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Abstract: This report describes and characterizes a novel entomobirnavirus, designated Port Bolivar
virus (PTBV), that was isolated from a pool of Aedes sollicitans mosquitoes collected in a saltwater
marsh in East Texas, USA. Full genome sequencing and phylogenetic analyses indicate that PTBV is
distinct but genetically related to Drosophila X virus and mosquito X virus, which are assigned to
species in the genus Entomobirnavirus, family Birnaviridae. PTBV produced cytopathic effect (CPE) in
cultures of mosquito (C6/36) cells, but not in Vero cell cultures. Ultrastructural studies of PTBV in
infected C6/36 cells demonstrated unenveloped virus particles about 55 nm in diameter.
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1. Introduction

The family Birnaviridae consists of viruses with two segmented dsRNA genomes, that form
icosahedral, non-enveloped single-shelled particles with a diameter of approximately 65 nm [1].
The family currently includes seven genera; members of three genera (Aquabirnavirus, Avibunyavirus
and Blosnavirus) infect vertebrates, whereas members of four genera (Entomobiravirus, Dronavirus,
Ronavirus and Telnavirus) infect invertebrates.

Viruses 2020, 12, 390; doi:10.3390/v12040390 www.mdpi.com/journal/viruses

http://www.mdpi.com/journal/viruses
http://www.mdpi.com
https://orcid.org/0000-0003-1851-642X
https://orcid.org/0000-0002-0708-3289
http://dx.doi.org/10.3390/v12040390
http://www.mdpi.com/journal/viruses
https://www.mdpi.com/1999-4915/12/4/390?type=check_update&version=2


Viruses 2020, 12, 390 2 of 11

In the genus Entomobirnavirus, only two viruses have been classified taxonomically to date:
Drosophila X virus (DXV; species Drosophila X virus) was detected in laboratory-reared fruit flies
(Drosophila melanogaster) in France [2] and mosquito X virus (MoXV; species Mosquito X virus)
was detected by metagenomic sequencing in mosquitoes (Anopheles sinensis) collected in China [3].
Four other viruses cluster phylogenetically with the entomobirnaviruses but have not yet been classified:
Culex Y virus (CuYV) was isolated from mosquitoes (Culex pipiens complex) collected in Germany [4];
Eridge virus (ERV) was detected by metagenomic sequencing of fruit flies (Drosophila immigrans)
collected in the United Kingdom [5]; culicine-associated Z virus (CaZV) was detected by metagenomic
sequencing in mosquitoes (Ochlerotatus caspius and Oc. detritus) collected in France [6]; and Espirito
Santo virus (ESV) was discovered in mosquito cell cultures (Aedes albopictus) during studies of dengue
type 2 virus in Brazil [7]. In addition, Thirlmere virus, which was isolated in 1980 from a water
sample collected in the UK [8], is related antigenically to DXV but no nucleotide sequence data have
yet been reported. In this report, we describe and characterize a novel seventh entomobirnavirus,
designated Port Bolivar virus (PTBV), which was isolated from Aedes sollicitans mosquitoes collected in
2013 near Port Bolivar, Texas, USA.

2. Materials and Methods

2.1. Study Area and Mosquito Collection

PTBV was isolated from mosquitoes collected in a salt marsh on the Bolivar Peninsula of Galveston
County, Texas, USA. Galveston County is located in the southeastern part of Texas, along the Gulf of
Mexico. The county has a total area of 2264 km2 of which 979 km2 is land and 1282 km2 (57%) is water.
Fresh and saltwater lakes, marshes and rivers are scattered throughout the county, providing abundant
breeding sites for mosquitoes. For this reason and because of the subtropical climate, mosquitoes are
a significant pest problem, so the county has an active mosquito surveillance and control program.
As part of its surveillance program, the Galveston County Mosquito Control Division (GCMCD)
collects adult mosquitoes with CO2-baited CDC light traps placed at designated sites throughout the
county to monitor species composition and abundance during most of the year.

2.2. Culture Methods

Light traps were collected early each morning by GCMCD personnel and returned to their field
laboratory where the mosquitoes were sorted on a chill table and separated into pools by species,
sex and trap locality. Representative mosquito pools collected during July 2013 were frozen and
transported on dry ice to the World Reference Center for Emerging Viruses and Arboviruses (WRCEVA),
Department of Pathology, University of Texas Medical Branch (UTMB) in Galveston for virus isolation.

After thawing, each mosquito pool was homogenized using a TissueLyser (Qiagen, Hilde,
Germany) in tubes with 1.5–2.0 mL of phosphate-buffered saline, pH 7.4, containing 10% fetal bovine
serum, 1% penicillin–streptomycin–amphotericin stock (Sigma, St Louis, MO, USA) and several 3 mm
stainless steel balls. After centrifugation, 150 µL of the supernatant was inoculated into separate
12.5 cm2 flask cultures of Vero E6 and Aedes albopictus C6/36 cells, originally obtained from the American
Type Culture Collection, Manassas, VA. After adsorption for 2 h at 28 ◦C (C6/36) or 1 h at 37 ◦C (Vero),
5.0 mL of maintenance medium was added to each flask, and they were held in incubators at 28 and
37 ◦C, respectively. Cell cultures were examined regularly for evidence of viral cytopathic effect (CPE).
The supernatant from a pool, designated GMC-202, produced CPE in the C6/36 cell culture beginning
on day 6 post-inoculation; however, it did not produce visible CPE in the Vero cell culture.

2.3. Immunofluorescent Studies

A second flask of C6/36 cells was inoculated with culture fluid from the initial passage of GMC-202.
Seven days after inoculation the infected cells were scraped from the surface of the culture flask
and spotted onto Cell-Line 12-well glass slides (Thermo Fisher Scientific, Waltham, MA, USA) for
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examination by indirect fluorescent antibody tests (IFAT) [9], using hyperimmune mouse ascitic fluids
prepared against eastern equine encephalitis (EEEV), Western equine encephalitis (WEEV), Saint Louis
encephalitis (SLEV), West Nile (WNV), San Angelo (SAV) and Flanders (FLAV) viruses provided
by WRCEVA.

2.4. Transmission Electron Microscopy (TEM)

For ultrastructural analysis, C6/36 cells infected with the second passage of GMC-202 were
fixed for 1 h in a mixture of 2.5% formaldehyde prepared from paraformaldehyde powder and 0.1%
glutaraldehyde in 0.05 M cacodylate buffer (pH 7.3), to which 0.01% picric acid and 0.03% CaCl2
were added. The monolayer was washed in 0.1 M cacodylate buffer, and cells were scraped off and
processed further as a pellet. The pellet was post-fixed in 1% OsO4 in 0.1 M cacodylate buffer (pH 7.3)
for 1 h, washed with distilled water and stained in block with 2% aqueous uranyl acetate for 20 min at
60 ◦C. The pellet was dehydrated in ethanol, processed through propylene oxide and embedded in
Poly/Bed 812 (Polysciences, Warrington, PA, USA), as described previously [10]. Ultrathin sections
were cut on a Leica EM UC7 microtome (Leica Microsystems, Buffalo Grove, II, USA), stained with
lead citrate and examined in a Phillips 201 transmission electron microscope (FEI Phillips, Hillsboro,
OR, USA) at 60 kV.

2.5. RNA Extraction and Next-Generation Sequencing

Fluid supernatants from cultures of infected C6/36 cells were used for RNA extraction and
sequencing. Supernatants were harvested on day 6 post-infection and clarified by low-speed
centrifugation (2000× g, 10 min at 4 ◦C). One milliliter of clarified supernatant was treated with
a cocktail of DNases (14 U Turbo DNase (Ambion, Austin, TX, USA), 20 U Benzonase (EMD Millipore,
Billerica, MA, USA) and 20 U RNase One (Promega, Madison, WI, USA) for 1 h at 37◦C. Viral RNA
was then extracted using Trizol and resuspended in 50 µL RNase/DNase and protease-free water
(Ambion, Austin, TX, USA). Viral RNA (~0.9 µg) was fragmented by incubation at 94◦C for 8 min in
19.5 µL of fragmentation buffer (Illumina 15016648). Sequencing libraries were prepared from the
sample RNAs using an Illumina TruSeq RNA v2 kit following the manufacturer’s protocol. The samples
were sequenced on a HiSeq 1000 using the High-Output 2 × 50 paired-end protocol. Reads in fastq
format were quality-filtered, and any adapter sequences were removed, using Trimmomatic (v0.17) [11]
software. The de novo assembly program ABySS (v1.3.7) [12] was used to assemble the reads into
contigs, using several different sets of reads, and kmer values from 20 to 40. Blastn and blastx searches
with contigs over 400 bases were used to identify the viral segments. All other contigs were from
host RNA. Contigs covering nearly the full length of the viral segments were obtained from 1 million
read pairs and kmer values of 25 and 38 for the two segments. Reads were mapped back to the viral
contigs using bowtie2 (v2.1.0) [13] and visualized with the Integrated Genomics Viewer (v2.3.26) [14]
to verify that the assembled contigs were correct. There were 7.2 million paired reads after filtering
and ~1.5% (109,537) mapped to the viral contigs. Raw sequencing data are available upon request to
the corresponding author.

2.6. Phylogenetic Analysis

An alignment of complete birnavirus VP1 protein (RdRp) amino acid sequences was created using
ClustalW in MEGA version 7.0, and phylogenetically informative sites were selected using Gblocks.
The resulting alignment comprising 274 amino acids was used to infer phylogenetic relationships in
MEGA 7.0 using the Maximum Likelihood method based on the Whelan and Goldman + Frequency
model of amino acid substitution [15]. Initial tree(s) for the heuristic search were obtained automatically
by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using a
JTT model [16], and then selecting the topology with superior log likelihood value. The phylogenetic
robustness of each node was determined using 1000 bootstrap replicates. Trees were annotated using
Figtree version 1.4.2 (http://tree.bio.ed.ac.uk/software/figtree).

http://tree.bio.ed.ac.uk/software/figtree
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3. Results

3.1. Virus Isolation

Mosquito pool GMC-202 consisted of 40 non-blooded, female Aedes sollicitans collected in a
light trap placed in a saltwater marsh (Figure 1) near the town of Port Bolivar, Galveston County,
Texas (Segment A) on the evening of 25 July 2013. The mosquito pool homogenate produced moderate
cytopathic effect (CPE) in the C6/36 cell culture beginning 6 days post-inoculation. No CPE was
observed in Vero cells inoculated with GMC-202 after 14 days.
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3.2. Immunofluorescent Studies

IFATs performed on the GMC-202-infected C6/36 cells were negative with mouse hyperimmune
ascitic fluids (MIAFs), prepared against EEEV, WEEV, SLEV, WNV, SAV and FLAV and used at a
1:20 dilution (data not shown). These six agents are the most common mosquito-borne arboviruses
recovered in East Texas.

3.3. Transmission Electron Microscopy (TEM)

In ultrathin sections of C6/36 cells infected with GMC-202, individual unenveloped virus particles
about 55 nm in diameter were observed either scattered free in the cytosol or as paracrystalline
agglomerates (Figure 2A,B).

3.4. Genomic Characterization

The PTBV genome comprises two segments of double-stranded RNA (Figure 3). As in other
entomobirnaviruses, segment A (3360 nt) contains a long open reading frame (ORF) encoding a
113.8 kDa polyprotein (pre-VP2-VP4-VP3) that is co-translationally processed by autocatalysis to
generate three polypeptides: pre-VP2 (54.6 kDa), which is further processed to generate major capsid
protein VP2; core protein VP3 (35.1 kDa); and serine/lysine protease VP4 (24.2 kDa) [17]. An alternative
long ORF (X) in segment A commences 46 nt downstream of a putative –1 ribosomal frame-shift site
(UUUUUUAA) that is predicted to generate an 89.0 kDa protein (pre-VP2-VP4N-X) [2]. PTBV RNA
segment B (3239 nt) contains a single long ORF encoding VP1, the 116.2 kDa RNA-dependent RNA
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polymerase (RdRp). PTBV VP1 includes all seven recognized sequence motifs (A–G) in the ‘palm’ and
‘fingers’ domains that form the distinctive topology of the birnavirus RdRp [18]. The PTBV RdRp also
shares with other birnaviruses the unusual active site motif (AND) rather than the G/SDD motif that is
characteristic of most (+) ssRNA viruses [18,19].Viruses 2020, 12, x FOR PEER REVIEW 5 of 11 
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The PTBV genome architecture is similar to that of DXV and other entomobirnaviruses [1].
In particular, segment A encodes a polyprotein (pre-VP2-VP4-VP3) in one long ORF and an
alternative ORF (X) that appears likely to be expressed by –1 ribosomal frameshift at a “slippery”
site (UUUUUUAA), which is conserved amongst entomobirnaviruses and has been recognized as a
particularly shift-prone sequence [2,4]. Although the DXV polyprotein (pre-VP2-VP4-VP3) has been
shown to be processed autocatalytically by the VP4 serine-lysine protease [17], the pre-VP2-VP4N-X
protein generated by –1 frameshift would lack two critical elements of the VP4 protease active site [20].
As such, it is unlikely to be processed autocatalytically. However, as shown for several birnaviruses,
maturation of VP2 involves further processing of the C-terminal region of pre-VP2, most likely by
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cellular proteases [21–23]. Therefore, subsequent processing of PTBV pre-VP2-VP4N-X to generate
VP2 and VP4N-X cannot be excluded.

3.5. Amino Acid Sequence Identities

Pairwise amino acid sequence identities (p-distances) were estimated in MEGA 7 from a ClustalW
alignment of available birnavirus VP1 (RdRp) proteins (Table 1) and birnavirus polyproteins (Table 2).
In VP1, PTBV showed highest sequence identity with entomobirnaviruses and is most closely related to
CaZV (87.8% identity) and most distantly related to ERV (69.4% identity). Amongst entomobirnavirus
pre-VP2-VP4-VP3 polyproteins, PTBV is most closely related to CaZV (91.7% identity) and most
distantly related to DXV (69.6% identity).

3.6. Phylogenetic Analysis

Phylogenetic analysis conducted using a ClustalW alignment of VP1 (RdRp) amino acid sequences
of PTBV and 22 birnaviruses indicated that it clustered with strong bootstrap support (BSP = 98%)
with the entomobirnaviruses (Figure 4).
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Figure 4. Phylogenetic relationships of Port Bolivar virus. An unrooted phylogenetic tree was inferred
by using the Maximum Likelihood method from a ClustalW alignment of complete VP1 protein (RdRp)
amino acid sequences of Port Bolivar virus (PTBV) and 22 birnaviruses. Phylogenetically informative
sites were selected from the alignment using Gblocks, resulting in 274 positions in the final dataset.
The tree with the highest log likelihood (−6338.33) is shown. The tree was drawn to scale, with branch
lengths measured in the number of substitutions per site. Bootstrap values (100 iterations) are shown for
each node. All seven established genera are shown in bold italics; those viruses which have currently
been assigned to species are also shown.
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Table 1. Percentage amino acid sequence identities (p-distance) of a ClustalW alignment of birnavirus VP1 (RdRp) proteins.

Genus Virus PTBV CaZV CuYV MXV ESV DXV ERV IPNV TABV VTABV IBDV BSHV LCBV RBV DBV TV-1 JmBLV
PTBV
CaZV 87.8
CuYV 85.8 92.2
MXV * 85.9 92.5 98.5

ESV 86.1 92.1 98.8 98.1
DXV * 72.3 72.5 72.5 72.8 72.5

Entomobirnavirus

ERV 69.4 71.3 71.6 71.7 71.6 84.7
IPNV * 28.4 28.4 28.3 28.1 28.1 29.2 28.7
TABV 28.6 28.0 28.4 28.3 28.3 28.1 28.0 90.8Aquabirnavirus

VTABV 29.0 29.0 28.7 28.6 28.6 29.4 29.1 94.5 90.4
Avibirnavirus IBDV * 29.1 28.8 28.1 28.1 27.9 28.1 27.7 48.0 47.4 47.4

BSHV * 29.6 29.8 29.9 30.1 29.8 29.5 29.8 49.2 48.2 49.0 52.3
Blosnavirus LCBV * 28.6 29.0 29.5 29.6 29.1 28.6 28.4 50.4 48.9 49.7 51.0 62.2
Ronavirus RBV * 26.1 25.1 24.7 25.0 24.9 25.0 24.9 30.9 31.3 31.0 30.2 31.7 30.7
Dronavirus DBV * 24.5 23.4 23.9 24.2 23.9 23.4 22.4 29.5 29.2 29.8 27.7 29.6 29.6 24.6
Telnavirus TV-1 * 24.5 24.2 23.9 23.5 23.6 25.0 25.1 30.3 30.5 30.1 31.1 31.8 33.3 28.7 25.0

unassigned JmBLV 28.1 27.3 27.3 27.3 27.3 27.3 28.0 31.7 31.0 31.1 30.2 30.6 30.7 26.9 23.2 26.4

* Only these viruses are currently formally classified to species.
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Table 2. Percentage amino acid sequence identities (p-distance) of a ClustalW alignment of birnavirus VP2-VP4-VP3 polyproteins.

Genus Virus PTBV CaZV CuYV MXV ESV DXV ERV IPNV TABV VTABV IBDV BSHV LCBV RBV DBV TV-1
PTBV
CaZV 91.7
CuYV 85.9 89.2
MXV * 86.2 89.7 98.4

ESV 85.1 88.1 98.4 97.3
DXV * 69.6 70.5 69.3 68.8 68.9

Entomobirnavirus

ERV 71.3 72.7 70.7 70.4 70.4 86.1
IPNV * 25.2 25.2 25.0 24.9 24.8 24.8 25.6
TABV 25.1 24.5 24.4 24.4 24.2 24.3 25.1 84.7Aquabirnavirus

VTABV 25.3 25.0 24.5 24.4 24.4 24.3 25.3 88.8 86.8
Avibirnavirus IBDV * 25.1 24.8 25.2 25.2 25.0 25.6 27.0 35.5 35.5 36.1 ###

BSHV * 26.6 26.6 26.4 26.3 26.4 25.6 27.7 35.3 36.2 35.8 39.8
Blosnavirus LCBV * 24.5 25.0 25.0 24.9 24.9 23.8 25.0 34.5 34.8 33.8 39.6 51.5
Ronavirus RBV * 24.9 24.7 25.0 24.5 24.7 25.7 26.5 27.5 26.6 27.0 27.7 28.2 26.3
Dronavirus DBV * 24.9 24.5 24.0 24.0 24.0 24.3 24.0 27.5 27.7 28.7 29.2 27.4 27.7 25.7
Telnavirus TV-1 * 21.5 21.6 20.9 21.1 20.5 22.6 22.6 23.8 24.3 22.9 26.0 26.7 26.2 25.7 23.1

* Only these viruses are currently formally classified to species.
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4. Discussion

Along with CuYY, PTBV is the second entomobirnavirus to be isolated from free-living
mosquitoes (Table 3) [4]. Two others, CaZV and MXV, were detected by next-generation sequencing
(without isolation) of field-collected mosquitoes [3,6]. The remaining four known entomobirnaviruses
(DXV, ERV, ESV and Thirlmere virus) were isolated from or were detected by next-generation sequencing
of insect cell lines, or in a water sample passed in insect cell cultures [2,5,7]. For this reason, there is
some uncertainty as to their origin. For example, ESV was discovered during purification of a strain of
dengue virus type 2 (DENV-2) that was originally isolated from a Brazilian dengue patient and had
been passaged three times in C6/36 cell cultures [7]. DXV, the prototype of the genus Entomobirnavirus,
was discovered under similar circumstances. DXV was isolated as a contaminant during infection
studies with sigma virus (genus Sigmavirus: Rhabdoviridae) [2].

Currently, only two species (Drosophila X virus and Mosquito X virus) have been assigned in the
genus Entomobirnavirus by the International Committee on Taxonomy of Viruses (ICTV), and no formal
species demarcation criteria appear to have been published. Phylogenetically, PTBV clearly falls within
this genus and, based upon amino acid sequence divergence in VP1 RdRp and the VP2-VP4-VP3
polyprotein, it is clearly distinct from both DXV (27.7% and 30.4% divergence, respectively) and MXV
(14.1% and 13.8% divergence, respectively) (Figure 4). Although PTBV is most closely related to CaZV,
these viruses have been detected in culicine mosquitoes of different species from geographically distant
locations (Aedes sollicitans in Texas and Ochlerotatus spp. in France, respectively) and are sufficiently
divergent in amino acid sequence (12.2% divergence in VP1; 8.3% divergence in VP2-VP4-VP3) to be
assigned to distinct new entomobirnavirus species.

Table 3. Names, original source, locality, and accession numbers of currently recognized
entomobirnaviruses *.

Virus Name
(Abbreviation) Source Locality Accession

Numbers Reference

Drosophila X virus
(DXV) Drosophila melanogaster cell culture France U60650;

AF196645 [2]

Eridge virus (ERV) D. melanogaster cell culture UK KU754527;
KU754528 [5]

Culicine-associated
Z virus (CaZV) Ochlerotatus caspius and Oc. detritus France KF298271;

KF298272 [6]

Espirito Santo
virus (ESV) Aedes albopictus cell culture Brazil JN589003;

NJ589002 [7]

Mosquito X virus
(MXV) Anopheles sinensis China JX403941;

JX403942 [3]

Culex Y virus
(CuYV) Culex pipiens complex Germany JQ659254;

JQ659255 [4]

Thirlmere virus Water UK Not available [8]

Port Bolivar virus
(PTBV) Aedes sollcitans USA MT263973

MT263974 Present paper

* Entomobirnaviruses reported as of February 2020.

To date, the strongest association of entomobirnaviruses has been with mosquitoes; but the effects
of this group of viruses on their mosquito hosts are still unknown. With the current interest in mosquito
microbiomes, this should be an area for future study. Also, given their wide geographic distribution
and the diversity of mosquito hosts, it seems likely that many other entomobirnaviruses exist in nature
in mosquitoes and possibly other insects and arthropods.
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