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Cortical stimulation for treatment of neurological 
disorders of hyperexcitability: a role of homeostatic 
plasticity

Introduction
Neurological disorders exhibit not only symptoms of 
functional deficits such as loss of sensation, weakness and 
paralysis, and poor cognitive function, but also abnormal 
functions such as pain, epilepsy, tinnitus, and phantom sen-
sation. A key pathophysiological feature of these symptoms 
of abnormal functions is excessive activity and hyperexcit-
ability of certain related subcortical pathways and cerebral 
cortex (Eggermont, 2005; Badawy et al., 2009; Latremoliere 
and Woolf, 2009). Correspondingly, the current treatment 
strategy for these neurological disorders is to reduce excit-
ability and enhance inhibition. Paradoxically, brain stim-
ulation that enhances neuronal activity is also found to be 
effective for treating these conditions (De Ridder et al., 2007; 
Morrell, 2011; Treister et al., 2013). Although various mech-
anisms such as activation of inhibitory circuits have been 
proposed to explain such effect, the direct effect of brain 
stimulation on the stimulated circuit is not well understood. 
Because these hyperexcitable neurological disorders usu-
ally start with acute or chronic damage and degeneration 
of brain or loss of afferent input, a homeostatic plasticity 
mechanism may play a role in the development and mainte-
nance of brain hyperexcitability, which supports that activity 

stimulation can control neurological symptoms by reducing 
aberrant homeostatic hyperexcitability. Indeed, results from 
recent studies support a role of homeostatic plasticity in the 
mechanisms of neuropathic pain, acquired epilepsy, and 
neuropathic pain, which may support the development of 
novel therapeutic treatments for these neurological disor-
ders. Here we briefly review recent progress in this direc-
tion and discuss future perspective. We have performed a 
PubMed search of articles published between January 1975 
and July 2018 on homeostatic plasticity  or cortical stimu-
lation in combination with acquired epilepsy, neuropathic 
pain, or  tinnitus. 

Development of Homeostatic Hyperexcitability 
after Injury or Sensory Deprivation
Homeostatic plasticity is the ability of neural network to 
maintain a relatively constant level of firing rate in response 
to an imposed activity increase or decrease (Turrigiano et 
al., 1998). When a cortical network loses activity or input, it 
responds with compensatory increases in excitatory synaptic 
strength and intrinsic excitability, and/or a reduction in syn-
aptic inhibition so that a set level of activity is maintained 
(Figure 1A) (Turrigiano et al., 1998; Davis and Bezprozvan-
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ny, 2001). Many neurological diseases feature hyperexcit-
ability. However, such hyperexcitability is often developed 
form initial loss of neurons and synapses. Deprivation of pe-
ripheral input by activity blockade, amputation, or nervous 
lesion has been shown to cause homeostatic hyperexcitabil-
ity of the cortical network in developing and adult brain. 
Therefore, development of cortical hyperexcitability that 
underlies various neurological disorders may be driven and 
maintained by abnormal homeostatic plasticity in response 
to initial lesions and loss of activity. Furthermore, because 
the primary lesion or pathology in the etiology of these neu-
rological disorders (e.g., spinal cord injury or brain injury) 
is often permanent or progressive, such homeostatic com-
pensation is likely a constant or progressive process so that 
the deafferented cortex can maintain a set level of activity. Al-
though homeostatic plasticity has been extensively studied in 
cultured neurons, brain slices, and more recently in the visual 
cortex in vivo (Echegoyen et al., 2007; Goel and Lee, 2007; 
Hengen et al., 2013; Keck et al., 2013), its role in pathological 
conditions has been demonstrated only recently.

Acquired epilepsy
Acquired epilepsy usually develops following an initial in-
sult such as traumatic brain injury (TBI) or status epileptics. 
Brain injury, particularly severe TBI and penetrating TBI, 
causes neuronal death, tissue damage, and an initial loss of 
activity in surviving neurons (Alves et al., 2005). Indeed, 
lower action potential firing rates are recorded in TBI pa-
tients, the lateral fluid percussion model of TBI in rats, and 
an undercut model in cats in vivo (Timofeev et al., 2000; 
Alves et al., 2005). Neuronal activity is also depressed fol-
lowing brain ischemia (Heiss et al., 1976). Computational 
and experimental studies suggested that such activity loss 
is a driving force leading to epileptogenesis (Houweling et 
al., 2005; Dinocourt et al., 2011; Subramanian, 2011). In 
support of this idea, pharmacological blockade of neuronal 
activity of hippocampal neurons in vitro or in vivo for a few 
days leads to hyperexcitability with increased glutamatergic 
transmission, decreased GABAergic synaptic inputs, and 
epileptogenesis (Trasande and Ramirez, 2007). Likewise, 
chronic blockade of activity with tetrodotoxin or a lesion to 
the developing hippocampus produces chronic focal seizures 
accompanied by axon sprouting and increased intrinsic ex-
citability (McKinney et al., 1997; Bausch et al., 2006). 

Tinnitus
Tinnitus is the perception of a sound in the absence of 
acoustic stimulation. Cochlear damage and hearing loss 
can lead to tinnitus and abnormally increased spontaneous 
firing rates and synchronization of neurons in the auditory 
pathway, including the primary auditory and associated 
cortices (Elgoyhen et al., 2015). Homeostatic plasticity has 
been proposed to be responsible for hyperexcitability in 
auditory pathway in tinnitus (Yang et al., 2011). A compu-

tational study suggested that homeostatic compensation 
leads to hyperactivity of the model neurons when a normal 
ratio between mean and spontaneous firing rate of the au-
ditory nerve is decreased due to a loss of outer hair cells or 
damage to hair cell stereocilia. Homeostasis can also amplify 
non-auditory inputs, which then contribute to hyperactivity 
(Schaette and Kempter, 2006). In a high-frequency hearing 
loss model, it was shown that neurons in the auditory cortex 
that represent the hearing-loss frequencies have reduced 
inhibitory synaptic transmission but unaltered excitatory 
synaptic transmission, and there is behavioral signs of tin-
nitus with the pitch in the hearing-loss frequency range. In 
contrast, neurons in the normal low-characteristic frequen-
cy zone have enhancement in both excitatory and inhibitory 
synaptic transmissions (Yang et al., 2011). 

Neuropathic pain
Neuropathic pain occurs as a consequence of a primary 
lesion or disease that affects the somatosensory nervous 
system. Its development is believed to involve diverse mech-
anisms including changes in ion channels and receptors, 
inflammation, immune response, loss of inhibition, synap-
tic plasticity, and circuit reorganization (Latremoliere and 
Woolf, 2009). Synergic interactions among them contribute 
to peripheral and central sensitization, leading to hyper-
excitability and ectopic firing of the nociceptive pathways. 
These electrophysiological changes reduce pain threshold 
and contribute to hyperalgesia and allodynia of neuropathic 
pain. Because development of neuropathic pain reflects a 
transition from an initial loss of neuronal activity due to a 
primary lesion (e.g., nerve or spinal cord injury [SCI]) to a 
state of hyperexcitability and eventual paroxysmal discharg-
es of the neuronal network, this process is reminiscent of 
homeostatic regulation. Deprivation of peripheral input by 
activity blockade, amputation, or nervous lesion has been 
shown to cause homeostatic hyperexcitability of thalamic 
or cortical network in developing and adult brain (Wang 
and Thompson, 2008; Xiong et al., 2017). SCI results in 
slower and more silent overall cortical spontaneous activ-
ity in the deafferented cortex as well as in the neighboring 
cortex during the earlier time period, representing a switch 
to a network state of slow-wave activity (Boord et al., 2008). 
In tibial nerve injury model of neuropathic pain, optical 
imaging of voltage sensitive dye revealed increased optical 
intensity and an enlarged area of activation in the primary 
somatosensory cortex (S1) of neuropathic rats during elec-
trical stimulation (Cha et al., 2009). 

Cortical Stimulation for Controlling 
Hyperexcitability
The hyperexcitability of neural network in epilepsy, tinnitus, 
and neuropathic pain naturally leads to a treatment princi-
ple that attempts to suppress such hyperexcitability through 
inhibiting excitatory activity or enhancing inhibition. In-
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Figure 1 Two opposing strategies for controlling cortical hyperexcitability. 
(A) A homeostatic plasticity mechanism suggests that activity deprivation will cause neuronal homeostatic hyperexcitability ( ① ) while activity 
enhancement reduces neuronal activity ( ② ). (B) Development of neuropathic pain, acquired epilepsy, and tinnitus often involves primary lesion 
or pathology that causes initial deprivation of afferent input or directly injury of the cortex, which may contribute to the development of hyperex-
citability through a homeostatic mechanism ( ① ). This network hyperexcitability may be controlled either by enhancing excitatory activity so that 
the hyperexcitability can be reversed through the homeostatic mechanism ( ② ) or by directly inhibiting activity by blocking glutamate transmis-
sion or enhancing GABAergic inhibition.

deed, this principle underlies current treatment strategy 
for controlling neurological disorders featuring abnormal 
hyperexcitability (Figure 1B). However, if hyperexcitabil-
ity is induced and maintained by homeostatic plasticity 
in response to a loss of neuronal activity or afferent input 
after brain injuries or sensory deprivation, then stimulating 
neuronal activity should promote compensatory capability, 
reduce homeostatic plasticity, and prevent or control the 
symptoms. In other words, stimulating cortical activity will 
relieve the constant burden of homeostatic regulation so that 
activity of neural circuits may reverse to a relatively normal 
activity state (Figure 1B). Evidence from clinical and animal 
studies supports that cortical stimulation is indeed effective 
in the neurological diseases discussed above.

Acquired epilepsy
Treatment of cultured hippocampal slice with bicuculline 
for one week greatly diminishes the intensity of epileptiform 
activity that could be induced. Cannabinoid antagonists 
and alpha (2)-adrenoceptor antagonist atipamezole are both 
proconvulsant, but their application immediately after brain 
insults prevents the development of hyperexcitability or 
reduces seizure frequency and severity in animal models of 
epilepsy (Pitkanen et al., 2004; Armstrong et al., 2009). Cor-
tical electrical stimulation is effective in enhancing neuronal 

plasticity and synaptic reorganization after TBI, reducing 
bursting activity in neuronal culture in vitro, and controlling 
partial seizures in drug resistant patients (Demirtas-Tat-
lidede et al., 2012). Electrical stimulation of hippocampus 
has also been demonstrated to be effective and safe for 
controlling refractory temporal lobe epilepsy (Han et al., 
2014). A recent double-blind, randomized, controlled trial 
in patients with refractory partial-onset seizures suggested 
that open loop cortical stimulation for one month resulted 
in a significant reduction in mean seizure frequency in the 
treatment group compared with that in the sham group 
(37.9% versus 17.3%) (Morrell, 2011). However, evidence 
that specifically supports a role of homeostatic plasticity in 
preventing acquired epileptogenesis or controlling epileptic 
seizures is still not available. 

Tinnitus
Computational model predicts that appropriate additional 
acoustic stimulation can reverse the development of hy-
peractivity, which could provide a new basis for treatment 
strategies. In severe cases of intractable tinnitus, 37% of pa-
tients were responsive to tonic auditory cortex stimulation 
via implanted electrodes in the primary auditory cortex or 
overlying the secondary auditory cortex. A half of the 63% 
non-responders became responsive after switching to burst 
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stimulation. The average tinnitus reduction is 53% for the en-
tire group (De Ridder et al., 2011). Burst stimulation is capa-
ble of suppressing tinnitus in more patients more effectively 
than tonic stimulation, especially for noise-like tinnitus (Meng 
et al., 2011). The results suggest that auditory cortical stimu-
lation may be a valuable treatment option for severe intracta-
ble tinnitus. However, non-invasive brain stimulation using 
repetitive transcranial magnetic stimulation (rTMS) have 
shown mixed results on tinnitus, with some studies showing 
significant improvement in the severity of tinnitus while the 
others having no significant effect (Meng et al., 2011; Lond-
ero et al., 2018). Since different stimulation parameters (i.e., 
frequency, number of stimuli per session) and study designs 
affect the efficacy of rTMS and treatment outcome, further 
basic and translational studies are needed to elucidate the ef-
ficacy and mechanism of rTMS for tinnitus.

Neuropathic pain
Motor cortical stimulation using cortical electrical stimula-
tion or rTMS is a common treatment for refractory chronic 
pain including neuropathic pain and phantom pain (Lima 
and Fregni, 2008). Although the direct effect of high-fre-
quency rTMS (5–20 Hz) is facilitating cortical neuronal 
activity, rTMS has been shown to be effective in relieving 
pain in refractory neuropathic pain. The underlying mech-
anisms of rTMS have been suggested to involve inhibition 
of nociceptive pathway (e.g., thalamus) and the activation 
of pain-modulating nuclei (e.g., periaqueductal gray and 
zona incerta) (Treister et al., 2013). Similarly, several studies 
demonstrated that S1 stimulation was effective in relieving 
pain in human and animal studies (De Ridder et al., 2007; 
Antal et al., 2008). We recently showed that optogenetic 
stimulation of layer V pyramidal neurons in S1 has analge-
sic effect in transient spinal cord ischemia and tibial nerve 
injury models of neuropathic pain and that such stimulation 
directly decreased S1 hyperexcitability through reducing the 
frequency of miniature postsynaptic current and increasing 
the threshold of action potential firing of these neurons in 
S1 (Xiong et al., 2017). These results support the idea that 
promoting cortical activity after somatosensory lesion will 
be able to control cortical hyperexcitability and reduce pain. 
Because the motor cortex provides strong synaptic input to 
the infragranular layers of S1 (Zagha et al., 2013; Kinnischtz-
ke et al., 2014) and motor cortical stimulation suppresses 
evoked potentials in the S1 (Chiou et al., 2012), it is critical 
to understand whether motor cortical stimulation relieves 
chronic pain by directly inhibiting S1 activity or through a 
homeostatic plasticity mechanism. 

Prospective
Sensory deprivation and deafferentation is traditionally used 
as a tool for inducing homeostatic plasticity and research on 
homeostatic plasticity often focuses on its physiological role 
and mechanism. With increasing evidence that supports a role 
of homeostatic plasticity in neurological conditions, further 

study is fundamental for establishing its role in disease mech-
anism and developing effective treatment strategy through 
activity enhancement such as cortical stimulation. The homeo-
static plasticity hypothesis may also guide the development 
of new drugs and effective brain stimulation protocols. For 
example, treatment based on homeostatic plasticity would re-
quire that the frequency and pattern of cortical stimulation be 
similar to physiological activity and longer duration of stim-
ulation may be more beneficial. Another approach to cortex 
stimulation is to combine cortex stimulation with rehabilita-
tion or peripheral stimulation (Levy et al., 2016), which may 
have better effects in improving and normalizing pathway or 
brain activity and reducing homeostatic hyperexcitability. In 
tinnitus, pairing electrical stimuli and external stimuli (noise) 
is shown to drive cortical activity more efficiently and improve 
the outcome (De Ridder et al., 2014). 

In conclusion, cortex stimulation is a promising approach 
for treating a variety of neurological disorders, but its mech-
anism is poorly understood. The homeostatic plasticity 
hypothesis may not only explain why activity stimulation 
can be used for treating refractory neurological diseases 
featuring hyperexcitability, but also provide guidance on 
designing protocols for cortical and brain stimulation. Such 
stimulation will enhance spontaneous activity and improve 
functional connectivity of the related network, leading to 
symptom relief and functional improvement. Because the 
activity stimulation strategy is consistent with the intrinsic 
need of the body to compensate for lost function, it may be 
more effective and longer lasting in controlling these refrac-
tory neurological disorders.
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