A gene’s edge-weight in genome is the value of the parameter
Wvalue. The parameter comprehensively integrated with various
statistics information can fully reflect the similarity degree between
genes. An edge with a large weight means that the pair of genes is
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Fig. 3. Double logarithmic point-plot of degree distribution function P(k) in the largest social structure of genome and the fitting power-law curve ck�b.
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more similar to each other. Here, let wi be the weight of edge
(between two genes) i in the largest social structure. Like the analysis
of degree distribution, we also use distribution function P(w) to
describe the edge-weight distribution in the network. The distribu-
tion function P(w) denotes that the probability of the edge-weight is
just w as for a randomly chosen edge. The patterns of the distribution
function P(w) based on the complete genomes in Table 1 are ‘double
logarithmic point-plot’, as shown in Fig. 4. At the same time, we still
give the fitting power-law curve ck�b and the power law exponent b

of each figure.
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Fig. 4. Double logarithmic point-plot of edge-weight distribution function P(w) in the largest social structure of genome and the fitting power-law curve ck�b.
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Like Fig. 3, the eubacteria can be also mainly classified into the
same two groups: the pattern similar to the power law distribu-
tion and the pattern with an upward tail at the end of the curve.
The eubacteria similar to the power law distribution include
Campylobacter jejuni Helicobacter pylori J99, Mycobacterium
tuberculosis, Rickettsia prowazekii and so on, as shown in Fig. 4.
The eubacteria with an upward tail at the end of the curve include
Escherichia coli, Listeria monocytogenes, Salmonella typhi and
so forth. A close look at Figs. 3 and 4 shows that only one
species, Bacillus subtilis, shows different pattern in the two figures.
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In Fig. 3 Bacillus subtilis has a pattern with an upward tail at
the end of the curve. However, in Fig. 4 the species has a pattern
with an approximation of the power distribution instead of the
upward tail in Fig. 3. According to the pattern shown in Fig. 3,
we know that there are many genes with very high degree.
This shows that these genes are relatively active and perhaps
exchanged gene pieces with quite a number of other ones in
their evolution pathways. Yet the pattern as shown in Fig. 4
means that the similarities between the genes are low. There
are two possible reasons to explain the special phenomenon
about Bacillus subtilis. One is that the scale of the exchanged
gene pieces between different genes is relatively small. The
other is that it perhaps takes so much time that the further
evolution reduces the similarity degree among the exchanged
gene pieces.
4. Conclusions

Here we propose a self-similarity analysis model of genome
based on weighted graph. In this model, a genome is attributed
to a weighted graph to express the relationship among similar
genes in the same genome. Then the weighted graphs are used
to investigate the self-similarity characteristics of different gen-
omes from 23 eubacteria. Unlike the studies of the 23 eubacteria
in Sorimachi and Okayasu (2004) and Qi et al. (2009), here they
are markedly classified into two different groups by their double
logarithmic point-plots describing the similarity relations among
genes of the largest social structure in genome. One group is
the eubacteria similar to the power law distribution, such as
Campylobacter jejuni and Helicobacter pylori J99. The other includes
the eubacteria with an upward tail at the end of the double
logarithmic point-plot, such as Escherichia coli and Staphylococcus

aureus Mu50. The results show that the proposed model may
provide us with some new sights to understand the structures
and evolution patterns determined from the complete genomes.
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