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INTRODUCTION
Acute myeloid leukemia (AML) is a rare but aggressive 

hematologic malignancy that accounts for  ∼5% of pediatric 
cancers (1). For decades, intensive chemotherapy based on 
anthracyclines and cytarabine with or without hematopoietic 
stem cell transplantation (HSCT) has remained the stand-
ard of care (2). Advances in the risk-adapted application 
of these regimens have significantly improved the overall 
survival of newly diagnosed AML to  ∼70% (3, 4). However, 
a substantial proportion of patients relapse, with  <40% of 
whom can be cured with reinduction or salvage therapies (5). 
Further intensification of existing chemotherapeutic regi-
mens is unlikely to result in a major reduction in relapse or 
a significant improvement in overall survival without incur-
ring excessive toxicity. The advent of effective therapies is, 
therefore, crucial but it is improbable to succeed by a simple 
extrapolation of new agents approved for adult AML because 
of the largely different genetics and biology (6, 7).

Precision medicine refers to the tailoring of specific medi-
cations to different individuals for a given disease instead of 
adopting the one-size-fits-all approach (8). In the cancer field, 
it is nearly synonymous with genomics. Efforts in large-scale 
genomic sequencing have revealed AML as a genetically het-
erogeneous disease that comprises multiple subclasses with 
distinct outcomes (9, 10). Targetable lesions, such as FLT3 
and IDH1/2, were identified and translated into revolution-
ary therapies. The Beat AML alliance prospectively enrolled 
patients with AML  ≥60 years of age with genetic analyses 
completed within a week from diagnosis and demonstrated 
superior survival in those receiving genomic-based treatment 
relative to standard of care (11). The genomic landscape 
of pediatric AML has also been extensively characterized, 
which revealed disproportionately prevalent lesions in young 
individuals as opposed to adults (6, 12, 13). In connec-
tion, the LEAP consortium recently reported the integration 
of genomic discoveries into clinical care for children with 
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high-risk or relapsed/refractory leukemias, showing that 14% 
of patients could receive matched targeted therapies (14).

Instead of relying solely on genomics, acquiring functional 
information through direct profiling of the drug response of 
patient biopsies to complement static genetic measurements 
has been an appealing option to endow increasingly precise  
treatments and identify more patients who would benefit 
from targeted therapies (15). In this regard, myriad studies 
have dictated the drug-sensitivity pattern of AML, with the 
majority being conducted in the adult arena. These investiga-
tions elucidated the pharmacogenomic landscapes of de novo, 
relapsed or refractory AML (16, 17), molecularly targeted 
drug combinations of selective effectiveness (18), new agents 
of clinical relevance (19, 20), and feasibility/benefits of apply-
ing drug screening–guided therapies in the clinics (21–24). In 
pediatric AML, specifically, screening with 7,389 compounds 
on cell lines and shortlisted validation on patient samples 
identified gemcitabine and cabazitaxel with broad antileuke-
mia activities (25). In addition, chemogenomic profiling of 73 
pediatric AML specimens revealed gene signatures associated 
with responses to cytotoxic agents (26). Nonetheless, a high-
dimensional gene–drug clinical data set for pediatric AML is 
currently lacking. In this study, we formally established the 
first pediatric AML-specific drug response profile, discovered 
new therapeutic vulnerabilities through in-depth integrative 
analyses with genomic, transcriptomic, and medical param-
eters, and realized evidence-based functional precision medi-
cine in children.

RESULTS
Study Overview

We developed a cohort of 52 children (median age: 9 
years) diagnosed with AML (n  =  47; 90.4%), MDS (n  =  2; 
3.8%), or MPAL (n  =  3; 5.8%). The clinical characteristics, 
including demographics, diagnostic information, patho-
logic values, risk assignments, treatments, responses, and 
outcomes, are presented in Supplementary Table  S1, with 
detailed annotations of individual patients documented in 
Supplementary Table  S2. Major parameters are consistent 
with those reported in collaborative studies of pediatric AML 
(3), indicating cohort representativeness. Extensive drug and 
genomic profiling were performed on 46 specimens collected 
at diagnosis and 15 at relapse (Supplementary Table  S3). 
Depending on the cellularity/viability of biopsies and the 
quality of genomic material, drug profiling was executed 
on 61 specimens from 52 patients, targeted sequencing 
on 60 specimens from 52 patients, and RNA sequencing 
(RNA-seq) on 48 specimens from 42 patients. The result-
ing data sets were subsequently integrated to build the 
functional genomic landscape of pediatric AML. The overall 
study design and sample usage is depicted in Supplementary 
Fig. S1.

Drug Response Profile of Pediatric AML
The optimal culture conditions for AML specimens were 

determined by testing the performance of different basal 
media intended to support primary hematopoietic cells 
ex vivo. Stromal coculture was not opted due to through-
put issues (27). Instead, we adopted a defined cocktail of 

myeloid cytokines, including stem cell factor (SCF), fms-
like tyrosine kinase receptor-3 ligand (Flt3-L), interleukin-3 
(IL-3), and interleukin-6 (IL-6), to maintain the myeloblasts 
(19). The duration of culture was set to 72 hours, consider-
ing the drug action mechanisms and the turnaround time 
for clinical implementation (28). Of the media tested, only 
StemSpan H3000, selected for subsequent experiments, was  
able to maintain the number of postculture myeloblasts 
(Supplementary Fig.  S2A). All conditions unavoidably trig-
gered a modest level of apoptosis (Supplementary Fig. S2B) 
and mediated entrance into the cell cycle (Supplementary 
Fig.  S2C). Differentiation of myeloblasts, by definition of 
morphology, was occasionally evidenced (Supplementary 
Fig. S2D). With this system, 61 of 66 specimens (92.4%) were 
able to proceed to drug testing, with the remaining being 
predominantly acute promyelocytic leukemia.

Ex vivo drug-sensitivity profiling was performed with a 
collection of 45 bioactive agents (39 targeted and 6 chemo-
therapeutics) selected based on their molecular targets, 
stages of clinical development, and relevance to hemato-
logic malignancies (Supplementary Table  S4). Data of 42 
specimens from 39 patients with full drug testing (i.e., 45 
drugs tested) were applied to create a global view of the 
drug response pattern in pediatric AML by plotting 1,890 
area under curve (AUC) values into a clustered heat map 
(Fig.  1A; Supplementary Table  S5). Unsupervised cluster-
ing of drug activities identified distinct sensitivity patterns. 
Cluster A comprises 7 highly active compounds (median 
IC50  <70 nmol/L), including the proteasome inhibitors 
bortezomib, carfilzomib, and oprozomib, HDAC inhibitor 
panobinostat, survivin inhibitor YM155, HSP90 inhibitor 
elesclomol, and BCL-2 inhibitor navitoclax. Cluster B com-
prises 14 generally active compounds (median IC50  <700 
nmol/L), including the cytotoxic agents cytarabine, dauno-
rubicin, fludarabine, and mitoxantrone, as well as inhibitors 
against BCL-2, HSP90, proteasome, and tyrosine kinases. 
Venetoclax, dasatinib, methotrexate, and sunitinib in clus-
ters C and D exhibited bimodal activities, with extreme 
sensitivity in some cases and complete resistance in oth-
ers. Cluster E comprises 12 generally inactive compounds 
(median IC50  >800 nmol/L except LCL161) with sporadic 
responses. Cluster F comprises 8 essentially inactive com-
pounds, notably including many approved drugs for adult 
AML such as decitabine, enasidenib, and ivosidenib. By 
comparing the median IC50 values of individual drugs with 
their maximum serum concentrations (Cmax; Supplementary 
Table  S6), effective concentrations of 30 drugs could be 
achieved pharmacologically.

We analyzed the concordance of drug sensitivity with 
respect to drug family assignment by computing the activity 
correlation coefficients among individual agents. By plotting 
the data onto a clustered heat map (Supplementary Fig. S3A), 
the analysis revealed highly concordant activities among con-
stituent members in the same drug class, as best exemplified 
by proteasome inhibitors, indicating the robustness of our 
drug screening platform. However, we also identified discord-
ant activities among members in the same drug class, as in 
the cases for BCL-2, BCR-ABL, and FLT3 inhibitors (Supple-
mentary Fig.  S3B), possibly reflecting their inherent differ-
ences in target specificities (29, 30).
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Integration with patient pretreatment variables identified 
established and new clinical correlates of drug responses, 
such as resistance to cytotoxic agents for older children, and 
sensitivity to selected kinase inhibitors for patients with 
AML with MDS-related changes or adverse chromosomal 
anomalies (Fig.  1B). Analyses with posttreatment outcomes 
further demonstrated that resistance to cytarabine ex vivo 
was highly correlated with disease recurrence and death, with 

similar performance to risk stratification based on cytogenet-
ics (Fig. 1C).

To compare the drug responses between diagnostic and 
relapsed AML, we performed PCA on the drug-sensitivity 
pattern of 32 diagnostic and 10 relapsed samples. Of these, 
matched paired samples were obtained from 6 patients. 
According to the distribution in the PCA plot, diagnostic 
and relapsed AML did not show discriminative differences in 

Figure 1.  Drug response profile of pediatric AML. A, Heat map indicating the responses of 42 pediatric AML samples to 45 compounds represented by 
Z-score–transformed AUCs. Samples (rows) and drugs (columns) are ordered by unsupervised hierarchical clustering. Cluster A: highly active drugs with 
median IC50 values <70 nmol/L. Cluster B: generally active drugs with median IC50 values <700 nmol/L. Clusters C and D: drugs with bimodal activities. 
Cluster E: generally inactive drugs with sporadic exceptions. Cluster F: completely inactive drugs. The IC50 distribution range for each compound is shown 
on the boxplot under the drug clusters, with median IC50 values (white dots) and Cmax (red dots) depicted. (continued on next page)
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Figure1. (Continued) B, Correlation of pretreatment variables with drug sensitivity for the entire patient cohort (n = 52). Drugs are clustered on drug 
family. Significant associations (P < 0.05) are connected by arrows (sensitive) or edges (resistant). Drug sensitivity was assigned based on median AUCs. 
C, Forest plot showing the performance of cytogenetic risk group or ex vivo resistance to chemotherapeutics (defined by median AUCs) for prediction of 
clinical outcome. Patients (n = 46) with >12 months follow-up were included for analyses. Odds ratio of event (relapse or death), 95% confidence interval, 
and P values are shown. Statistics: B, two-tailed, unpaired Student t test; C, logistic regression.
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their overall drug response profile (Supplementary Fig. S4A). 
Consistently, none of the drugs exhibited significant differ-
ences in activities between diagnostic and relapsed samples 
(Supplementary Fig. S4B), suggesting interindividual hetero-
geneity. We, therefore, attempted to capture any informative 
differences by comparing drug responses in pairwise diag-
nostic-relapsed samples. For two patients for whom full drug 
testing was performed in consecutive samples, we detected a 
more resistant signature at relapse than at diagnosis (Sup-
plementary Fig.  S4C). Dissection of specific drug responses 
in additional sample pairs revealed preferential resistance to 
cytarabine at relapse, corroborating clinical observations that 
patients with disease recurrence are generally less responsive 
to reinduction chemotherapy. Alternatively, YM155 consist-
ently retained its effectiveness in relapsed samples (Supple-
mentary Fig. S4D).

To look for specific differences in drug sensitivity between 
pediatric and adult AML, we performed functional drug 
screening using the same protocol in an adult cohort of 26 
patients (median age: 53 years; clinical characteristics are 
shown in Supplementary Table  S7). PCA did not show dis-
tinctive differences in the overall drug response pattern of 
pediatric versus adult AML (Fig. 2A). However, head-to-head 
comparisons of individual compounds demonstrated rela-
tive resistance of adult AML to fludarabine, daunorubicin, 
carfilzomib, ixazomib, belinostat, vorinostat, obatoclax, 
and dovitinib (Fig.  2B). In line with large-scale sequencing 
efforts (6, 12, 13), we detected profound age-specific differ-
ences in the mutational landscape between pediatric and 
adult AML (Fig.  2C), potentially explaining their dissimilar 
drug responses.

Ex Vivo Drug Sensitivity Accurately Predicts 
In Vivo Responses

To strengthen the evidence for clinical implementation, 
we next validated whether the ex vivo drug testing system 
could fully capture in vivo activities. Complete drug-sensi-
tivity profiling of 10 AML cell lines was performed to select 
the starting materials for animal modeling (Supplementary 
Table  S8). Two drugs, namely, YM155 (survivin inhibitor) 
and venetoclax (BCL-2 inhibitor), exhibited bimodal activi-
ties. Considering their drug sensitivity and engraftment capa-
bility in immunodeficient mice, we opted OCI-AML3 (YM155 
sensitive, IC50: 23.1 nmol/L), MV4-11 (venetoclax sensitive, 
IC50: 9.3 nmol/L), and CHRF-288-11 (YM155 and veneto-
clax resistant, IC50: 3,977 nmol/L and 9,637 nmol/L) cells to 
establish xenografts (Supplementary Fig.  S5A). Treatment 
of NOD/SCID mice grafted with luciferase-expressing OCI-
AML3 cells with intraperitoneal YM155 substantially reduced 
bioluminescence signals reflecting systemic leukemic load by 
85.5% at day 35 compared with those receiving vehicle con-
trol (P = 0.0187). Similarly, administration of oral venetoclax 
to mice grafted with MV4-11 cells also markedly reduced 
the leukemia burden by 92.6% at day 45 (P  =  0.0349). In 
contrast, treatment of mice grafted with CHRF-288-11 cells 
with neither YM155 nor venetoclax diminished leukemia. 
Consistent with the leukemic load, single-agent YM155 and 
venetoclax significantly extended the survival of OCI-AML3– 
(P  =  0.0084) or MV4-11–transplanted animals (P  =  0.0173) 

but not of those grafted with CHRF-288-11 cells (Supple-
mentary Fig. S5B).

We further consolidated the predictive power of ex vivo 
drug responses in patient-derived xenografts (PDX). We chose 
venetoclax for modeling due to its prominent bimodal activi-
ties in pediatric AML. Based on the median IC50 value (6,674 
nmol/L) across the entire patient cohort, samples were classi-
fied into sensitive and resistant groups. A venetoclax-sensitive 
sample LEU350 (IC50: 18.4 nmol/L) and a venetoclax-resistant 
sample LEU280 (IC50: 7,183 nmol/L) were selected to generate 
xenografts (Fig. 3A). Concordant with activities ex vivo, vene-
toclax substantially reduced myeloblasts in the peripheral 
blood (PB) of NSG mice grafted with the venetoclax-sensitive 
sample (P  <  0.0001). In contrast, for animals grafted with 
the venetoclax-resistant sample, no significant differences in 
the level of circulating myeloblasts between the vehicle and 
venetoclax groups were detected (Fig. 3B). Consistently, bone 
marrow (BM) sampling revealed a substantial drop in medul-
lary leukemia in LEU350- (91.7% decrease) but not LEU280-
transplanted mice following venetoclax treatments (Fig. 3C). 
Targeted sequencing of both primary samples revealed two 
founding clones before transplantation, and remained stable 
after leukemia engraftment (Fig. 3D).

We further performed cotitration experiments to explore 
the mode of interaction between targeted agents and chemo-
therapeutics. YM155 exhibited modest synergism with low-
dose cytarabine but antagonism with daunorubicin in AML 
cell lines and patient samples in vitro. In contrast, venetoclax 
showed strong synergism with both cytarabine and dauno-
rubicin (Supplementary Fig. S6A). In connection, combining 
YM155 with low-dose cytarabine delayed leukemia progres-
sion in OCI-AML3–transplanted mice compared with those 
receiving YM155 (P = 0.0467) or cytarabine alone (P = 0.002). 
Similarly, in MV4-11–transplanted mice, coadministration 
of venetoclax with cytarabine resulted in the most profound 
clearance of AML (P < 0.05; Supplementary Fig. S6B).

Integration of Drug and Genomic Profiling 
Identifies New Therapeutic Vulnerabilities 
and Response Predictors

We performed targeted sequencing of a 141-human mye-
loid neoplasm-related gene panel (Supplementary Table S9). 
This panel enriches a library of commonly mutated genes and 
the most relevant variants in myeloid neoplasms listed in the 
Cancer Genome Atlas, Cancer Gene Census, and Catalogue 
of Somatic Mutations in Cancer (COSMIC). Of 52 pediatric 
patients with their first sample being analyzed, 45 (86.5%) 
carried ≥3 mutations, with 73 genetic alterations being recur-
rent. The complete variant list is shown in Supplementary 
Table S10. The genomic landscape was visualized by a mosaic 
plot with annotations of mutation types, pathogenicity, sam-
ple nature, cytogenetic risk groups, and events (Fig.  4A). 
The most frequent mutations were KMT2C (23.1%), RELN 
(19.2%), FLT3 (17.3%), JAK2 (15.4%), KIT (13.5%), and NRAS 
(13.5%). Consistent with the TARGET AML study (6), other 
common alterations in pediatric AML, such as WT1 (11.5%), 
CBL (9.6%), and KRAS (7.7%), were also detected in our cohort. 
Mutations frequently found in adult AML (9, 10), including 
DNMT3A, IDH1/2, and NPM1, occurred rarely.
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Figure 2.  Drug-sensitivity profiles of pediatric and adult AML. A, PCA of the response parameter (i.e., AUC values of 45 drugs) in pediatric (n = 42) 
and adult AML (n = 26) samples. B, Boxplots showing the AUC distributions of individual drugs, ordered by drug classes. Statistics: two-tailed, unpaired 
Student t test. P values comparing both AUCs and IC50 values are indicated. Statistically significant values are shown in red. Asterisks mark statistically 
significant differences after correction for multiple comparison by the Benjamini–Hochberg procedure, with P values after FDR correction shown in blue. 
C, Fraction of pediatric (n = 52) and adult (n = 26) samples with major genetic alterations detected by targeted sequencing.
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Figure 3.  Ex vivo drug activities capture in vivo responses. A, Dose–response curves of venetoclax on primary myeloblasts from 54 pediatric AML 
samples (diagnosis, n = 42; relapse, n = 12). Samples exhibiting sensitivity (red curves) or resistance (blue curves) were classified with respect to the 
median IC50 value (6,674 nmol/L) across the patient cohort. Arrows mark the samples selected for animal modeling. B, NSG mice were transplanted with 
myeloblasts derived from a venetoclax-resistant (LEU280) or a venetoclax-sensitive (LEU350) sample to generate PDXs. Animals (4–5 mice/group) were 
randomized to receive vehicle or oral venetoclax (100 mg/kg, once daily, 5 days/week for 2 weeks). Treatments commenced on day 3 after transplanta-
tion. Circulating leukemic blasts were monitored serially by flow-cytometric detection of human CD45+CD33+CD19− cells. Statistics: two-tailed, unpaired 
Student t test. P values are indicated. C, BM samples were collected on day 45 (LEU280) and day 89 (LEU350) posttransplantation for the enumeration 
of medullary leukemia. (continued on next page) 

Associations between genetic mutations and drug sensitiv-
ity were mined by one-way ANOVA. The data set was first 
trained by two established gene–drug association (FLT3–
crenolanib and JAK2–ruxolitinib; ref.  16) to determine the 
impact of variant allele frequency (VAF) and pathogenicity. 
The FLT3–crenolanib association appeared only with a patho-
genicity filter and was retained at VAF of either 5% (16), 10% 
(31), or 20% (11), whereas the JAK2–ruxolitinib association 

was detected regardless of pathogenicity curation but lost 
at VAF cutoff of 20% (Supplementary Table S11). We, there-
fore, kept pathogenic and likely pathogenic variants (collec-
tively referred to as pathogenic hereafter) with VAF >10% for 
downstream analyses. This algorithm retrieved 69 recurrent 
gene–drug associations, with 57 being novel (Supplementary 
Table S12). As depicted in a volcano plot (Fig. 4B), samples 
with JAK2 and FLT3 mutations exhibited sensitivity to the 
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JAK2 inhibitors ruxolitinib (P = 0.04) and AT9283 (P = 0.03), 
and the FLT3 inhibitor crenolanib (P  =  0.009), respectively, 
consolidating the validity of this analysis. Of those novel 
gene–drug associations, we spotted samples harboring mis-
sense or nonsense mutations of lysine methyltransferase 2C 
(KMT2C), the most prevalent alteration in our cohort, showed 
significant associations with sensitivity to BCL-2 inhibitors 
(P < 0.05). Specifically, samples with pathogenic KMT2C vari-
ants were particularly sensitive to navitoclax or venetoclax, 
compared with those harboring benign variants or wild-type 
KMT2C (P < 0.05; Fig. 4C). Further integration with clinical 
outcome data revealed an exceedingly poor event-free sur-
vival rate for patients harboring mutant KMT2C (P = 0.0114), 
especially for those bearing variants defined as pathogenic 
(Fig.  4D), thereby successfully identifying a high-risk AML 
subtype that might benefit from targeted therapies.

We further conducted RNA-seq to identify the gene sig-
natures underpinning the drug response. The counts per 
million mapped reads (CPM) values for the entire transcrip-
tome of 48 sequenced samples are listed in Supplementary 
Table  S13. Samples were first stratified into sensitive, inter-
mediate, and resistant groups based on the distribution of 
AUCs (Fig. 5A). Among 45 drugs, 8 in cluster F demonstrated 
poor activities, and therefore 37 drugs were proceeded to 
analyses. Differentially expressed genes (DEG) between sensi-
tive and resistant samples were then identified for each drug 

using FDR <0.05 and fold change >4 as the cutoffs, resulting 
in 1 to 820 DEGs for 36 drugs (Fig.  5B). Volcano plots of 
DEGs for venetoclax and YM155, for illustration, are shown 
in Fig.  5C. We convincingly detected significantly higher 
expression of BCL2 (venetoclax target) in venetoclax-sensitive 
versus venetoclax-resistant samples (4.7-fold, P  <  0.0001), 
indicating on-target activities. In contrast, we failed to detect 
BIRC5/survivin overexpression (YM155 target) in YM155- 
sensitive samples (P = 0.374), suggesting off-target activities. We 
further extended correlation analyses between DEGs and drug 
sensitivity to specimens with intermediate responses. A cutoff 
of Pearson r value of  >0.5 or  <  −0.5 was set to retain high-
confidence predictors of drug sensitivity. We identified 98 
and 91 DEGs with such properties for venetoclax and YM155, 
respectively (Fig.  5D). For venetoclax, most DEGs passing 
the cutoff criteria were negatively correlated with the IC50 
values. As a BCL-2–specific inhibitor, we concretely detected 
a strong correlation between venetoclax sensitivity and BCL2 
expression (r = −0.639, P < 0.001) but also hit, for instances, 
phosphodiesterase 7A (PDE7A; r = −0.7511, P < 0.0001) and 
zinc finger protein 114 (ZNF114; r = −0.6572, P < 0.001) with 
even better correlations. For YM155, most DEGs were posi-
tively correlated with AUCs. Again, its curated target survivin 
(BIRC5) was not correlated with drug sensitivity (r = −0.1078, 
P = 0.4808). Indeed, we identified other DEGs as strong pre-
dictors of YM155 activities, such as major histocompatibility 

Figure 3. (Continued) D, Fish plots showing the evolution of subclonal architecture for samples LEU280 and LEU350 before (P0) and after (P1) leuke-
mia engraftment in the BM of control NSG mice at the overt disease stage (i.e., day 45 for LEU280 and day 89 for LEU350).

Figure 4.  Integration of genomic alterations with drug sensitivity. A, Mosaic plot showing the mutational landscape of 52 pediatric patients with AML. 
The earliest specimen was included for analyses for individuals with consecutive sampling. Recurrent mutations occurring in ≥2 patients are shown and 
ranked by their frequencies in the cohort illustrated by the bar chart. Patients are annotated with clinical features and mutations with types. Asterisks 
mark pathogenic or likely pathogenic variants. B, Gene–drug associations represented by a volcano plot showing their significance and effects between 
wild-type and mutant samples. Pathogenic or likely pathogenic variants with VAF >10% were included for the analysis. A P value cutoff of 0.05 (hori-
zontal line) was applied to detect statistically significant associations. A Z score cutoff of 0 (vertical line) defines relative drug sensitivity (red circles) 
and resistance (blue circles). The size of circles represents the number of patients harboring the mutations. Circles annotated with green and black texts 
denote known and novel associations, respectively. C, Box plots showing the activities of BCL-2 inhibitors in pediatric AML stratified by KMT2C mutation 
status: wild-type (n = 29–35), benign or likely benign mutants (n = 8), pathogenic or likely pathogenic mutants (n = 3–4). Median IC50 values are shown. 
D, Kaplan–Meier estimates of 3-year event-free survival (period from diagnosis to first relapse or death from any cause) in patients with wild-type (n = 40), 
benign (n = 8), and pathogenic KMT2C (n = 4). Statistics: B, one-way ANOVA; C, two-tailed, unpaired Student t test with correction for multiple compari-
son by the Benjamini–Hochberg method; D, log-rank test. *, P < 0.05; **, P < 0.01.
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Figure 5.  Predictors of drug response. A, AML specimens were stratified by drug 
activities: (i) sensitive samples with AUC <25th percentile; (ii) intermediate samples with 
AUC between the 25th and 75th percentiles; and (iii) resistant samples with AUC >75th 
percentile. B, RNA-seq was performed on 48 specimens. DEGs in sensitive over resistant 
samples were identified for 36 drugs using FDR <0.05 and log2 fold change >2 as the 
cutoffs. Drugs are ranked according to the total number of DEGs. Purple and green bars 
represent upregulated and downregulated DEGs, and the color intensity denotes fold 
changes. C, Volcano plots showing DEGs of venetoclax (n = 610) and YM155 (n = 245). 
Suppressed DEGs in sensitive samples are indicated by blue circles and augmented DEGs 
by red circles. The top 10 DEGs with the highest correlation with AUC values are marked 
with yellow frames with gene symbols listed. (continued on following page)
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Figure 5. (Continued) D, Correlation analyses between DEG (CPM) and drug sensitivity (AUC). DEGs of venetoclax (n = 98) and YM155 (n = 91) with 
correlation coefficients of < −0.5 or >0.5 are shown and ranked according to the magnitude of correlation. Positively correlated DEGs are indicated by 
pink bars, and negatively correlated DEGs by green bars. Arrow indicates the venetoclax target BCL-2. E, Intracellular BCL-2 and survivin expression 
in AML cell lines (n = 10) and samples (n = 8–9) was measured by flow cytometry and correlated with venetoclax and YM155 sensitivity, respectively. 
Statistics: B, C, DESeq2; D, E, Pearson correlation. *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001.
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complex class II DR beta 5 (HLA-DRB5; r = −0.6222, P < 0.01) 
and complement factor D (CFD; r  =  −0.6114, P  <  0.01). 
The functional significance of these DEGs remains largely 
unknown and warrants further investigation. By intracellular 
flow cytometry, we confirmed a strong correlation of BCL-2 
expression with venetoclax sensitivity but not survivin expres-
sion with YM155 sensitivity at the protein level (Fig.  5E), 
therefore validating the usefulness of this stepwise approach 
to discover new predictors of drug response.

Further mining of RNA-seq data detected 14 recurrent, in-
frame gene fusions in 27 of 42 patients (64.3%). Concordant 
with recent reports (6, 32), the most prevalent fusions in our 
cohort were RUNX1–RUNX1T1 (16.7%), KMT2A (16.7%), and 
NUP98 (11.9%) rearrangements (Supplementary Fig.  S7A). 
Correspondingly, we identified significant associations with 
their preferential sensitivity to YM155/azacitidine (P < 0.05), 
venetoclax (P = 0.024), and nilotinib/mitoxantrone (P < 0.05), 
respectively (Supplementary Fig. S7B).

Precision Medicine for High-Risk  
Pediatric AML

Since the study inception, we integrated the platforms 
developed to test the feasibility of implementing precision 
medicine for pediatric AML in the clinical setting. A flow-
chart showing our decision-making algorithm is shown in 
Fig.  6A. Drug profiling was performed prospectively and 
reported to the tumor board for 11 patients who were 
deemed high risk. Standard treatments (i.e., chemotherapy 

plus HSCT) were offered, but 6 patients developed relapsed 
or refractory diseases, fulfilling the inclusion criteria for 
precision medicine. Of these subjects, one opted palliative 
care by family decision and 5 had received drug profiling-
guided therapy. Three patients were not eligible to evalu-
ate treatment response due to early death or drug toxicity 
(one patient died due to progressive disease within a week 
after targeted therapy whereas two patients developed ther-
apy-related leukoencephalopathy, acute confusion, slurred 
speech, or nausea leading to treatment cessation). Here, we 
present in detail 2 cases who had achieved disease remission 
following adoption of functional precision medicine. The 
full disease course, treatment landscape, pathologic findings, 
and laboratory investigations are presented in Supplemen-
tary Tables S14 and S15.

A 14-year-old boy was initially diagnosed with T-cell ALL 
with a hypodiploid karyotype (Fig. 6B). He was treated with 
the Chinese Children Cancer Group (CCCG) ALL protocol 
(33) under the intermediate-risk arm and achieved remission. 
During maintenance, blasts emerged with a lineage switch to 
myeloid phenotypes and acquired complex cytogenetics likely 
representing endoduplication of the hypodiploid clone, sug-
gestive of secondary AML (sample LEU183). He then received 
two courses of fludarabine–cytarabine (FLA, a standard chem-
otherapy-based regimen for relapsed AML) and matched sib-
ling donor HSCT, and achieved remission. A recurrent BM 
relapse developed 1 year after HSCT (sample LEU252). We, 
therefore, performed full drug profiling on his myeloblasts 

Figure 6.  Precision medicine for high-risk pediatric AML. A, Flowchart showing the workflow of this pilot clinical trial, including patient numbers at 
each stage and reasons for dropping out of the study. B, Clinical progression of a child with relapsed AML receiving drug profiling-guided treatment. The 
disease course, treatment landscape, and laboratory investigations are depicted. (continued on following page)
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Figure 6. (Continued) C, Drug profiling results at first AML relapse. The bar chart shows the activities of 45 screened drugs ranked in descending IC50 
values. The horizontal line at 15 nmol/L was arbitrarily set to indicate highly active drugs. The table shows the top-hit drugs annotated with respective 
IC50 values, AUC, Cmax, and FDA-approval status. The drug recommended by the tumor board is indicated by an arrow in the bar chart and highlighted in 
yellow in the table. D and E, Clinical progression, drug testing results, and therapy recommendation for another case with relapsed MPAL. Abbreviations: 
BMT, bone marrow transplantation; DLI, donor leukocyte infusion; FLA, fludarabine and cytarabine; FLAD, fludarabine, cytarabine, and daunorubicin; HIC, 
high-intensity consolidation.

and identified exceptional sensitivities to BCL-2 inhibitors 
(Fig. 6C). Venetoclax, instead of universally active agents, was 
recommended by the tumor board given its reported safety 
and efficacy in relapsed/refractory pediatric AML (34) as 
well as local accessibility. In an off-label, compassionate and 
outpatient setting, the patient received venetoclax at 100 mg/m2  
and then stepped up to 400 mg/m2 daily for 9 months con-
comitant with donor lymphocyte infusions, resulting in a 
rapid and sustained clearance of blasts, demonstrating a 
match between ex vivo and in vivo responses. However, a frank 
relapse developed 2 months after cessation of venetoclax 
therapy (sample LEU353). We, therefore, performed another 
drug profiling for the patient but revealed the acquisition of 
pan-resistance to 34 drugs in the panel, especially venetoclax 

(Supplementary Fig. S8A). Further treatment with FLA and 
high-intensity consolidation resulted in a considerable drop 
in blasts but failed to achieve complete remission, consistent 
with its chemoresistance nature. The patient further received 
haploidentical HSCT and was brought into remission. Com-
plementary genomic profiling was performed on serial sam-
ples to dictate the disease evolution and dynamics of drug 
responses. Targeted resequencing revealed the existence of a 
diverse subclonal architecture already at diagnosis (LEU183), 
with 9 detectable genomic lesions (Supplementary Fig. S8B). 
Two additional mutations appeared at first relapse (LEU252) 
and remained stable at second relapse (LEU353) after veneto-
clax monotherapy, excluding further clonal evolution. RNA-
seq revealed apparent transcriptomic changes throughout 
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the disease course (Supplementary Fig.  S8C). Convincingly, 
the 98-gene signature (see Fig. 5D) was, in general, predictive 
of venetoclax resistance at the second relapse (Supplemen-
tary Fig.  S8D), therefore capturing specific alterations in 
drug responses.

A 14-month-old girl was diagnosed with Pro-B ALL harbor-
ing the high-risk KMT2A–AFF1 t(4;11) chromosomal trans-
location (Fig.  6D). She was treated under the CCCG ALL 
protocol and achieved molecular remission. Unfortunately, 
an early relapse developed with a mixed lymphoid/myeloid 
phenotype (MPAL) and was managed with the Relapsed 
ALL protocol and then salvage chemotherapy but failed to 
attain complete remission. Her refractory disease was subse-
quently resolved by blinatumomab, followed by venetoclax/
azacitidine maintenance and umbilical cord blood HSCT. 
A second relapse developed at 3 months after transplanta-
tion (sample LEU451) and was immediately given a course 
of venetoclax in combination with high-dose cytarabine. 
However, our drug profiling results revealed resistance to 
both agents (Fig.  6E). In agreement with these findings, 
no clinical response was witnessed (sample LEU462), and 
the clinicians, therefore, decided to stop the therapy. We 
then performed a second drug profiling and revealed repro-
ducible sensitivity to bortezomib. As recommended by the 
tumor board, the patient received bortezomib at 1.3 mg/
m2 together with fludarabine, cytarabine, and daunorubicin 
(FLAD), achieved a third remission, and successfully bridged 
to a haploidentical HSCT.

DISCUSSION
This study has nurtured the first functional genomic land-

scape of pediatric AML. Based on comprehensive drug-sen-
sitivity profiling and systematic integration with genomic, 
transcriptomic, and clinical parameters, we deposited valu-
able data sets that could be leveraged to discover new thera-
peutic vulnerabilities, identify predictors of drug response, 
and deconvolute the mechanisms of drug resistance. Impor-
tantly, our intent is to adopt the platform to inform personal-
ized therapies for patients who exhaust available treatments, 
thereby endowing a major impact on the future trial design 
to realize the importance of precision medicine.

To date, the drug-sensitivity pattern of AML has been 
predominantly studied in adults (16–20). By profiling the 
response of myeloblasts from children to a clinically relevant 
drug panel through an optimized ex vivo culture system, we 
showed that several approved targeted agents and investiga-
tional drugs, including bortezomib, carfilzomib, oprozomib, 
elesclomol, panobinostat, navitoclax, and YM155, are more 
potent than chemotherapeutics at clinically achievable con-
centrations. Although their effectiveness in pediatric AML 
remains to be established (35), our data delivered a wealth of 
opportunistic drug candidates that deserve to be prioritized 
in upcoming clinical trials. Notably, new agents approved 
for adult AML, such as midostaurin, ivosidenib, enasidenib, 
and decitabine, were essentially futile in their pediatric coun-
terpart, therefore capturing the inherent differences in the 
prevalence of age-specific lesions at the functional level. 
Indeed, we formally compared the drug-sensitivity profile 
between pediatric and adult AML and demonstrated a more 

resistant nature of the latter to a number of cytotoxic and 
targeted agents, elucidating that AML of pediatric and adult 
origins are not only genetically and biologically different (6, 
7), but are also distinct for drug responses. Through integra-
tion with clinical data, we further identified the association 
of patient-centric parameters, including age at diagnosis, 
cytogenetics, and disease stages, with drug susceptibility. 
Importantly, resistance to cytotoxic agents ex vivo, particu-
larly cytarabine, was predictive of dismal outcomes, high-
lighting its potential value to be adopted for informing risk 
assignment. Though informative, the current drug testing 
system could have biased against agents requiring successive 
cell division cycles or provoking myeloblast differentiation 
given the short culture time and the choice of readout. Con-
current flow-cytometric assessment of differentiation mark-
ers at endpoints would avoid such underestimation of drug 
activities, especially for epigenetic agents (36). The inclusion 
of stromal feeders to better mimic the BM microenvironment 
is also an option for simulation of in vivo drug responses (22) 
but apparently will have an expense on throughput and ease 
of clinical implementation. Nevertheless, through animal 
modeling, we have provided compelling evidence showing 
the robustness of our drug testing platform in the prediction 
of in vivo responses, as exemplified by two targeted agents, 
venetoclax and YM155, exhibiting bimodal activities in pedi-
atric AML. Whether the results could be generalized to other 
drugs would have to be further evaluated. In addition to 
single-agent activities, our system could also detect synergism 
of drug combinations, collectively providing a strong founda-
tion for clinical inception.

By extended genomic profiling of pediatric AML speci-
mens, we detected frequent alterations of FLT3, JAK2, KIT, 
RAS, and WT1, whereas mutations commonly found in adult 
AML, including DNMT3A, IDH1/2, and NPM1, were virtually 
absent, consistent with the reported molecular landscapes 
(6, 37). Taking the impact of variant pathogenicity and 
allele frequency into account, we integrated genomic find-
ings with drug profiling data, revealing known gene–drug 
associations such as FLT3–crenolanib and JAK2–ruxolitinib. 
Convincingly, we also identified myriad novel associations 
of prognostic relevance and therapeutic implications. For 
example, mutation of KMT2C, also known as MLL3, was the 
most prevalent genomic lesion detected in our cohort. It is 
a tumor suppressor gene initially identified in adult AML 
(38) and recently also in children (39) where mutant KMT2C 
is linked to chemoresistance. By recalling the clinical out-
come data, we showed that children harboring pathogenic 
KMT2C variants had extremely poor survival. Notewor-
thy, patients bearing so-called benign KMT2C variants still 
underperformed, pointing toward in-depth studies to rede-
fine their impact in this disease context. Importantly, min-
ing the drug profiling data revealed exceptional sensitivity 
of pathogenic KMT2C mutants to BCL-2 inhibitors. There-
fore, with this algorithm, we could identify prognostically 
relevant alterations with new therapeutic vulnerabilities. 
The same is also true for common chimeric gene fusions 
in pediatric AML (6, 32), where previously unrecognized 
susceptibilities to targeted agents were identified for cases 
with favorable-risk RUNX1–RUNX1T1, intermediate-risk 
KMT2A, and adverse-risk NUP98 rearrangements. However, 
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some gene–drug associations, particularly with comuta-
tions (16), might have been missing due to the limited size 
of our cohort and the targeted sequencing approach, imply-
ing that constant efforts through collaborative studies to 
extend the functional genomic landscape of this rare leu-
kemia are required to definitively establish the correlations 
and yield new information. It is also likely that most of the 
drug dependencies are attributed to nongenomic causes 
and yet to be deduced.

We further performed transcriptome profiling to look for 
predictors of drug response and successfully retrieved DEGs 
for most of the agents in the panel. Applying correlation 
analyses ultimately yielded 36 high-confidence gene lists. 
Illustrated by venetoclax, we identified a 98-gene signature 
that could reflect its activity in pediatric AML. Convinc-
ingly, BCL2 (venetoclax target) was on the list with a strong 
correlation between gene expression and drug sensitivity, 
indicating on-target activity. We also hit PDE7A and ZNF114 
with sound predictive values; therefore, these might contrib-
ute to the ever-expanding mechanisms underlying veneto-
clax response (40). Intriguingly, we failed to detect BIRC5/
survivin overexpression (YM155 target) in YM155-sensitive 
samples, suggesting off-target activity (41). The top-ranked 
candidates in the 91-gene signature such as HLA-DRB5 and 
CFD might indeed represent the true targets that remain 
to be elucidated by gene knockout studies. Therefore, the 
integration of transcriptomic and drug profiling data could 
not only identify response biomarkers that is particularly 
important for paucicellular specimens where drug testing 
remains inapplicable but also potentially uncover the mecha-
nisms of drug resistance through further gene ontology and 
functional analyses.

Currently, most precision oncology initiatives focus on 
genomics, but this approach suffers from numerous practical 
hurdles. First, the turnaround time for molecular profiling is 
comparatively long, endowing the risk for delayed treatment. 
Second, genomic-based medicine requires highly experienced 
bioinformaticians for downstream analyses, limiting its gen-
eralization. Third, many of the genomic lesions, especially 
in pediatric AML, are not actionable, suggesting that only 
a minority of patients could benefit from matched targeted 
therapy (14). Direct profiling of drug sensitivity using a 
simplified methodology is, therefore, an attractive option 
to widen the applicability of precision medicine. In adults 
with advanced hematologic malignancies, harnessing such 
a functional approach to tailor individualized regimes has 
resulted in improved clinical outcomes (21–24). To this end, 
we adopted drug screening–guided treatment for 5 children 
with relapsed diseases who failed successive salvage thera-
pies. Encouragingly, 2 evaluable patients achieved remission 
and bridged to curative HSCT. Noteworthy, venetoclax was 
given to both patients whose drug profiling showed oppos-
ing sensitivity that was fully reflected by subsequent clinical 
responses. These observations are in line with a phase I, dose-
escalation study of venetoclax showing a 70% response rate in 
children with relapsed or refractory AML (34). Therefore, we 
propose incorporating drug profiling into upcoming clini-
cal trials to determine its predictive potential and prioritize 
patients who will most probably benefit to receive the inter-
vention. In addition, our analyses in serial samples revealed 

dynamic changes in drug responses and genomic/transcrip-
tomic landscapes. Therefore, performing integrative drug and 
genomic profiling for a given patient in a continuous process 
will be the key to empowering precision medicine. However, 
adopting such nonstandard tactic for patient management, 
especially in children, would require expertise from the tumor 
board to prioritize hits for recommendation, taking careful 
consideration of potential toxicity, pediatric experience of 
particular agents, and drug cost. Finally, the real benefits 
of this approach would have to be further investigated in 
randomized studies.

METHODS
Specimens, Cells, and Cultures

All specimens were collected with parental written informed 
consent following the Declaration of Helsinki. The study was 
approved by the CUHK-NTEC and HKCH Ethics Committee. For 
children with myeloid malignancies, standard diagnostic workups 
were performed, including immunophenotyping, cytology, cyto-
chemistry, and cytogenetics. Entities of cytogenetic/genetic anoma-
lies and MDS-related changes were defined according to WHO 
guidelines (42) and risk-stratified with a pediatric algorithm (43). 
Biopsies were originated from BM except 2 cases from PB and 
1 from ascitic fluid. Investigations were mostly performed with 
cryopreserved specimens (n = 40; 65.6%), with the remaining being 
fresh (n  =  21). Mononuclear cells were recovered by Ficoll-Paque 
Plus (GE Healthcare). The purities of myeloblasts (median: 74.1%) 
were characterized by staining with CD33-BV421, CD34-PE-Cy7 
(BD Biosciences), and CD45-APC (Beckman Coulter), followed by 
acquisition with a flow cytometer (LSRFortessa). FACS data were 
analyzed with FlowJo (TreeStar). Myeloblasts were maintained in 
StemSpan H3000 medium (Stem Cell Technologies) with SCF  
(50 ng/mL), Flt3-L (50 ng/mL), IL-3 (10 ng/mL), and IL-6 (10 ng/mL) 
(Miltenyi Biotec). Cell proliferation was determined by Trypan blue 
exclusion. Cell-cycle distribution was assessed by the BrdUrd Flow 
Kit (BD Biosciences). Apoptosis was monitored by Annexin V–APC/ 
7-AAD staining (BD Biosciences).

AML cell lines were acquired from DSMZ or ATCC. Cells were 
maintained in RPMI-1640 medium supplemented with 10%–20% 
FBS (Life Technologies), used from the 5th to 25th passages, and 
have been tested for mycoplasma contamination. Immunopheno-
typing was routinely performed for cellular authentication. Stable 
luciferase-expressing lines were generated by lentiviral transduction 
as previously described (44).

Drug Profiling
Primary myeloblasts (1  ×  105) or AML cell lines (5  ×  104) were 

seeded in the respective culture conditions on 96-well plates (Corn-
ing) and treated with DMSO or compounds in the drug panel (from 
Selleckchem or MedChemExpress) for 72 hours from 0.1 nmol/L to 
10  μmol/L. Cell viability was evaluated using CellTiter MTS solu-
tion (Promega), with absorbance measured by the Synergy HTX 
Multi-Mode Reader. Data were normalized against DMSO controls 
with outliers removed before curve fitting. The AUC and IC50 values 
were calculated from the dose–response curves by nonlinear regres-
sion. Whenever the cell viability remained  >50% across the entire 
dose range, the IC50 values were designated as the highest dose (i.e., 
10 μmol/L) for data formality.

A heat map integrating the AUC values was generated by the 
pheatmap package in RStudio to visualize the overall drug-sen-
sitivity pattern. Hierarchical clustering was performed using the 
Euclidean distance metric and Ward’s minimum variance method 
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for linkage (45) to generate drug clusters. To show drugs with 
similar or dissimilar patterns of sensitivity, Pearson correlation 
coefficients of AUCs were computed and plotted onto a clus-
tered heat map by RStudio using the corrplot package (46). The 
presence of synergy in drug combinations was determined using 
SynergyFinder (47).

Animal Modeling
Experiments involving animals were conducted in accordance with 

procedures approved by the Animal Experimentation Ethics Com-
mittee. Immunodeficient NOD.Cg-Prkdcscid/J (NOD/SCID) mice 
(Jackson Laboratory) were bred by our institutional animal facility. 
Female, 8- to 11-week-old mice were sublethally irradiated (250 
cGy; Gammacell Elite Irradiator, MDS Nordion) and intravenously 
infused with 5  ×  106 luciferase-expressing AML cells. Transplanted 
animals were randomized to receive daily intraperitoneal injections 
of vehicle control (phosphate-buffered saline) or YM155 (2.5 mg/kg, 
5 days on 2 days off) for 2 weeks (48), starting on day 3 after trans-
plantation. Venetoclax (100 mg/kg), formulated in 5% DMSO, 30% 
PEG 400, and 65% Phosal 50 PG, was administered by oral gavage 
on the same schedule (49). In experiments assessing combinatorial 
activities of targeted agents with standard chemotherapy, animals 
were concomitantly administered with intraperitoneal cytarabine 
(2 mg/kg; ref. 50). The systemic leukemic load was monitored over 
time using an IVIS 200 System (Xenogen). Prior to imaging, mice 
were administered with D-Luciferin (150 mg/kg; Promega) and anes-
thetized with 2.5% isoflurane (Zoetis). Luminescence signals were 
captured and analyzed as photon emission/second/cm2 using Living 
Image software (Xenogen). To analyze animal survival, mice reaching 
humane endpoints (≥20% weight loss, obvious distress, or hindleg 
paralysis) were sacrificed and regarded as dead.

A more permissive mouse strain, NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ 
(NSG), was selected to generate PDXs. Sublethally irradiated female 
mice of 6 to 8 weeks of age were transplanted with Ficoll-enriched 
myeloblasts (2 × 106–1 × 107) via tail veins. At day 3 after transplanta-
tion, animals were randomized to receive vehicle solution or single-
agent venetoclax as described above. Circulating blasts, defined as 
human CD45+CD33+CD19− cells, were monitored serially by flow 
cytometry. Briefly, 100 μL PB was obtained by tail bleeding followed 
by red cell lysis. Leukemic cells were detected by flow cytometry using 
human-specific antibodies. Single-cell suspensions were also pre-
pared from the BM of terminally ill animals to evaluate the impact of 
drug treatment on medullary leukemia.

Targeted Sequencing
Genomic DNA was isolated from myeloblasts using the QIAamp 

DNA Blood Mini Kit (Qiagen). Libraries were prepared with 10 ng 
DNA using the unique molecular identifier (UMI)-based QIAseq 
Targeted Human Myeloid Neoplasms Panel (Qiagen). The target 
captured library was sequenced on the NextSeq 500 system with a 
Mid Output v2 kit (Illumina). Read processing, alignment (hg19 
as the reference), calling, and annotation of single-nucleotide 
variants/small indels were performed with the UMI-based caller 
smCounter2 (51) run on GeneGlobe using DNA Variant Calling 
v2. The filtering strategy for the identification of high-confi-
dence mutations was based on methods described elsewhere (6). 
Briefly, synonymous variants or variants in introns (except splice 
donor/acceptor sites) were excluded. Additionally, variants with a 
VAF <0.05 or a population frequency >0.01 in the 1000 Genomes 
Project, Genome Aggregation Database, or dbSNP were removed. 
The remaining variants were visually checked with the Integrative 
Genomics Viewer. Frameshift, in-frame indels, nonsense muta-
tions, splicing, extension, or missense variants predicted to be 
detrimental by both SIFT and PolyPhen using the Ensembl Variant 
Effect Predictor (52) were defined as pathogenic. FLT3-ITD was 

examined by fragment analysis (53), and samples with a mutant/
wild-type allelic ratio of  ≥5% were considered positive. Recurrent 
mutations seen in ≥2 patients were kept for analyses. To correlate 
drug response with gene mutation, one-way ANOVA with type III 
sums of squares test was performed using drug responses (Z scores) 
as dependent variables and gene mutations as independent vari-
ables. The Benjamini–Hochberg method was adopted for multiple 
comparison correction at a false discovery rate (FDR) of 20% to set 
the adjusted P value cutoff (19).

Sequencing reads of PDX samples were mapped to mouse (mm10) 
and human (hg19) reference genomes by BWA-MEM (v0.7.15) and 
GeneGlobe. Mouse-derived reads were removed by Disambiguate 
(54). Mutations were identified by FreeBayes (v1.3.6) using default 
parameters, annotated by ANOVAR with databases of 1000 Genomes 
Project, Exome Aggregation Consortium, COSMIC, and ClinVar (55) 
and filtered to retain pathogenic, nonsynonymous exonic variants 
with read depth >250×, MAF <0.01, and VAF >0.05 for downstream 
analyses. Union of variants in paired samples taken before and after 
animal grafting were subjected to clonal evolution analysis. SciClone 
package (v1.1) in RStudio was used to infer subclonal architec-
tures (56). Clonal evolution relationship was mapped by ClonEvol 
(v0.99.11) (parameters: cluster.center = “mean,” num.boots = 1,000, 
founding.cluster  =  1, min.cluster.vaf  =  0.05, sum.P  =  0.01, 
alpha  =  0.05; ref.  57) and visualized by Fishplot package (v0.5.1)  
in RStudio (58).

RNA-seq
Total RNA was purified from myeloblasts using TRIzol reagent 

(Life Technologies) and RNeasy Micro kit (Qiagen). RNA integrity 
was assessed by the RNA 6000 Pico Kit run on the 2100 Bioana-
lyzer (Agilent Technologies). Samples with RIN  >6 were chemically 
fragmented, followed by cDNA synthesis and library preparation 
using the NEB RNA sample preparation kit (Illumina). Sequencing 
was performed on the NovaSeq 6000 platform (Illumina) to yield 
10Gb raw data. Alignment of reads to the reference genome (hg38) 
was performed using STAR-2.5.3a (59). Reads with <10 counts were 
excluded, and gene assignments were based on Ensembl genome 
assemblies. Gene-level counts (CPM) were generated with Partek 
Flow v10.0 using the RNA-seq pipeline, with DEGs curated by 
DESeq2 with total coverage ≥10 (60). Gene fusions were retrieved by 
STAR Fusion (v1.10.0).

Clinical Implementation
Patients who met the inclusion criteria for personalized treatment—

(i) failed two or more previous treatment lines and (ii) no further 
standard treatments were available—were enrolled to adopt preci-
sion medicine on a compassionate basis. Drug profiling results were 
reviewed by the tumor board comprising expert pediatric oncologists 
to prioritize the therapeutic options based on (i) drug accessibility, (ii) 
clinical evidence of safety in children, and (iii) family acceptance of 
experimental treatment. Morphologic remission was assessed as the 
standard clinical parameter of disease control. The study is registered 
at ClinicalTrials.gov (NCT04478006).

Statistical Analyses
The statistical methods applied for individual experiments are 

indicated in the figure legends. Analyses were performed with SPSS 
v25.0, Prism v8.3.1, RStudio v1.3.959, and Origin v9.6.5.169.

Data Availability
Targeted genome sequencing data were deposited in Sequence 

Read Archive (SRA; accession number: PRJNA862202). RNA-
seq data were deposited in Gene-Expression Omnibus (accession 
number: GSE192638).
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