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Abstract

Background: Natural language processing (NLP) tasks in the health domain often deal with limited amount of
labeled data due to high annotation costs and naturally rare observations. To compensate for the lack of training data,
health NLP researchers often have to leverage knowledge and resources external to a task at hand. Recently, pre-
trained large-scale language models such as the Bidirectional Encoder Representations from Transformers (BERT) have
been proven to be a powerful way of learning rich linguistic knowledge from massive unlabeled text and transfer-
ring that knowledge to downstream tasks. However, previous downstream tasks often used training data at such a
large scale that is unlikely to obtain in the health domain. In this work, we aim to study whether BERT can still benefit
downstream tasks when training data are relatively small in the context of health NLP.

Method: We conducted a learning curve analysis to study the behavior of BERT and baseline models as training
data size increases. We observed the classification performance of these models on two disease diagnosis data sets,
where some diseases are naturally rare and have very limited observations (fewer than 2 out of 10,000). The baselines
included commonly used text classification models such as sparse and dense bag-of-words models, long short-term
memory networks, and their variants that leveraged external knowledge. To obtain learning curves, we incremented
the amount of training examples per disease from small to large, and measured the classification performance in
macro-averaged Fscore.

Results: On the task of classifying all diseases, the learning curves of BERT were consistently above all baselines,
significantly outperforming them across the spectrum of training data sizes. But under extreme situations where only
one or two training documents per disease were available, BERT was outperformed by linear classifiers with carefully
engineered bag-of-words features.

Conclusion: As long as the amount of training documents is not extremely few, fine-tuning a pretrained BERT model
is a highly effective approach to health NLP tasks like disease classification. However, in extreme cases where each
class has only one or two training documents and no more will be available, simple linear models using bag-of-words
features shall be considered.
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Background

Machine learning has become the predominant approach
to health natural language processing (NLP) in recent
years. To achieve high performance, machine learn-
ing models often need to be trained on a substantial
amount of labeled data. Deep learning models, while
capable of achieving even higher performance, may need
more training data to train a large number of internal
parameters.

Unlike machine learning tasks in the general domain
where training data are abundant, health NLP data are
mostly small, as creating such data at scale can be prohib-
itively expensive and even infeasible.! For instance, labe-
ling social media posts can be crowdsourced at a very low
cost through Amazon Web Services [1], while annotating
clinical notes requires special medical training and long
hours [2]. On the task of rare disease identification, the
amount of labeled documents is further bounded by the
size of population, since rare diseases appear very infre-
quently (a rare disease affects fewer than 1 in 1500 peo-
ple in the U.S. [3] or 1 in 2000 in Europe [4]). As a result,
health NLP researchers have been proposing a variety of
methods to compensate for the lack of training data [5].
These include leveraging expert knowledge and medi-
cal ontologies [6-8], transferring statistical knowledge
learned from related tasks [9], simultaneously learning
from multiple tasks [10], using weak/distant supervision
signals [11, 12], selectively asking experts for label [13].

Recently, Bidirectional Encoder Representations from
Transformers (BERT) model has been increasingly
adopted by the NLP research community as it celebrates
superior performance in a wide range of NLP tasks [14].
BERT learns contextual representation of words using
information from both sides of a word, effectively cap-
turing syntactic and semantic knowledge that can ben-
efit many NLP tasks. A pretrained BERT model can be
tailored to a specific NLP task by using the task-specific
data to further train the model, a procedure known as
**fine-tuning” In this way, the new task can build on top
of the pretrained knowledge in BERT to achieve superior
generalization performance. However, previous works all
use very large data sets for fine-tuning, which are often
on the order of hundreds of thousands and even millions
of examples [15, 16]. In general, however, it is impractical

U In The Lord of the Rings, "Bert” is a giant stone troll. In terms of size, health
NLP data are the "Hobbits” (represented by Bilbo Baggins) among machine
learning datasets.
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to collect training data at such a large scale in the health
domain, for reasons discussed above.

Given the high potential of BERT and the often small
data in health NLP, it is natural to ask the following ques-
tion: can we fine-tune BERT on small health NLP data
and still achieve superior performance? On the one hand,
BERT may hold the promise as it has been shown to per-
form well in many NLP tasks thanks to the unsupervised
pretraining. On the other hand, BERT is itself a large
complex model with a massive number of parameters, so
to achieve high performance it may need a good amount
of labeled data for fine-tuning.

In this paper, we answer the above question by con-
ducting learning curve analyses of BERT and other mod-
els on a disease diagnosis task. As conceptually shown
in Fig. 1, a learning curve can be viewed as a “return-
on-investment” curve, where the “investment” is labeled
data, and the "return” is a model’s generalization perfor-
mance on test data. Learning curves allow us to com-
pare the performance of different models given different
labeling budgets. They can also show which model will
improve faster if we invest more labels. Such a compari-
son is especially relevant when the labeling cost is high,
as in health NLP task scenarios.

The learning curve analysis reveals a series of interest-
ing and informative findings, as summarized below:

« BERT is able to achieve superior performance even
when fine-tuned on a handful of (but more than one)
labeled documents per class.

+ BERT’ prior knowledge can effectively compensate
for the lack of training data in most cases, but simple
linear models are still worth considering when the
amount of training data is extremely limited and not
expected to increase any time soon. In the extreme
case where each class has only one or two labeled
documents, BERT could be outperformed by models
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using carefully engineered sparse bag-of-words fea-
tures.

+ When more labeled documents start to become
available, BERT demonstrates fast rate of perfor-
mance gain, which allows it to quickly outperform
other models by a significant margin. It shows that
BERT’s prelearned representation enables it to
extract the most rich information from each train-
ing example. In other words, if we modestly increase
the labeling budget, BERT will likely show a very high
return.

Prior work
BERT in health domain
Lee et al. obtained BioBERT by taking Google’s pre-
trained BERT model and continuing the pretraining tasks
(masked language modeling and next sentence predic-
tion) on large-scale biomedical literature [17]. The use of
domain-specific texts enabled BioBERT to outperform
BERT on certain biomedical NLP tasks. Alsentzer et al.
[18] further added clinical texts to continue the pre-
training on the basis of BioBERT to get Clinical BERT.
A closely related line of work was conducted by Peng
et al., where BERT is fine-tuned on biomedical and clini-
cal texts, and then applied to ten benchmarking tasks,
including sentence similarity measurement, named entity
recognition, relation extraction, document classification,
and logical inference [19]. All the above works demon-
strate the value of domain-specific pretraining when
applying BERT on health domain tasks. BERT has also
been applied to non-English health NLP tasks. Pretrained
Chinese BERT models have been fine-tuned and applied
on NLP tasks such as disease classification, [20], named
entity recognition [21], and a host of other tasks [22].
This paper studies BERT from another significant
perspective, i.e., its generalization performance when
fine-tuned on small training data. To the best of our
knowledge, there has been no previous work that stud-
ies the performance of BERT when the size of training
data starts from very small. Instead, researchers often use
learning curves to demonstrate the enormous learning
capacity of deep learning models when training data size
scales up exponentially [23].

Disease classification

Stanfill et al. conducted a systematic literature review
of clinical coding and classification systems [24]. Recent
works on disease classification studied various applica-
tion scenarios, including smoking status identification
[25], obesity prediction [26, 27], online patient forum
moderation [28], cancer patient sentiment classification
[29], vaccine adverse events detection [30], etc. These

Page 3 of 10

works above are all based on English texts. Zhong et al.
[31] applied nearest neighbor classifier to identify the
disease category based on patient disease description in
Chinese. In this study, we predict the presence of a dis-
ease in documents written in Chinese. Although the texts
are written by patients and health insurance profession-
als, applying NLP on these texts shares similar challenges
as clinical NLP [32, 33], where the texts are written by
physicians.

Incorporating existing knowledge

External knowledge has significant impact on machine
learning performance. Besides pretraining model param-
eters using large unlabeled corpus, incorporating knowl-
edge from ontologies (a.k.a. knowledge graphs or KGs)
has also received attention. Garla et al. [34] utilized the
relationship between medical concepts in KG to improve
feature selection. Yao et al. used UMLS entity embed-
dings in convolutional neural networks [27]. Li et al.
used KG to derive additional knowledge features in rare
disease classification [35]. Choi et al. [36] developed a
graph-based attention model to represent words using
node vectors learned from the ontology. Some studies
[37, 38] suggest that incorporating KG into BERT also
can bring some benefits.

Method

Data description and problem formulation

We use two Chinese patient disease classification cor-
pora. The first corpus, HaoDaiFu, contains 51,374 patient
records categorized into 805 diseases. Each document
contains the symptom description submitted by a patient
to Haodf.com, the largest Chinese online platform that
connects patients to doctors. These patients have been
previously diagnosed by a clinician, and now come to
the platform for further consultation. The second cor-
pus, ChinaRe, contains 86,663 patient records catego-
rized into 44 disease categories. Each document contains
the symptom description of a patient written by a health
insurance professional in ChinaRe, which is one of the
largest reinsurance groups in China. The diagnoses were
determined by a clinician and sent to the insurance com-
pany. In both corpora, each document corresponds to
a unique patient and only has one disease label. Table 1
summarizes basic statistics of the two corpora. Jieba
package was used for Chinese word segmentation [39].

Problem formulation

The task of patient diagnosis can be formulated as a text
classification problem: to assign a disease label given the
narrative description of a patient’s symptoms. Accurate
disease diagnosis is an important task towards computer-
assisted patient triage and risk stratification. We aim to
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Table 1 Corpora statistics

HaoDaiFu ChinaRe
# of documents 51,374 86,663
# of diseases 805 44
# of rare diseases 89 5
Vocabulary size 59,879 41,087
Average # of words/doc 27 30

study the performance of different classification models
(especially comparing BERT to other models) when pro-
vided an increasing amount of training data.

Compared algorithms

In this section, we describe classification models we
include in comparison. We include text classification
models that use one-hot word representations, dis-
tributed word representations, and contextual word
representations. Since our main goal here is to study
the behavior of classifiers when the training data size
increases from small to large, we do not consider classi-
fication techniques intended for small data sizes only, e.g.
one-shot learning or few-shot learning classifiers.

Classifiers using one-hot word representations

We first consider the most common baseline of text clas-
sification—a linear classifier using bag-of-words features
(and its variants). Although simple, such a model offers
two advantages in handling small training data. First,
a regularized, sparse linear classifier does not overfit as
easily as complex models, therefore delivering stable
performance. Second, the simple model allows relatively
straightforward ways of incorporating prior knowledge
into its feature representation.

BOW

This is a support vector machine classifier using TFIDF-
weighted bag-of-words (BOW) features and linear ker-
nel, trained with L, regularization.

BOW_EXP

This model enhances the feature representation of BOW
with feature selection and synonym expansion tech-
niques. The basic idea is to emphasize class-indicative
features in a document if that document contains such a
feature or its synonyms. It takes the following steps:

+ A feature selection algorithm is used to rank the rel-
evance of each unigram feature in the classification
task.

+ Each unigram feature w is associated with a class cif ¢
has the largest p(c|w) in training data. For each class,

Page 4 of 10

we select k highest ranking features according to the
feature selection metric. The union of all selected fea-
tures are denoted as F.

« For each word u in a document d, we compute its
vector similarity to the vector of each w € F in a word
embedding space. If cosine similarity cos (i, w > t),
we increment the count of w € d by 1 before com-
puting the TFIDF transformation. The step concep-
tually adds a new word w into d.

The above algorithm is a hybrid of feature selection
and feature expansion [40]. Instead of discarding unse-
lected features (which may still be useful), it increases
the weights of selected features in each document. The
method is inspired by the distributional prototype fea-
tures proposed by [41] and later applied in clinical NLP
[42].

BOW_EXP_KG

This model refines BOW_EXP by using knowledge graph
(KG)-enhanced word vectors. A knowledge graph can be
viewed as a semantic network, where entities (words and
phrases) are nodes and relations between concepts are
edges. We employ the LINE network embedding algo-
rithm to learn low-dimensional word vectors that pre-
serve knowledge in the semantic network [43].

Classifiers using distributed word representations

We consider another group of text classification models
that represent words as distributed semantic vectors [44].
These word vectors can be learned from scratch using
the data of current task, or initialized with word vec-
tors learned on related tasks to transfer semantic knowl-
edge. Here we consider two representative models using
distributed word vectors: the continuous bag-of-words
model and long short-term memory networks.

csow

This is a linear-kernel support vector machine classifier
that represents a document as the average of its words’
vectors. It is also known as continuous bag-of-words
(CBOW) [45], as conventional bag-of-words representa-
tion can be viewed as an average of one-hot word vectors.
The word vectors are the same as in BOW_EXP and fixed
in the training process.

CBOW_KG
This model refines CBOW by using KG-enhanced word
vectors as used in BOW_EXP_KG.

LSTM
This classifier uses unidirectional long short-term mem-
ory networks (LSTM) to process the document as a word
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sequence. The model’s word embedding layer is initial-
ized with the same word vector as in BOW_EXP and
fine-tuned in the training process.

LSTM_KG

This model refines LSTM by initializing the word embed-
ding layer with KG-enhanced word vectors as used in
BOW_EXP_KG and CBOW_KG. The word embedding
layer is fine-tuned in the training process.

Classifier using contextual word representations
Exemplified by BERT (Bidirectional Encoder Representa-
tions from Transformers [46]), contextual word represen-
tations encode each word using not only the distributed
vector of the word itself, but also distributed vectors of
surrounding words that have semantic dependencies with
the word [47]. BERT extensively uses multi-head atten-
tion mechanism to represent each word by "paying atten-
tion to” all other words in the same context (sentence or
document). Instead of processing tokens sequentially as
in LSTM, BERT’s multi-head attention can process all
tokens in parallel. This mitigates the gradient vanish-
ing problem when capturing long-range dependencies
between words. As a result, BERT can efficiently model
the dependencies between labels and words as well as
among words themselves.

BERT

We configure a Chinese BERT-base model released by
Google? to perform multiclass classification tasks. Since
the primary goal of this study is to compare BERT with
other non-BERT classification models on small train-
ing data, it suffices to use a BERT model pretrained on
general domain texts. We leave the study that compares
BERT models fine-tuned on Chinese clinical texts [21,
22] for future work.

This sentence has two reference citations [1, 2].

More text of an additional paragraph, with a figure ref-
erence (Fig. 1) and a figure inside a Word text box below.
Figures need to be placed as close to the corresponding
text as possible and not extend beyond one page.

Implementation details

The support vector machine classifier (SVM) was imple-
mented using Python scikit-learn package. To determine
the best regularization strength C for SVM models, we
performed grid search over {0.001, 0.01, 0.1, 1, 10, 100}
on a development set. We set C =1 as it consistently
delivered the best result (performance metric discussed
below).
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We explored various feature selection algorithms used
in BOW_EXP and BOW_EXP_KG. These include chi-
square %2, information gain, and bi-normal separation
[48] in our pilot study. We selected the x? method as it
delivers the best performance on development set. We
select k = 2 features for each class.

In BOW_EXP and BOW_EXP_KG, the threshold of
cosine similarity was set to £ = 0.9 after searching over
{0.7, 0.8, 0.9} on development set.

We used 256-dimensional word vectors pretrained on
a large-scale Chinese text corpus [49] in BOW_EXP_KG
and CBOW_KG.

To learn KG-enhanced word vectors, we derive a
semantic network from a general Chinese knowledge
graph, CN-DBpedia [50]. It contains 16.8 million entities
and 223 million relations and is publicly available.?

We used the LINE network embedding algorithm to
fine-tune word vectors using the massive semantic net-
work above. It was configured to learn from secondary-
order proximity. We performed grid search for LINE’s
hyperparameters on a development set. These include
(the best setting is underlined): negative edge sampling
rate {5, 10, 50, 100}, batch size {128, 256, 512, 1024, 2048},
and number of batches {50 K, 100 K, 150 K, 200 K, 250 K,
300 KJ.

We used tensorflow/keras to implement deep sequence
learning models, including LSTM, LSTM_KG, and BERT.
For LSTM models, we used the recommended Adam
optimizer and default learning rate (1073). We set the
number of training epochs such that the loss on valida-
tion set stops decreasing. For BERT, we also used the
recommended Adam optimizer and default learning rate
decaying schedule. The number of training epochs was
set to 40 using the same procedure as LSTM models. A
document is padded (truncated) if it is shorter (longer)
than the maximum sequence length supported by BERT-
base (512 words).

Evaluation methodology

Performance metric

Viewing the classification of each individual disease
(class) as a binary classification problem, results can be
divided into True Positive (TP), True Negative (TN),
False Positive (FP), and False Negative (FN). Recall
measures the percentage of TPs among all documents
that truly mention that disease; precision measures the
percentage of TPs among all documents predicted to
mention that disease. F; score is the harmonic mean of
precision and recall, a metric that balances the two [51].
To measure the classification performance of a set of

2 https://github.com/google-research/bert.

3 http://kw.fudan.edu.cn/cndbpedia/download/.
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diseases, we use macro-averaged Fj. Formally, the met-
rics are calculated as follow

Fy — 2xrecall x precision __ 2x TP

1 recall+precision — 2xTP+FP+FN’ (1)
1 |D|

macro — averagedFy = 57 > Fi,i» (2)

i=1

where D is the set of diseases (classes), and F}; is the F;
score of the i-th disease.

Train-test split

To reduce the variance of results due to a random train-
test split, we average the results of 10 runs. In each run,
we randomly split the corpus into 80% for training and
20% for test. To avoid the case where some classes do not
appear in training or test set, the random split is applied
on a per-class basis.

Learning curve

The results of evaluation metrics we mentioned above
are displayed in plots of learning curves. Learning curves
represent the generalization performance of the models
produced by a learning algorithm, as a function of the
size of the training set. In a plot of learning curve, x-axis
represents the size of training set, y-axis represents the
performance of model under an evaluation metric. In our
study, we sample training sets from total training exam-
ples in fixed proportions: [10%, 20%, 30%, 40%, 50%, 60%,
70%, 80%, 90%, 100%].

We use Area Under Learning Curve (ALC) to summa-
rize the learning progress of each model. The ALC met-
ric is useful in comparing different learning algorithms
especially when labeling budget is limited, as in the active
learning setting [52]. A higher ALC means an overall
higher performance across different training data sizes.

Experimental evaluation

The learning curves of different algorithms on HaoDaiFu
and ChinaRe corpora are in Fig. 2, with their correspond-
ing ALC metrics reported in Table 2. On both corpora,
BOW_EXP, BOW_EXP_KG, and BERT significantly

Table 2 Area under learning curve (ALC) for different methods
aggregated over all diseases

Method HaoDaiFu (all 805 ChinaRe (all
diseases) 44 diseases)

BOW 04158 0.8534

BOW_EXP 0.4266° 0.8934°

BOW_EXP_KG 0.4254° 0.8940°

CBOW 0.2097 0.5817

CBOW_KG 0.2064 05714

LST™M 0.2013 0.6064

LSTM_KG 0.0377 0.6243

BERT 0.5020% 0.9551%

Figure 2 plots the learning curves
2 Result significantly higher than BOW

b Result significantly higher than BOW_EXP_KG. (Fisher’s randomization test,
significance level a = 0.05)
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outperformed the BOW baseline, and BERT significantly
outperformed the BOW_EXP_KG method.

To further study the behavior of different algorithms
when training data are extremely few, we plot the learn-
ing curves on statistically rare diseases that account for
no more than 0.02% (2 in 10,000) of records in each cor-
pus. There are 89 such diseases in HaoDaiFu and 5 in
ChinaRe. In both cases, these extremely rare diseases
have on average about 10 training documents. This trans-
lates to one training document per disease at 10% training
data rate, representing the cases of extreme data scarcity.
The corresponding learning curves are in Fig. 3, ALC
metrics reported in Table 3. On HaoDaiFu, BOW_EXP,
BOW_EXP_KG, and BERT significantly outperformed
the BOW baseline on all diseases, and BERT significantly
outperformed the BOW_EXP_KG method on extremely
rare diseases. Since the number of rare diseases in Chin-
aRe is too few, the above performance comparisons did
not show significant differences.

Note that the classification performance on Hao-
DaiFu is overall lower than that on ChinaRe. In general,
multi-class classification problem is difficult with a large
number of classes. Here the HaoDaiFu corpus contains
one order of magnitude more classes than ChinaRe (see
Table 1), bringing substantial challenge to all methods.

Results

Learning curves of different algorithms on HaoDaiFu and
ChinaRe corpora are in Fig. 2, with their correspond-
ing ALC metrics reported in Table 2. On both corpora,

BOW_EXP, BOW_EXP_KG, and BERT significantly out-
performed the BOW baseline, and BERT significantly
outperformed the BOW_EXP_KG method.

To further study the behavior of different algorithms
when training data are extremely few, we plot the learn-
ing curves on statistically rare diseases that account for
no more than 0.02% (2 in 10,000) of records in each cor-
pus. There are 89 such diseases in HaoDaiFu and 5 in
ChinaRe. In both cases, these extremely rare diseases
have on average about 10 training documents. This trans-
lates to ome training document per disease at 10% training

Table 3 Area under learning curve (ALC) for different methods
aggregated over extremely rare (prevalence < 0.02)

Method HaoDaiFu (89 rare ChinaRe
diseases) (5 rare
diseases)
BOW 0.3044 0.8454
BOW_EXP 0.3056° 0.9058
BOW_EXP_KG 03115° 0.9034
CBOW 0.1215 0.1945
CBOW_KG 0.1153 0.2136
LST™M 0 0
LSTM_KG 0 0
BERT 0.3795% 0.9028

Figure 3 plots the learning curves
2 Result significantly higher than BOW

b Result significantly higher than BOW_EXP_KG. (Fisher’s randomization test,
significance level @ = 0.05)
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data rate, representing the cases of extreme data scarcity.
The corresponding learning curves are in Fig. 3, ALC
metrics reported in Table 3. On HaoDaiFu, BOW_EXP,
BOW_EXP_KG, and BERT significantly outperformed
the BOW baseline on all diseases, and BERT significantly
outperformed the BOW_EXP_KG method on extremely
rare diseases. Since the number of rare diseases in Chin-
aRe is too few, the above performance comparisons did
not show significant differences.

Note that the classification performance on Hao-
DaiFu is overall lower than that on ChinaRe. In general,
multi-class classification problem is difficult with a large
number of classes. Here the HaoDaiFu corpus contains
one order of magnitude more classes than ChinaRe (c.f.
Table 1), bringing substantial challenge to all methods.

Discussion

The area under BERT’s learning curve is the largest when
aggregated across all diseases when aggregated across all
diseases. With a fraction of all training data (30% on Hao-
daifu, and 40% on ChinaRe), BERT is able to outperform
all other approaches trained on 100% training data. These
results show that BERT not only can deliver the best per-
formance but also requires less data for training com-
pared to other methods. The outstanding performance
partly comes from Transformer’s multi-head attention
mechanism, which allows BERT to learn long-distance
dependency much more efficiently than previous deep
sequence models. It is also partly due to the unique pre-
training objective, which can incorporate the sequence
information of text in two directions efficiently.

BOW gives a decent baseline performance. Its vari-
ants, BOW_EXP and BOW_EXP_KG, give consistent
performance improvements. Supervised feature selection
and synonym expansion effectively improve the feature
representation of BOW baseline. BOW_EXP_KG only
gives slightly higher performance than BOW_EXP. This
indicates that semantic relation information in a knowl-
edge graph is already largely captured by pretrained word
vectors.

CBOW performs worse than BOW. Similar result was
observed in [53]. Indeed, linear SVM aims to find hyper-
planes in the feature space to separate classes. It is eas-
ier to achieve linear separation in the high dimensional
sparse feature space (BOW) than in the low dimensional
dense feature space (CBOW).

The performance of LSTM on Haodaifu is extremely
low, but is not that bad on ChinaRe, and goes up sharply
when training data increases from 10 to 40%. This huge
difference reflects the model’s requirement for a large
quantity of training data. On average, there are 51 train-
ing documents per disease in Haodaifu, while 1575
training documents per disease in ChinaRe. Because of
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the vanishing gradient problem, training LSTM models
becomes extremely difficult when training data size is
small and documents are relatively long. Adding prior
knowledge through word embedding (LSTM_KG) has
only limited benefit.

On the extremely rare diseases (when there is only 1
training document per disease), BERT is outperformed
by BOW_EXP and BOW_EXP_KG. This happened
on both Haodaifu and ChinaRe. The result shows that
in situations where training data is extremely scarce, the
traditional non-deep model with an appropriate feature
construction strategy is able to compete with the current
state-of-the-art deep models.

On rare diseases, the catastrophically low performance
of LSTM models is not unexpected given its poor per-
formance on all diseases. Again, the result suggests that
a large amount of training data is needed to train LSTM
models, even though its word embedding layer has been
pretrained.

Implication

Medical domain has accumulated a wealth of knowl-
edge bases, in the form of standardized terminolo-
gies, research publications, clinical practice guidelines,
and consumer-facing information portals. While these
forms of knowledge can be easily used by humans, they
cannot be directly used by machine learning models.
This is because the internal representation of knowl-
edge in machine learning models is fundamentally dif-
ferent from that of human knowledge. The primary way
of transferring knowledge into these models is through
well-formulated prediction tasks expressed in the form
of labeled examples. However, labeling cost is high in the
medical domain, necessitating machine learning models
to leverage medical domain knowledge. Over the years,
researchers have been proposing various approaches for
instilling external knowledge into machine learning mod-
els, including carefully designed features, model archi-
tectures, auxiliary learning objectives [9, 10], weak labels
and distant supervision obtained from medical knowl-
edge bases [8, 11, 12], pretrained model parameters [17,
18, 22], and combinations of these approaches.

Our study here shows that pretrained BERT models
(and the broader family of pretrained deep Transformers)
may offer an effective way of leveraging external knowl-
edge learned from large-scale unlabeled data towards
specific NLP tasks. Even a BERT model pretrained on
general corpus is able to effectively help NLP tasks in the
health domain. On the one hand, this is good news to the
health NLP research community, as it can potentially free
researchers from feature engineering when the training
data is small and the labeling cost is high. Instead, the
model can be continuously improved by pretraining on
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domain-specific and task-specific corpora [17, 18, 54].
On the other hand, these black-box models are difficult
to interpret, therefore more research is needed to under-
stand their vulnerabilities especially within the medical
context, such as potential biases in learned representa-
tions [55].

Conclusion

In this paper, we study whether BERT is still effective
when it is fine-tuned with small training data. To answer
this question, we conducted a learning curve analysis
of BERT and other baseline models in text-based dis-
ease classification tasks. The analysis showed that BERT
remains the highest performing model even when each
class has only a handful of training documents, and its
performance improves the fastest when given more train-
ing documents. Simple linear classifiers using specially
engineered bag-of-words features delivers stable and
competitive performance, and it outperformed BERT
when training documents are extremely few (one or two
per class). Overall, the study shows that even though
BERT is a massively complex model, it only takes very
small (but not extremely small) training data to fine-
tune a pretrained BERT model to outperform baseline
approaches using the same data.
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