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Monolayer-to-bilayer transformation of silicenes
and their structural analysis
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Silicene, a two-dimensional honeycomb network of silicon atoms like graphene, holds great

potential as a key material in the next generation of electronics; however, its use in more

demanding applications is prevented because of its instability under ambient conditions. Here

we report three types of bilayer silicenes that form after treating calcium-intercalated

monolayer silicene (CaSi2) with a BF4
� -based ionic liquid. The bilayer silicenes that are

obtained are sandwiched between planar crystals of CaF2 and/or CaSi2, with one of the

bilayer silicenes being a new allotrope of silicon, containing four-, five- and six-membered sp3

silicon rings. The number of unsaturated silicon bonds in the structure is reduced compared

with monolayer silicene. Additionally, the bandgap opens to 1.08 eV and is indirect; this is in

contrast to monolayer silicene which is a zero-gap semiconductor.
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A
frenzy of interest in graphene has spawned many

theoretical and experimental studies1–4. After calculating
the structures of two-dimensional (2D) crystals of silicon

(silicene)5–7, researchers have speculated that silicon atoms might
form graphene-like sheets and have attempted to produce such
silicene structures8–12. Very recently, Tao et al.13 succeeded in
fabricating the first silicene transistor, although the device’s
performance was modest. Nonetheless, the development of much
more facile and practical processing methods has remained a
challenging issue. The most difficult problem is that silicene
grows on specific substrates and is stable only under vacuum
conditions8,9,14,15. Another issue is that the influence of the
substrate cannot be removed; the strong hybridization between Si
and the substrate may stabilize silicene grown on specific
substrates8,14–16.

In a previous report on calcium-intercalated silicene (CaSi2),
we observed a massless Dirac-cone band dispersion at the k-point
in the Brillouin zone, which was located far from the Fermi level
because of the substantial charge transfer from the Ca atoms to
the silicene layers17. This result is similar to the previously
reported band structures of silicenes deposited on specific
substrates9 because CaSi2 is a type of Zintl silicide, in which the
formal charge is rewritten as Ca2þ and Si� (ref. 18). Therefore,
the intrinsic electronic structure of silicene has never been
observed. In the calculated results, a van der Waals bonded
silicene layer has been deposited on an intact multi-CaF2 layer19.
If the Ca layer of CaSi2 had been exchanged with a CaF2 layer, the
influence of the substrate would have been almost completely
suppressed. To reduce the influence of external factors on the
electronic structure of silicene (for example, from substrates or
counter ions) and to increase the stability under ambient
condition, we replaced monolayer silicene with bilayer silicene.

The existence of a bilayer silicene structure, whose density
of unsaturated silicon bonds is reduced in comparison with
monolayer silicene, has been predicted by molecular dynamics
(MD) calculations20–27. If we could experimentally prepare a
similar bilayer silicene, we could then investigate its intrinsic
electronic structure. Because of the electron transfer from the
calcium cation, the monolayer silicene in CaSi2 is a formally
anionic layer17: when the calcium cation becomes electrically
neutral, the silicene will not retain its honeycomb structure and
will reconstruct to form a more stable structure. Under this
supposition, we attempted to segregate the Ca and Si phases while
maintaining the layer structures by diffusing fluoride (F) atoms,
which are more electronegative than Si, into CaSi2; the goal was to
form an ionic bond (or interaction) between Ca and F. In this
study, BF4 anion based ionic liquid was used for the origin of
fluoride anion.

Results
Fluoride diffusion into CaSi2. When the CaSi2 crystal
(Supplementary Fig. 1) was annealed in [BMIM][BF4] ionic liquid
at 250–300 �C, it was changed to a CaSi2FX (0rXr2.3)
compound through diffusion of F� , in which the local F�

concentration gradually decreased from the crystal edge to the
interior (Fig. 1a,b and Supplementary Fig. 2). As a result, three
types of bilayer Si in a CaSi2 single crystal were obtained
by diffusion of F� . Figure 1c, which displays a high-angle
annular dark field scanning transmission electron microscopy
(HAADF-STEM) image taken of the CaSi2F1.8 compound, shows
the alternate stacking of planar crystal domains with layer
thicknesses of 1–2 nm. The HAADF-STEM imaging provided an
atomic-scale Z-contrast image (Z: atomic number) to distinguish
the heavier constituent elements28–30. STEM-energy-dispersive
X-ray spectroscopy (STEM-EDX) elemental mapping identified

the bright-contrast crystal domains, which were identified as the
CaF2 phase and the dark domains, which were identified as Si
phases (Fig. 1f–j). We determined the crystal structures of the
entire planar region in the images of the CaSi2F1.8 and CaSi2F2.0

compounds shown in Fig. 1c,d, respectively. These planar
domains were identified as trilayer CaF2, trilayer Si, bilayer
CaF2 and a novel bilayer silicene (denoted as w-BLSi in Fig. 1c,d)
that has not been previously predicted by MD calculations20–27.
Furthermore, two types of bilayer silicenes, one with inversion
symmetry (i-BLSi) and one with mirror symmetry (m-BLSi), were
recognized in the CaSi2F0.6-1.0 composition area (Fig. 1e and
Supplementary Fig. 3). The formation of m-BLSi is in accordance
with predictions from a previous MD study22. The i- and m-BLSi
must be adjacent to a pair of CaF2 and CaSi2 crystal layers. The
abundance ratio of i-BLSi to m-BLSi was 124:3 in the observed
HAADF-STEM images. Because the calculated energy of i-BLSi
was 0.03 eV per atom lower than that of m-BLSi under vacuum,
the abundance ratio is qualitatively reasonable. The average size
of w-BLSi is B30 nm, and that of m-BLSi is B10 nm. The size of
i-BLSi is greater than 51 nm, which is the maximum size that can
be observed by STEM imaging.

Structural determination of w-BLSi. The atomic structure of the
bilayer silicene was determined from HAADF-STEM images that
were taken with different incident electron beam directions
(Fig. 2a–c, Supplementary Fig. 4 and Supplementary Note 1).
As shown in Fig. 2d, the bilayer silicene structure had a 2D
translation symmetry and a wavy morphology (hereafter, we refer
to the structure as w-BLSi). The w-BLSi structure consists of two
silicenes, with alternating chair and boat conformations, that are
vertically connected via four-, five- and six-membered rings.
Because w-BLSi consists of only Si atoms exhibiting tetrahedral
coordination, the top atom of the five-membered silicon ring
possesses unsaturated silicon bonds (dangling bonds). There-
fore, compared with those in monolayer silicene and i- (or m-)
BLSi, the density of unsaturated silicon bonds in w-BLSi
decreased to 25 and 50%, respectively (Supplementary Fig. 5).

We determined the atomic positions of w-BLSi from high-
resolution transmission electron microscopy and HAADF-STEM
images as accurately as possible (Supplementary Figs 6 and 7,
Supplementary Table 1 and Supplementary Note 2). The 2D
translation periods of w-BLSi were a¼ 0.661(2) nm and
b¼ 0.382(3) nm, and the two translation axes were normal to
each other (Supplementary Fig. 8). The a period of w-BLSi is
similar to the triple lattice spacing of d11-2 in CaF2 (0.223 nm),
and the b period is similar to d-110 in CaF2 (0.386 nm); that is, the
difference between w-BLSi and CaF2 (111) is less than the
observation error (Supplementary Fig. 9). Because the atomic
arrangement of the (111) plane of the CaF2 crystal exhibited
threefold symmetry, three equivalent relative rotation angles
were observed between w-BLSi and the CaF2 (111) plane
(Supplementary Figs 10 and 11). In addition, the angle between
the [01]w-BLSi and [11]w-BLSi directions was almost 60�
(Supplementary Fig. 10, w-BLSi is described in 2D notation,
because 2D can be expressed more simply than three
dimensions). Therefore, Figs 1c and 2a show the contrast of
two different arrangements of bright dots—specifically, the [01]
and [11] direction images (Fig. 2e,g) in the w-BLSi regions. In
almost all of the observed HAADF-STEM images, w-BLSi always
faced the (111) plane of CaF2, and the F vacancies (red arrows in
Fig. 1d) on the CaF2 (111) surface were recognized at special
positions associated with the wavy structure of w-BLSi. A w-BLSi
was observed to be sandwiched between two CaF2 layers with
an F-site surface vacancy of B0.5 at the interface (Fig. 1d,
Supplementary Figs 7,12–15 and Supplementary Note 3).
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DFT and ab initio MD calculations and optical properties.
The w-BLSi structure appears to resemble re-BLSi20 in
appearance; however, its atomic arrangement is clearly different
(Supplementary Fig. 16). An ab initio MD calculation was
performed for BLSi under the conditions corresponding to the
experimentally observed structure, that is, BLSi was sandwiched
between two CaF2 layers with an F-site surface vacancy of 0.5 at
the interface. The MD calculation was started with the i-BLSi
structure, but it was immediately transformed to another
BLSi structure. The system was then equilibrated, and the
resultant BLSi structure was found to perfectly agree with
the experimentally observed w-BLSi structure in Fig. 3a
(Supplementary Tables 2–5, Supplementary Fig. 17 and
Supplementary Note 4). The electronic density of states (DOS)
for w-BLSi was calculated by using the structure in Fig. 3a, and
the decomposed DOSs for Si, Ca, and F are shown in Fig. 3b. The
Ca and F bands are located far below the Fermi level, and the
valence bands consist of only Si bands. An ionic rather than a
covalent interaction is thus expected between Si and Ca or F. We
also observe that the bandgap opens to B0.65 eV, in contrast
to monolayer silicene, which is a zero-gap semiconductor31.
Interestingly, however, the gap closes when w-BLSi is isolated
without geometry optimization under vacuum (Supplementary
Fig. 18b). This result indicates that, in the CaSi2FX compound,
charge transfer from Ca to Si occurs, filling the energy levels that
are unoccupied under vacuum (Supplementary Discussion).
Thus, the electronic properties of w-BLSi appear to be sensitive
to its environmental conditions.

The presence of the F vacancies allows the electrons on Ca to
transfer to Si, which enhances the stability of the w-BLSi structure
(Fig. 3a) by saturating the dangling bonds. The CaF2-X domains
(specifically, ionic crystalline domains) surrounding the Si layers
are key to the formation of the w-BLSi structure.

The optical bandgap can be calculated from the absorption
spectrum. The diffuse reflectance spectrum of the powder sample
with CaSi2F1.8-2.3 composition was measured, and the obtained
reflectance spectrum data (Supplementary Fig. 19) were con-
verted to a Kubelka–Munk function (K/S), which is proportional
to the absorption coefficient (a). The sample was a mixture of
w-BLSi, two types of trilayer silicene (with dangling bonds and
terminated with F atoms, as shown in Supplementary Fig. 20) and
a CaF2 layer (Supplementary Note 5). The relationship between
the absorption coefficient (a) and the bandgap energy (Eg) can be
described by two types of equations: ahn¼ const (direct gap) and
ahn¼A (hn�Eg) (indirect gap), where the DOS for 2D crystals
is constant as a function of energy32–35 (Supplementary Note 5).
Here, h, n and A are Planck’s constant, light frequency and
proportional constant, respectively. From two linear fittings of the
spectrum, the latter equation was found to be suitable for the
sample. The absorption edges of the CaSi2F1.8-2.3 compound were
observed at 1.08 and 1.78 eV (Fig. 3c), assuming indirect
transitions.

Freestanding trilayer silicene is semi-metallic, as shown by
density functional theory (DFT) calculations36. It has been
suggested that the bandgap of trilayer silicene with dangling
bonds in CaSi2F1.8-2.3 is nearly zero if charge transfer between the
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Figure 1 | Visualization of fluoride diffusion. (a) Cross-sectional BSE image of the crystal grain including CaSi2FX compound. (b) EPMA quantitative

line analysis result along the red arrow in a. (c) HAADF-STEM image taken from a region with CaSi2F1.8 in b; the strip contrast corresponds to Si

(dark domain) and CaF2 (bright domain) planar crystals. (d) An enlarged HAADF-STEM image taken from a region with CaSi2F2 in b; red arrows indicate

an F-vacancy site. (e) HAADF-STEM image taken from a region with CaSi2F0.6-1.0 in b; bright dots, corresponding to the projected atomic positions of

m-and i-BLSi, can be observed in the image. (f–i) STEM-EDX elemental mapping results of the CaSi2F2 composition region. One-element mapping

(f: Si; g: Ca; and h: F). (i) Overlapped-mapping of Si, Ca and F. (j) HAADF-STEM image of the STEM-EDX elemental mapping area. The scale bars

in a; c and j; and d and e; 100mm, 2 nm and 1 nm.
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trilayer silicene and the CaF2 layer is inhibited19. From previous
DFT results of monolayer and multilayer silicene terminated with
atoms37,38, it is conjectured that the bandgap of F-terminated
trilayer silicene would be B1 eV within the framework of the
DFT and Perdew, Burke and Ernzerhof (PBE) technique.
It should be noted that DFT calculations using a standard
generalized gradient approximation functional tend to
underestimate the bandgap (roughly B2/3 in crystal Si). This
indicates that the bandgap experimentally measured for the
trilayer silicene should be B1.5 eV. Meanwhile, the bandgap for
w-BLSi, which is estimated to be B 0.65 eV in the DFT–PBE

calculation, is expected to be B1 eV in the experimental
measurement. Therefore, the measured gaps were estimated
such that the gaps of w-BLSi and F-terminated trilayer silicene
were 1.08 and 1.78 eV, respectively.

Transformation process from monolayer silicene to w-BLSi.
On the basis of the HAADF-STEM data, we discussed a model for
the transformation process from a monolayer silicene in CaSi2

(Fig. 4a) to w-BLSi (Fig. 4f). When F� ions diffuse from the
surface of a CaSi2 crystallite into the crystal along the Ca layer,
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Figure 3 | DFT and ab initio MD results and optical property. (a) Structure of w-BLSi sandwiched between two CaF2 crystals, with vacancies at half

of the F sites on the interface; this structure was used to calculate the DOS and was obtained from the transformation of i-BLSi in the ab initio MD

simulation and the subsequent quenching process (Supplementary Method). (b) Decomposed DOS for Si, Ca and F in w-BLSi displayed in a. (c) Plot of

multiplication of the K/S and energy as a function of energy for CaSi2F1.8-2.3 consisting of w-BLSi, trilayer silicene with dangling bonds and F-terminated

trilayer silicene. The absorption spectrum suggests two indirect gaps with values of 1.08 and 1.78 eV.
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thin CaF2-x planar crystals are formed; as a result, anionic silicene
layers assemble to reduce the number of unsaturated bonds
beyond the Ca layer (Fig. 4b). During this movement, the Si
covalent bonding network with honeycomb symmetry is broken
and its arrangement consequently becomes random (Fig. 4c). As
shown in Fig. 4d, two types of bilayer silicenes, i-BLSi and m-BLSi,
which formed in the slit-like regions, as predicted by the MD cal-
culation22, co-exist with CaSi2 in the low F-concentration region.
Both of these structures are stabilized as a result of charge transferred
from the Ca atoms which saturate the silicon dangling bonds.

We analysed more than 200 STEM images of BLSi; w-BLSi was
recognized at F concentrations surpassing that of CaSi2F1.8. With
increasing F concentration, the site occupancy of F concentration
at the interface of the CaF2 planar crystal reached B0.5, then
w-BLSi was formed by the change of ionic interactions among Si,
Ca and F (Fig. 3e,f). In this process, negatively charged Si atoms
tend to lose their electrons, which makes i- (or m-) BLSi less
stable because the ‘capping’ of the dangling bonds by extra
electrons from Ca is reduced and the dangling bonds destabilize
the sp3 tetrahedral configuration. Thus, the anionic honeycomb
structure of i- (or m-) BLSi is transformed to w-BLSi, which is
approximately neutral because of the fluorination of the Ca
cation.

Discussion
We focused on calcium-intercalated silicene (CaSi2) and
discovered a strategy for transforming monolayer silicene into a
novel bilayer silicene (w-BLSi). From HAADF-STEM images, we
observed that w-BLSi was formed between the planar crystals of
CaF2 and contained four-, five- and six-membered silicon rings,
although w-BLSi consists of only Si atoms exhibiting tetrahedral
coordination. Compared with monolayer silicene, the number of
unsaturated silicon bonds in w-BLSi decreased to 25% of the unit
cell. The transformation process from monolayer silicene in CaSi2

to w-BLSi was estimated from HAADF-STEM data. When F�

ions diffuse into the CaSi2 crystal along the Ca layer, thin CaF2-x

planar crystals and two types of bilayer silicenes (i-BLSi and
m-BLSi) are formed, following breakage of the Si covalent
bonding monolayer network. Both of these Si structures were
stabilized as a result of charge transferred from the Ca atoms

which saturate the silicon dangling bonds. With increasing F
content, i- (or m-) BLSi is transformed to w-BLSi. Additionally,
the structure possesses an indirect bandgap of 1.08 eV in contrast
to monolayer silicene, which is a zero-gap semiconductor.

Methods
Synthesis of CaSi2FX compound. CaSi2 single-crystal grains (0.1 g) were
reacted with 5 ml of ionic liquid [BMIM][BF4] (1-butyl-3-methylimidazolium
tetrafluoroborate) at 300 �C for 15 h. BF4

� decomposed into F� during annealing,
and the CaSi2 crystal was changed to CaSi2FX compounds (0rXr2.3) through the
diffusion of F� (Fig. 1a,b). More details are given in Supplementary Method.

Chemical composition analysis. The chemical compositions of the CaSi2FX

domains were determined by electron probe microanalyser (EPMA) with a wave
dispersion system (JEOL JXA-8200), an accelerating voltage of 10 kV, a specimen
current of 50 nA, and an electron irradiation area of 5 mmj. Single-phase CaF2 and
Si crystals were used as the standard for quantitative composition analysis of Ca,
F and Si. EPMA line analyses were performed with 5 mm steps from the edge to the
inside of the CaSi2FX crystallites cross-sectioned parallel to the CaSi2 [001]
direction.

TEM/STEM analysis. HAADF-STEM observations28–30 and STEM energy-
dispersive X-ray spectroscopy (EDX) analyses were performed with a Titan3. G2
60–300 electron microscope (FEI, Cs¼ 156 nm) operated at 300 kV.
HAADF-STEM imaging was capable of providing an atomic-scale Z-contrast
image associated with the heavier constituent elements. The annular detector
was set to collect the electrons scattered at angles between 50.5 and 200 mrad.
High-resolution transmission electron microscopy observations were obtained with
a JEM-2000EX electron microscope (JEOL, Cs¼ 0.7 mm) operating at 200 kV.
TEM specimens of CaSi2FX were detected with five different F concentration ranges
(CaSi2F0.6-1.0, CaSi2F1.6, CaSi2F1.8, CaSi2F2.0 and CaSi2F2.3) by using the FIB micro-
sampling method39. The atomic positions in the w-BLSi crystal and the interface
structure were characterized by comparing the HAADF-STEM image contrasts
with simulated contrasts calculated by the multi-slice method using MacTempasX.

Computational method. DFT and ab initio MD calculations were performed to
calculate the DOS and to examine the structural stability of BLSi using the Vienna
Ab initio Simulation Package (ref. 40). The projector augmented wave method41

and generalized gradient approximation with the exchange and correlation
functions of PBE were employed42. A plane-wave basis set with an energy cutoff of
400 eV was used with G-point sampling in the Brillouin zone. To model the BLSi
systems observed in our experiments, two-layer Si structures were sandwiched by
CaF2 crystal domains, each consisting of three sets of CaF2 layers, with or without
the F-site vacancy at the Si/CaF2 interfaces. The DOS for the w-BLSi was calculated
for the structure obtained after the quenching process (shown in Fig. 3a) following
the 300 K run. More details are given in Supplementary Method.
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Optical reflectivity. Diffuse reflectance spectra were obtained for the
CaSi2F1.8-2.3 composition powder sample using a spectrophotometer
(JASCO V-670).

The diffuse reflectance spectra were processed under the Kubelka–Munk
formalism, and the bandgaps were determined using a plot of the multiplication
of the K/S and energy. More details are given in Supplementary Methods.
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