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Abstract
Cognitive training (CT) is an increasingly popular, non-pharmacological intervention for improving cognitive functioning in
neurodegenerative diseases and healthy aging. Although meta-analyses support the efficacy of CT in improving cognitive func-
tioning, the neural mechanisms underlying the effects of CT are still unclear. We performed a systematic review of literature in the
PubMed, Embase and PsycINFO databases on controlled CT trials (N > 20) in aging and neurodegenerative diseases with pre- and
post-training functional MRI outcomes up to November 23rd 2018 (PROSPERO registration number CRD42019103662). Twenty
articles were eligible for our systematic review. We distinguished between multi-domain and single-domain CT. CT induced both
increases and decreases in task-related functional activation, possibly indicative of an inverted U-shaped curve association between
regional brain activity and task performance. Functional connectivity within ‘cognitive’ brain networks was consistently reported to
increase after CT while a minority of studies additionally reported increased segregation of frontoparietal and default mode brain
networks. Although we acknowledge the large heterogeneity in type of CT, imaging methodology, in-scanner task paradigm and
analysis methods between studies, we propose a workingmodel of the effects of CT on brain activity and connectivity in the context
of current knowledge on compensatory mechanisms that are associated with aging and neurodegenerative diseases.
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Introduction

In recent years, cognitive training (CT) has become increas-
ingly popular as a treatment for cognitive dysfunction and
decline. CT is a behavioral, non-pharmacological treatment
that has a history of more than a century but has regained
interest in the past two decades (Katz, Shah, & Meyer,
2018). Its scope nowadays ranges from alleviating cognitive
dysfunction in neurodegenerative diseases, in which pharma-
cological treatment options have limited efficacy (Tan et al.,
2014; Seppi et al., 2011), to improvement of cognitive abili-
ties in cognitively intact individuals (see e.g., Shah,
Weinborn, Verdile, Sohrabi, & Martins, 2017). The recent
popularity of CT has evoked substantial debate and criticism
from the scientific community regarding its efficacy and va-
lidity (van Heugten, Ponds, & Kessels, 2016; Orban, Rapport,
Friedman, & Kofler, 2014; Goodier, 2009; Rabipour & Raz,
2012), at least partly due to the growth of commercial compa-
nies promising to enhance mental fitness or cure cognitive
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dysfunction in an aging society by offering online ‘brain train-
ing’ products without scientific basis.

Meta-analyses of studies in multiple neurodegenerative
diseases support the efficacy of CT to improve cognitive func-
tion (Leung et al., 2015; Sitzer, Twamley, & Jeste, 2006;
Chandler, Parks, Marsiske, Rotblatt, & Smith, 2016;
Dardiotis et al., 2018). Even more so, CT has been shown to
delay cognitive decline in both healthy adults and patients
with Parkinson’s disease (e.g. Petrelli et al., 2014; Rebok
et al., 2014; Willis et al., 2006). This indicates that CT may
have a neuroprotective effect that counteracts or delays age-
and disease-related degeneration of the brain and is reminis-
cent of the “use it or lose it” principle (Swaab, 1991; Hultsch,
Hertzog, Small, & Dixon, 1999).

The aim of CT through ‘process-based’ or ‘drill’ training is,
as generally opposed to cognitive strategy training, to improve
cognition through repeated engagement of cognitive processes
using one or more challenging and preferably adaptive tasks –
analogous to physical training. Stimulation of neuroplasticity
and thereby enhancement of cognitive reserve is thought to
represent the underlying neurobiological mechanism (Park &
Bischof, 2013; Raichlen & Alexander, 2017). Neuroplasticity
refers to the brain’s ability to undergo structural and functional
alterations by altering neurotransmission, synaptogenesis and
neurogenesis from birth to old age (Mahncke, Bronstone, &
Merzenich, 2006). Research in rodents has indicated that
training-induced neuroplasticity entails changes in dendritic
spine formation rate (Lai, Franke, & Gan, 2012), cortical spine
density (Kuhlman, O'Connor, Fox, & Svoboda, 2014) and syn-
apse potentiation (Xiong, Znamenskiy, & Zador, 2015; for a
review see Abraham, 2008) and also neural changes such as
hippocampal synaptic connectivity in animal models of neuro-
degenerative diseases (Stuart et al., 2017).

In humans, non-invasive neuroimaging techniques are an
elegant way to map neural alterations in response to CT, but
so far there is no agreement on how CT alters the aging brain at
this macroscopic level. This review seeks to provide a system-
atic overview of reported changes in brain activity and connec-
tivity induced by process-based CT, measured by functional
magnetic resonance imaging (MRI). As integration of informa-
tion in large-scale brain networks is increasingly thought to be
essential for successful cognition (Bassett & Sporns, 2017;
Bullmore & Sporns, 2009), we aim to describe results in the
context of the human brain connectome. This systematic review
aims to answer the following questions: what is the influence of
the trained domain (e.g., single-domain versus multi-domain,
working memory versus attention) on alterations of brain activ-
ity and connectivity? Do these alterations specifically involve
certain brain networks? Are the mechanisms of effect of CT
dependent on the target study population?

Insight into the neural mechanisms of CT across neurode-
generative diseases and healthy elderly, and across training
packages is warranted to further optimize the efficacy of CT.

We hypothesize that CT-induced changes in brain activity and
connectivity are dependent on the type of CT, and that these
changes occur predominantly in brain networks important for
the specific cognitive domain that is trained. We first summa-
rize the existing literature for multi-domain and single-domain
CT separately. In the final section, we evaluate and integrate
the reviewed studies, and provide recommendations for future
research.

Methods

Study Selection and Screening

We performed a systematic literature review following Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA, http://www.prisma-statement.org/) guidelines on
records published in the PubMed, Embase, and PsycINFO
databases up to November 23, 2018. We registered the review
protocol with the PROSPERO International Prospective Register
of Systematic Reviews of the University of York (registration
number: CRD42019103662). The search termswere defined as a
combination of “cognitive training” and related terms and
“neuroimaging” and related terms. Additionally, we added
exclusion terms based on our eligibility criteria. An overview
of the literature search terms is provided in Electronic
Supplementary Material 1. We also added studies from
reference lists of studies in our literature search (i.e., snowball
method). Records were first independently screened (TvB, CV)
for eligibility and disagreement was re-evaluated to consensus.

Eligibility criteria were 1) randomized and non-randomized
controlled trials on process-based CT, 2) in a human population
of patients suffering from neurodegenerative diseases or
healthy elderly (defined as a mean age of 60 years or older),
3) with neuroimaging data before and immediately following
CT, 4) with functional magnetic resonance imaging (fMRI, i.e.,
resting-state and/or task-related) as reported outcome measure,
and 5) with a minimal total sample size of 20 participants to
enhance reliability of single-study results. Eligibility criterion 2
was retrospectively adjusted and therefore deviates from the
PROSPERO review protocol: the minimal age for healthy par-
ticipants was increased from 30 to 60 years in order to include
studies specifically in the aging healthy elderly sample. One
study that was originally included (Clark, Lawlor-Savage, &
Goghari, 2017) was for this reason excluded from the synthesis.
Exclusion criteria were combination treatments, such as CT
combined with physical activity. As the popularity of process-
based CT is increasing, there is also considerable debate on the
efficacy and working mechanism, as described in the
Introduction. Cognitive strategy training studies were therefore
not eligible for this review in order to improve our understand-
ing of –specifically– process-based training, to enhance com-
parability in a heterogeneous research field.
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We only considered reports written in English. Potentially
eligible records were screened in full-text based on the afore-
mentioned criteria and excluded records were assigned an
exclusion label. Eligible records were included in the system-
atic review.

While meta-analytic methods such as activation likelihood
estimation and seed-based d mapping (Eickhoff, Bzdok,
Laird, Kurth, & Fox, 2012; Radua et al., 2012) are highly
suitable to define agreement across multiple neuroimaging
studies, we did not perform such a meta-analysis as the corre-
spondence in study methods, analysis methods, seed regions
or regions-of-interest used, and in-scanner tasks was insuffi-
cient and did not adhere to recent neuroimaging meta-analysis
recommendations (Muller et al., 2018). Additionally, as there
already was significant heterogeneity in fMRI study method-
ology and to ensure comparability of results, we focused on
studies using this neuroimaging modality and did not include
other modalities (e.g., positron emission tomography, magne-
toencephalography) as well.

Data Extraction and Assessment

We extracted data of participant demographics and interven-
tion characteristics, including sample size, age, domain of CT,
control group type (active of passive) and number of hours
trained.We classified interventions as multi-domain or single-
domain CT. We extracted the specific domain that single-
domain interventions focused on (i.e., cognitive control, inhi-
bition, processing speed and working memory). Concerning
the fMRI outcome, we extracted the imaging modality (rest-
ing-state or task-related fMRI), the analysis method and seed
region or region-of-interest (ROI) applied. We extracted the
reported regions of CT-related alterations, including direction-
ality of effect, outcome measure, coordinates of the anatomi-
cal brain locations (if specified) and correlations with behav-
ioral outcomes (when applicable). Talairach coordinates were
converted to Montreal Neurological Institute (MNI) coordi-
nates using Wake Forest University PickAtlas in Statistical
Parametric Mapping (Maldjian, Laurienti, & Burdette, 2004;
Maldjian, Laurienti, Kraft, & Burdette, 2003). We used
BrainNet Viewer to visualize results (Xia, Wang, & He,
2013). Extracted training-induced changes in brain function
are relative to a control condition (i.e., the interaction-effect)
unless otherwise specified in this paper.

To get an overview of how CT influenced brain network
function, we assigned neural network labels to extracted co-
ordinates of neural alterations using the atlases of cerebral,
cerebellar and striatal parcellation studies of which the default
mode network (DMN), frontoparietal network (FPN), and
dorsal and ventral attention network (DAN and VAN) play a
large role in facilitating cognitive functions (see Box 1; Power
et al., 2011; Fox et al., 2005; Yeo et al., 2011). We used the
widely accepted 7-network topology for neocortical areas as

described in the Yeo et al. (2011) paper, the Buckner, Krienen,
Castellanos, Diaz, and Yeo (2011) paper for cerebellar net-
work organization, the paper by Choi, Yeo, and Buckner
(2012) for striatal areas, and classified the hippocampus as a
DMN region (Greicius, Krasnow, Reiss, & Menon, 2003;
Greicius, Srivastava, Reiss, & Menon, 2004).

Box 1 Resting-state ‘cognitive’ networks

Default mode network (DMN) - Essential regions of the DMN are the
medial prefrontal cortex and posterior cingulate cortex (PCC). This
network is characterized by activity in the absence of external cognitive
demand. TheDMN is thought to be involved in integration of memory,
self-monitoring and theory of mind (Spreng, Mar, & Kim, 2009;
Burianova, McIntosh, & Grady, 2010; Jeong, Chung, & Kim, 2015).

Frontoparietal network (FPN) - Important FPN regions are the
dorsolateral prefrontal cortex (dlPFC) and the posterior parietal cortex.
This network is also often referred to as the central executive network,
and its activity is anti-correlated with DMN activity. The FPN has
previously been described as a “multi-demand network” (Duncan,
2010), and its activity is important for goal-directed cognitive tasks,
including working memory, planning, judgment and decision-making
(Kelly, Uddin, Biswal, Castellanos, & Milham, 2008; Menon, 2011).
Relative to other brain networks, the FPN shows strong within- as well
as between-network connectivity, reflecting the heterogeneous func-
tions it encompasses (Cole et al., 2013).

Dorsal attention network (DAN) & ventral attention network (VAN) -
Lastly, two attention networks can be distinguished that follow a dorsal
route (DAN) or a ventral route (VAN). The DAN consists of important
regions in the intraparietal sulcus and frontal eye field, and it is mainly
important for voluntary, goal-directed attention orientation (Fox,
Corbetta, Snyder, Vincent, & Raichle, 2006; Fox et al., 2005; Corbetta
& Shulman, 2002; Corbetta, Kincade, Ollinger, McAvoy, & Shulman,
2000). The VAN directs attention stimulus-driven – that is, when
identifying salient stimuli (Menon & Uddin, 2010; Sridharan, Levitin,
& Menon, 2008; Fox et al., 2005, 2006; Corbetta et al., 2000). The
VAN is therefore also referred to as the “salience network” (Seeley
et al., 2007; Menon & Uddin, 2010). Crucial VAN regions are the
anterior insula and dorsal anterior cingulate cortex.

Quality Assessment

We assessed the quality of individual studies by a National
Institutes of Health standardized quality assessment tool of con-
trolled intervention studies (https://www.nhlbi.nih.gov/health-
topics/study-quality-assessment-tools, see Electronic
Supplementary Material 2). Criteria involved clear trial
description, randomization procedure, allocation concealment,
blinding, no baseline differences between groups, low drop-out
rate and difference in drop-out between groups, high protocol
adherence, similar simultaneous treatments (e.g., treatment-as-
usual), outcome measure quality, sufficient power, pre-
specified analyses, and intention-to-treat analysis. The neuroim-
aging analysis quality was additionally assessed by a clear de-
scription of neuroimaging protocol and analyses, correction for
motion and multiple comparisons correction. We coded trials as
‘Poor’ if they adhered to <10 criteria, ‘Fair’ if they adhered to 10–
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13 criteria and ‘Good’ if they adhered to >13 criteria. Records
were independently assessed by TvB and CV and disagreement
was re-evaluated to consensus. As the final sample size was low,
we did not exclude studies from this review based on the quality.

Results

Study Selection

The literature screening resulted in 1760 records through
PubMed, 1058 records through Embase and 707 records
through PsycINFO. Of these, 1300 records were duplicates
and five records were non-English. A total of 2220 records
were screened of which 98 full-text articles were reviewed.
Twenty full-text articles met the inclusion criteria and were
included in this systematic review. An overview of the exclud-
ed records that underwent full-text review, including the main
reason for exclusion, is provided in Electronic Supplementary
Material 3. A flow diagram of the screening process according
to PRISMA guidelines (www.prisma-statement.org) is
provided in Fig. 1.

Study Characteristics

Eight studies included healthy elderly (Cao et al., 2016; De
Marco et al., 2016; Luo et al., 2016; Li et al., 2016; Kim,
Chey, & Lee, 2017; Kuhn et al., 2017; Lebedev, Nilsson,
& Lovden, 2018; Ross et al., 2018), three studies included
individuals with mild cognitive impairment (MCI; Suo
et al., 2016; Lin et al., 2016; De Marco, Meneghello,
Pilosio, Rigon, & Venneri, 2018), one study was per-
formed in Alzheimer’s disease (AD; Huntley, Hampshire,
Bor, Owen, & Howard, 2017), six in multiple sclerosis
(MS; De Giglio et al., 2016; Bonavita et al., 2015; Parisi
et al., 2014; Filippi et al., 2012; Campbell, Langdon,
Cercignani, & Rashid, 2016) and one study was performed
in Parkinson’s disease (PD; Diez-Cirarda et al., 2016). One
study included AD and MCI patients, and healthy elderly
(Barban et al., 2017). The sample size varied from twenty
(Filippi et al., 2012; Parisi, Rocca, Valsasina, et al., 2014)
to 54 participants (Li et al., 2016). Fourteen studies
assessed the neural effects of multi-domain training
(Barban et al., 2017; Bonavita et al., 2015; Campbell
et al., 2016; Cao et al., 2016; De Giglio et al., 2016; De
Marco et al., 2016, 2018; Diez-Cirarda et al., 2016; Filippi
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Full-text articles excluded
(n = 78 )
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(n = 20 )

Fig. 1 Flow diagram of the
screening process according to
PRISMA guidelines
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et al., 2012; Li et al., 2016; Luo et al., 2016; Parisi, Rocca,
Valsasina, et al., 2014; Suo et al., 2016) and six studies
assessed the effects of single-domain training (Huntley
et al., 2017; Kim et al., 2017; Kuhn et al., 2017; Lebedev
et al., 2018; Lin et al., 2016; Ross et al., 2018). A descrip-
tion of the interventions and re-coding to single- or multi-
domain training is supplied in Electronic Supplementary
Material 4. The amount of training hours varied from ten
(Ross et al., 2018) to 78 h (Suo et al., 2016). The majority
of studies (i.e., n = 13) compared CT effects to an active
control group (Barban et al., 2017; Bonavita et al., 2015;
Campbell et al., 2016; Cerasa et al., 2013; De Marco et al.,
2016, 2018; Diez-Cirarda et al., 2016; Huntley et al., 2017;
Lebedev et al., 2018; Li et al., 2016; Lin et al., 2016; Ross
et al., 2018; Suo et al., 2016), six studies applied a passive
control group (Cao et al., 2016; De Giglio et al., 2016;
Filippi et al., 2012; Kim et al., 2017; Luo et al., 2016;
Parisi, Rocca, Valsasina, et al., 2014) and one study com-
pared CT to both an active and a passive control group
(Kuhn et al., 2017). All studies used randomization except
for three studies that were not described to be randomized
(Bonavita et al., 2015; De Marco et al., 2016; Kim et al.,
2017) and two studies that were unclear on randomization
(De Marco et al., 2018; Lin et al., 2016). Detailed study
characteristics are shown in Table 1.

Quality Assessment

Table 2 shows the quality assessment results. We classified
the Diez-Cirarda et al. (2016) paper after re-evaluation as
‘Good’ as the main RCT aspects were present and clearly
reported on, and we classified the Lin et al. (2016) paper after
re-evaluation as ‘Fair’ as both the blinding and the randomi-
zation procedure were not reported on. A major limitation
across most studies was the lack of blinding for participants
and/or for assessors. The sample size was generally low with-
out clear power calculations to support the sample size, prob-
ably due to the exploratory nature of the studies. In general,
the neuroimaging methodology was clearly reported on.
Concerning competing interests, in the study by Diez-
Cirarda et al. (2016), two co-authors were reported to be copy-
right holders of the studied intervention. Three studies did not
report on competing interests (DeMarco et al., 2016; Lebedev
et al., 2018; Parisi, Rocca, Valsasina, et al., 2014). The other
studies reported to have no competing interests.

Results of Individual Studies

The results of individual studies and methodological details
are summarized in Table 1. The results are divided into studies
on multi-domain training and single-domain training. A
graphical presentation of the findings is shown in Fig. 2.

Multi-Domain Training

In Healthy Elderly In healthy elderly, multi-domain training
increased functional connectivity of the posterior cingulate
cortex (PCC) with other DMN regions (Cao et al., 2016; De
Marco et al., 2016) and within-network connectivity of the
FPN and salience network (Cao et al., 2016). Cao et al.
(2016) additionally reported an increased training-related an-
ti-correlation between the DMN and FPN. In the same dataset,
Luo et al. (2016) showed increased laterality of the left FPN –
an increased confinement of the FPN to the left hemisphere–
after CT, which was interpreted as an increase in information
processing efficiency. Li et al. (2016) assessed brain entropy
in this dataset comparing the multi-domain training with an
additional single-domain training and an active control condi-
tion (for a detailed description of entropy measures, see T. Li
et al., 2016). Both the multi-domain and single-domain train-
ing counteracted the age-related increase in whole-brain asyn-
chrony and decrease in spontaneous brain activity.
Additionally, the multi-domain training significantly reduced
the age-related decrease in lateralization of entropy measures,
while single-domain training did not.

In Neurodegenerative Diseases Five studies applied a specific
multi-domain training (i.e., ‘RehaCom’) in individuals with
MS with variable length (12–36 h). Using independent com-
ponent analysis on resting-state fMRI scans, RehaCom train-
ing increased resting-state functional connectivity within the
DMN, mainly in the posterior, parieto-occipital DMN regions
(Bonavita et al., 2015), which correlated with a lower post-
treatment interference on the Stroop task. Another study
showed that RehaCom led to increased or stable resting-state
activity fluctuations of salience network, FPN, and DMN
areas relative to decreased fluctuations in the control group
(Filippi et al., 2012). In this study, task-related activation of
the dorsolateral prefrontal cortex (dlPFC) and PCC during the
interference condition of the Stroop task was also increased,
correlating with performance on a working memory task
(paced auditory serial addition test), but no information was
provided on the direction of these specific correlations. On the
same dataset, Parisi and colleagues (Parisi, Rocca, Valsasina,
et al., 2014) reported increased resting-state functional con-
nectivity between the anterior cingulate cortex (ACC) and
inferior parietal lobe after RehaCom training that was related
to improved performance on a working memory task.

RehaCom training in MS induced increased task-related
activation during a working memory task of a temporo-
parietal region (Campbell et al., 2016), and in the superior
parietal and posterior cerebellar lobe; the latter correlated
positively with post-training Stroop interference task per-
formance (lobe VI; Cerasa et al., 2013). After a 12-week
follow-up period, task-related activity of the temporal-
parietal and additional frontal and prefrontal regions was
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still higher compared with the control group (Campbell
et al., 2016).

A different multi-domain training paradigm in MS resulted
in increased resting-state functional connectivity between the
thalamus seed and the PCC, precuneus and lateral parietal
cortex, and decreased connectivity between the thalamus and
the left dlPFC, the vermis, and bilateral cerebellar cortical
regions (De Giglio et al., 2016).

In patients with amnestic MCI, multi-domain training de-
creased functional connectivity of the superior frontal gyrus
and ACCwith the PCC, a core area of the DMN, but increased
connectivity of the hippocampus with the superior frontal gy-
rus (Suo et al., 2016). Another multi-domain training in-
creased the within-DMN connectivity in MCI patients (De
Marco et al., 2018) but did not alter connectivity within the
FPN or visual network. The study from Barban et al. (2017) in
MCI patients reported decreased functional connectivity of
the medial superior frontal gyrus with the DMN after multi-
domain training and –using network-based statistics analysis
(Zalesky, Fornito, &Bullmore, 2010)– decreased connectivity
within a subnetwork consisting of subcortical areas, the cere-
bellum, and temporal and occipital areas. They additionally
reported increased betweenness centrality, i.e., the importance
of a particular brain area in long-range network communica-
tion (Sporns, 2014), of the orbitofrontal cortex, and decreased
betweenness centrality of the cerebellar vermis. Conversely,
in the same study multi-domain training in AD patients in-
creased the spatial extent of the DMN, increased the function-
al connectivity of the network-based statistics subnetwork and
increased betweenness centrality of the ACC. The authors
therefore concluded that multi-domain training had different
effects on the brain in MCI and AD, despite similar cognitive
improvements. It must be noted, however, that MCI patients
improved mainly on memory tasks while AD patients showed
an improvement in attention.

In PD patients, an integrative multi-domain training result-
ed in increased resting-state functional connectivity between
the left inferior temporal lobe and bilateral dlPFC and in-
creased activation of the left middle temporal lobe during a
memory task (Diez-Cirarda et al., 2016).

Synthesis of Results Results from multi-domain training stud-
ies coherently suggest that it counteracts age-related or
disease-related network dysfunction by increasing the
within-network connectivity –predominantly reported in the
DMN– and the degree of anti-correlation between networks,
in particular between the FPN and DMN, which has been
related to better cognitive functioning (Kelly et al., 2008;
Baggio et al., 2015; Hampson, Driesen, Roth, Gore, &
Constable, 2010). Studies on within-DMN connectivity alter-
ations in MCI and AD patients showed mixed results, howev-
er, with both increased and decreased connectivity in this
resting-state network. CT increased task-related activityT
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across the brain, suggesting an increased neural effort, al-
though this was only studied in MS and PD patients.

Single-Domain Training

In Healthy Elderly Processing speed/attention training induced
decreased activation in the anterior insula and supplementary
motor area during an in-scanner ‘useful field of view’ task
(Ross et al., 2018) – a visual processing speed and attention
task (Wood & Owsley, 2014). This reduction in brain activa-
tion was significantly different compared with no-contact con-
trols, while no training-induced activation differences were
found relative to an active control group. In this study,
resting-state functional connectivity of areas that showed ac-
tivation during the task at baseline increased significantly after
the experimental training compared with both control groups.
Kuhn et al. (2017) compared inhibition training to 1) multi-
domain training on a mobile application and 2) a passive

control condition, and found decreased activation of the right
inferior frontal gyrus/anterior insula during an in-scanner
stop-signal task after inhibition training only, although this
effect did not reach significance in the interaction model
(i.e., relative to the control groups). A cognitive control train-
ing increased activation of right frontoparietal regions and the
left anterior insula during an interference control task (Kim
et al., 2017). These results were associated with cognitive
performance improvement, mainly on the Stroop color-word
interference task.

Working memory training increased brain-network segre-
gation during an n-back and a visuospatial reasoning task as
shown by increased whole-brain modularity and reduced con-
nectivity between the FPN and both the DMN and sensorimo-
tor network after training (Lebedev et al., 2018). Interestingly,
before training modularity was positively associated with
working memory performance, but not with the complex rea-
soning task. The authors argued that the working memory

Table 2 Assessment of individual studies on trial and neuroimaging quality

A. Trial Quality Assessment B. Neuroimaging quality
assessment

Overall
assessment

Study 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Cao et al., 2016 Y Y Y N Y Y N N N NA Y Y CD Y Y Y Y Y Y Fair

Luo et al., 2016 Y Y Y N Y Y N N N NA Y Y CD Y Y Y Y Y Y Fair

De Marco et al., 2016 N NR NR N NR Y Y Y NR NA Y NR CD N Y Y NR Y Y Poor

Li et al., 2016 Y Y Y N Y Y N N N NA Y Y CD Y Y Y NR Y Y Fair

De Marco et al., 2018 N N NR NR NR Y N N Y Y Y N CD NR Y Y NR Y Y Poor

Suo et al., 2016 Y Y NR Y Y Y Y Y Y Y Y Y Y Y Y Y NR Y Y Good

Barban et al., 2017 Y Y Y NA Y Y Y NR NR Y Y NR CD NR Y Y Y Y Y Fair

Diez-Cirarda et al., 2016 Y Y NR N Y Y Y Y Y Y Y Y Y Y Y Y NR Y Y Good

De Giglio et al., 2016 Y Y Y N Y CD Y NR NR Y Y N CD Y Y Y Y Y Y Fair

Bonavita et al., 2015 N NR NR NR NR CD Y NR NR Y Y NR CD NR Y NR NR Y Y Poor

Parisi, Rocca, Valsasina, et al., 2014 Y Y NR Y Y Y Y Y NR Y Y N CD Y Y Y NR Y N Fair

Filippi et al., 2012 Y Y NR Y Y Y Y Y NR Y Y N CD Y Y Y NR Y Y Good

Cerasa et al., 2013 Y Y Y Y Y Y Y Y NR Y Y N CD Y N Y NR Y Y Good

Campbell et al., 2016 Y Y Y N N Y Y Y Y Y Y NR Y Y N Y NR Y Y Fair

Kim et al., 2017 N N NR NA NR Y Y Y NR NR Y NR CD Y Y Y NR Y Y Poor

Kuhn et al., 2017 Y Y Y NR NR Y Y Y NR NR Y Y CD Y Y Y NR Y Y Fair

Ross et al., 2018 Y NR Y Y Y Y Y N Y Y N NR CD Y Y Y NR Y Y Fair

Lebedev et al., 2018 Y Y NR Y NR Y N Y NR N Y NR CD Y Y Y Y Y N Fair

Lin et al., 2016 Y NR NR N Y Y Y Y Y Y Y Y CD Y Y Y NR Y Y Fair

Huntley et al., 2017 Y Y NR N N Y Y Y NR NR Y Y Y Y Y Y NR Y NR Fair

Quality assessment criteria (see Supplementary Material 2 for elaborate description): 1 = randomized (controlled) trial; 2 = adequate randomization; 3 =
concealed treatment allocation; 4 = participant and assignment provider blinding; 5 = assessor blinding, 6 = similar group baseline characteristics; 7 =
drop-out ≤20%; 8 = differential drop-out ≤15%; 9 = high protocol adherence; 10 = no other interventions; 11 = valid and reliable assessments; 12 =
sufficient sample size; 13 = prespecified outcomes and analyses; 14 = intention-to-treat analysis; 15 = clear neuroimaging protocol; 16 = motion-
corrected functional images; 17 = equal group motion parameters; 18 = clear neuroimaging analyses; 19 =multiple comparison correction. Trials were
coded ‘Poor’ if they adhered to <10 criteria, ‘Fair’ at 10–13 criteria and ‘Good’ at >13 criteria. Abbreviations: CD cannot determine, N no, NA not
available, NR not reported, Y yes
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training potentially induced an increased modular organiza-
tion that is beneficial for specific abilities such as working
memory, but deleterious for complex cognitive tasks.

In Neurodegenerative Diseases In amnestic MCI patients, a
visuospatial speed of processing training resulted in increased
resting-state functional connectivity within the DMN (Lin
et al., 2016), while increased FPN connectivity did not differ
significantly from the active control group. An adaptive WM
training in early AD resulted in decreased averaged post-
training activity of the right dlPFC and left parietal cortex
(Huntley et al., 2017).

Synthesis of Results Single-domain training paradigms in-
creased functional connectivity within networks and reduced
connectivity between networks, similar to connectivity alter-
ations after multi-domain training, but only two studies per-
formed functional connectivity analyses. These paradigms ad-
ditionally induced reductions in task-related activations in
both healthy elderly and an MCI population, which is gener-
ally interpreted as an increased efficiency of neural resources

needed for the task at hand (Thompson, Waskom, & Gabrieli,
2016; Clark et al., 2017). Reduced activation may additionally
be related to the fact that the content of the single-domain CT
was identical (Huntley et al., 2017; Ross et al., 2018) or highly
similar (Kuhn et al., 2017) to the in-scanner task, thus induc-
ing practice effects. Accordingly, one study that used an in-
scanner task that was dissimilar to the CT found increased
training-related activity (Kim et al., 2017). The quality rating
of this study was, however, poor so these results should be
interpreted with caution.

Discussion

This paper systematically reviews studies that investigated the
influence of CT through repeated cognitive engagement (i.e.,
process-based training) on task-related activity and resting-
state functional connectivity using fMRI in both healthy pop-
ulations and neurodegenerative diseases. Our results show that
all investigated CT paradigms led to changes in brain activa-
tion during task performance and resting-state functional

Fig. 2 Overview of the findings of all included studies, irrespective of
population or training type, that reported coordinates of brain regions with
CT-induced alterations. Each dot represents a single alteration in activity
(panel a) or connectivity (in which both the seed and connected region are
displayed; panel b). In panel b, the seed and connected regions are clas-
sified by resting-state network (parcellation according to Yeo et al., 2011;

Choi et al., 2012; Buckner et al., 2011) to illustrate within- and between-
network connectivity changes. The side views show intra-hemispheric
connections. Details about these studies are listed in Table 1.
Abbreviations – FPN: frontoparietal network; DMN: default mode net-
work; VAN: ventral attention network; DAN: dorsal attention network;
SMN: somatomotor network; n.a.: no network assigned
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connectivity. There are three main conclusions to our research
questions that can be drawn from this literature overview: 1)
CT induced both increases and decreases in task-related activ-
ity, mostly in fronto-parietal brain areas, without a clear influ-
ence of the targeted cognitive domains; 2) multi-domain CT
was consistently reported to counteract dysfunctional connec-
tivity patterns in cognitive brain networks that are generally
associated with aging or neurodegenerative diseases; 3) meth-
odological heterogeneity between studies limits our ability to
statistically compare findings and study disease- or training-
specific neural alterations. Belowwe consider the implications
of our findings and critically discuss methodological issues to
guide future research.

Task-Related Activation Studies: Training-Induced
Improvement in Increased Neural Efficiency, or
Increased Effort

The majority of single-domain studies and four multi-domain
CT studies assessed training-induced alterations in task-
related brain activation. We observed that alterations were
most frequently reported in frontoparietal areas, probably
driven by the fact that the FPN was a network of interest in
most studies (see “Limitations and recommendations for fu-
ture research” section). Three single-domain studies found
decreased task-related activity after CT (Huntley et al.,
2017; Kuhn et al., 2017; Ross et al., 2018), while one
single-domain study and all multi-domain studies found
increased task-related activity (Kim et al., 2017; Diez-
Cirarda et al., 2016; Filippi et al., 2012; Cerasa et al., 2013;
Campbell et al., 2016). These results of both increased and
decreased activity are in line with a meta-analysis in healthy
elderly that similarly reported on functional activity alterations
predominantly in areas of the FPN (Duda & Sweet, 2019). A
review on working memory training in healthy populations
reported predominantly post-training regional activity de-
creases, while increased activity was more scarcely reported
(Buschkuehl, Jaeggi, & Jonides, 2012). An interesting distinc-
tion was found in one study that the review described;
reporting decreased post-CT activity in young adults but in-
creased activity in elderly suggesting different processes of
plasticity (Dahlin, Neely, Larsson, Backman, & Nyberg,
2008). Another similar review in healthy populations also
reported both increased and decreased brain activity after
CT, possibly related to task selectivity, improved efficiency
or more automatic processing due to CT (Taya, Sun, Babiloni,
Thakor, & Bezerianos, 2015). We hypothesize that either
training-induced neural efficiency or neural effort can account
for the bi-directionality of the results, although in-scanner task
characteristics may also be relevant.

Decreased task-related activity after training suggests
an increase in efficiency, i.e., reduced use of neural re-
sources. This result was described only in healthy elderly

samples and fits well with the literature on compensatory
mechanisms of increased neural resource use to uphold
‘normal’ cognitive task performance in healthy aging
(Reuter-Lorenz & Cappell, 2008; Reuter-Lorenz & Park,
2014; Cabeza, 2002; Davis, Dennis, Daselaar, Fleck, &
Cabeza, 2008). It is generally accepted that aging-related
decline in brain ‘fitness’ due to, for example, decreased
within-network connectivity, increased neural noise, or
dedifferentiation of task-positive and task-negative neural
networks is compensated for by mechanisms such as re-
gional over-activation, a posterior-to-anterior shift in brain
activity, and decreased asymmetry of hemispheric activity
(Reuter-Lorenz & Park, 2010; Festini, Zahodne, &
Reuter-Lorenz, 2018; Cabeza et al., 2018). Our results
may therefore indicate that the increased efficiency after
single-domain training reverses age-related compensatory
mechanisms of increased neural effort while maintaining
cognitive performance (illustrated by (1) in Fig. 3, panel a
and b).

Four studies in patients with PD or MS reported an
increase in post-training activity during task performance.
This seems to reflect an increase in neural effort, which is in
contrast with the increase in efficiency as described above –
but may be related to differences between healthy and non-
healthy populations. Theories on compensatory mechanisms
with healthy aging assume that significant neural remodeling
occurs, while at the behavioral level performance remains
relatively unimpaired (Festini et al., 2018). This mechanism
has also been described in early stages of neurodegenerative
diseases in which task performance is still comparable to age-
matched healthy controls (Trujillo et al., 2014; Gerrits et al.,
2015; Audoin et al., 2003; Lopez-Gongora et al., 2015).
Indeed, in a recent study, workingmemory CT showed similar
task-related activity decrease in healthy adults and a popula-
tion of early-stage cognitively healthy MS patients (Aguirre
et al., 2019). Cognitive performance inMS and PD patients is,
however, generally impaired (Bosboom, Stoffers, & Wolters,
2004; Chiaravalloti & DeLuca, 2008) and compensatory
mechanisms as described above may at later disease stage
no longer be sufficient for these patients. Indeed, task-related
neural activity is hypothesized to follow an invertedU-shaped
curve both in healthy adults and elderly subjects (Cabeza
et al., 2018), in patients suffering from MS (Schoonheim,
Geurts, & Barkhof, 2010) and neuropsychiatric disorders
(van Velzen, Vriend, de Wit, & van den Heuvel, 2014), so
that when task demands become too high, compensatory hy-
peractivity fails resulting in relative hypo-activity and im-
paired performance. In the reviewed studies on MS and PD
patients, we hypothesize that –as baseline cognitive perfor-
mance was impaired in these studies– training resulted in a
shift of the U-shaped curve to the right thus counteracting the
relative hypo-activity at baseline, and improved performance
(illustrated as (2) in Fig. 3). There is, however, no information
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on the baseline cognitive performance of the MS and PD
samples relative to healthy controls.

Differences in task demand and familiarity may also have
impacted the observed outcomes. In accordance with the lit-
erature on compensatory brain processes (Reuter-Lorenz &
Cappell, 2008; Cabeza et al., 2018), variation in task load
difficulty between task-related fMRI studies may have in-
duced different results with less demanding fMRI tasks such
as a digit span task (Huntley et al., 2017) inducing increased
efficiency of neural resources, while complex tasks such as the
multi-source interference task (Kim et al., 2017) induced in-
creased brain activity. Moreover, some studies using fMRI
task paradigms that were also part of the CT paradigm, e.g.,
in Huntley et al. (2017) and Ross et al. (2018), reported post-
training activity decreases, while studies using an fMRI task
that was less similar to the tasks being trained (such as in the
multi-domain training studies) showed increased post-
training activity. In line with theories of neural efficiency

(Reuter-Lorenz & Cappell, 2008) and neural scaffolding
(Reuter-Lorenz & Park, 2014), this may indicate increased
neural efficiency by familiarity of the task paradigm –i.e.,
having repeatedly performed one specific task– or increased
scaffolding by being able to address compensatory neural re-
sources, respectively.

Counteracting Age- or Disease-Related Neural
Network Dysfunctions

The brain is organized into several segregated functional
and structural networks that facilitate the execution of com-
plex functions (Wig, 2017; Fox et al., 2005; Seeley et al.,
2007). Aging and neurodegenerative diseases lead to reduc-
tions in the connectivity within networks and decreased
segregation of (i.e., increased connectivity between) these
networks (Spreng, Sepulcre, Turner, Stevens, & Schacter,
2013; Grady, Sarraf, Saverino, & Campbell, 2016; Joo,
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Fig. 3 Working model. a The inverted U-shaped association between
regional brain activity during task performance and task load. Aging
and neurodegenerative diseases lead to a shift of the curve to the left,
while CT seems to induce the opposite, illustrated by the horizontal
arrows. Consequently, at the same task load different neural resources
are needed/used. b The association between task-related brain activity
and network connectivity and modularity at increasing age or disease
stage. The arrows indicate the suggested effect of CT at different stages

of aging or disease. Both in panel (a) and (b), (1) indicates training-
induced hypo-activity associated with neural efficiency: either a) tasks
with lower demand can be performed more efficiently through cognitive
training (panel a), or b) CT (partially) restores compensatory hyper-
activity that is associated with early stages of aging and neurodegenera-
tive diseases to a more ‘healthy’ state (panel b); (2) indicates that CT leads
to hyper-activity that is associated with increased effort and which is
needed to successfully fulfill a task with a high cognitive demand
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Lim, & Lee, 2016; Hohenfeld, Werner, & Reetz, 2018;
Damoiseaux, 2017). Our review shows that relative to a
control condition, CT consistently induced neural alter-
ations that counteracted these age- and disease-related con-
nectivity patterns. This was particularly evident for studies
on multi-domain training. First, CT increased intra-network
functional connectivity. This effect was most frequently
reported within the DMN, but also for the FPN, DAN/
VAN connectivity and in functional connectivity of the
hippocampus and thalamus. Additionally, CT enhanced
the degree of network segregation, evident from increases
in the anti-correlation between task-negative (i.e., DMN)
and task-positive networks (FPN or DAN), or a training-
induced increase in whole-brain modularity. Enhanced seg-
regation is associated with better cognitive functioning in
the network literature (Damoiseaux, 2017).

Two reports specifically addressed age-related neural alter-
ations and described a long-term effect of CT on resting-state
fMRI-derived indices of neural network laterality (Luo et al.,
2016) and brain entropy (Li et al., 2016), even a year after
training. Similarly, a recent study in patients with MCI found
increased spontaneous regional brain activity during resting-
state (Li et al., 2019). Taken together, the results thus seem to
indicate a restorative effect of CT on aging and
neurodegeneration-induced changes in neural network orga-
nization (see Fig. 3, panel b). This seems mainly applicable to
multi-domain training. It should be noted that only a single
study enrolled both a healthy and a non-healthy population; it
therefore remains speculative whether CT indeed restores
brain network connectivity of patients with neurodegenerative
diseases to healthy control levels.

Limitations and Recommendations for Future
Research

The main shortcoming of the reviewed literature is the hetero-
geneity in type of training, imaging methodology, in-scanner
task paradigm and analysis method, which did not allow us to
do statistical comparisons through meta-analyses. The
reviewed studies all show that CT induces changes in brain
activity and connectivity that are not localized to specific brain
regions. Our systematic review therefore does not seem to
confirm an earlier reported assumption that neural alterations
are specific to a particular type of CT (Buschkuehl et al.,
2012) – although there are some general differences between
multi- and single-domain training. It remains, however, un-
clear if any population- or training-specific effects exist. There
is a significant body of literature on functional activity and
connectivity changes after strategy-based CT that show simi-
lar findings as the results from this review. For instance, mne-
monic strategy CTs increased activity of fronto-parietal and
temporal regions in individuals suffering from MCI and in-
creased functional connectivity within cognitive networks in

healthy elderly (Chapman et al., 2015; Chapman, Spence,
Aslan, & Keebler, 2017; Hampstead, Stringer, Stilla,
Giddens, & Sathian, 2012; Hampstead, Stringer, Stilla, &
Sathian, 2019; Simon et al., 2019). These studies were, how-
ever, beyond the scope of this review. An additional issue
impacting the results of this review is that there is a likelihood
of publication bias given the lack of negative results in this
review sample. Future research should focus on statistically
comparing training packages and types, population-specific
CT effects and quantify publication bias. Likewise, our quality
assessment identified several low-powered, non-blinded, or
non-randomized studies, which substantiates the need for fu-
ture studies with unified CT paradigms and analysis methods
to enhance comparability. The use of healthy control samples
could additionally highlight differential effects of CT on
healthy and non-healthy populations and shed light on possi-
ble restorative effects that CT might induce. One recently
published study in a small group of individuals with MS
showed for example that hyper-activation relative to healthy
controls at baseline was partially normalized after CT
(Bonzano et al., 2018).

An important methodological limitation of the reviewed
studies is the fact that the majority of studies focused on alter-
ations of the activity or connectivity of a single or only a few
brain regions using ROI- or seed-based approaches. As a con-
sequence, the selection of the ROI or seed determines the
observed patterns and (slight) shifts in location may already
lead to different results (Li, Guo, Nie, Li, & Liu, 2009).
Moreover, ROI- or seed-based approaches are based on the
assumption that cognitive functions are related to discrete
brain regions and thus focus on just a piece of the puzzle
(Turk-Browne, 2013). By exclusively focusing on particular
ROIs or seed regions, other potentially interesting and mean-
ingful brain activity and connectivity patternsmight have been
missed. Neural correlates of CT were, for example, reported
mainly in cognitive brain networks, but the majority of the
ROIs or seed regions were located within these networks
which biases the reported effects. As higher-order cognitive
functions typically require the integration of multiple brain
processes by having large-scale networks interact dynamical-
ly, instead of relying on independent, localized processes
(Menon, 2011; Bullmore & Sporns, 2009; Bassett & Sporns,
2017), whole-brain, integrative approaches are indispensable
in the assessment of neural CT correlates.

Improvements in computational power in neuroimaging
and its analyses have led to a network approach that can grasp
the complexity of behavior including cognitive functions
(Ferguson, Anderson, & Spreng, 2017; Bassett & Sporns,
2017; Stam, 2014). In neuroscience, neural network topology
and dynamics are strongly correlated with cognitive functions
(Douw et al., 2011; Langer et al., 2012; Camicioli et al.,
2009). An example of an integrative approach is offered by
a single study in this review that used modularity as a graph
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theoretical measure to assess neural network segregation after
CT (Lebedev et al., 2018). The results of this study confirm
the findings from seed-based connectivity studies in this re-
view of CT-induced enhanced task-positive versus task-
negative network segregation during task performance. It
has further been advocated that to really understand the neural
correlates of executive functioning –and by extension the
working mechanism of CT– one needs to study the dynamic
and flexible engagement of brain networks (Braun et al.,
2015). Interactions between brain regions constantly change
during task execution, a process called dynamic network re-
configuration, which is dependent on task demands (Braun
et al., 2015; Kitzbichler, Henson, Smith, Nathan, &
Bullmore, 2011; Bentivoglio, Baldonero, Ricciardi, De
Nigris, & Daniele, 2013). Converging evidence of both inte-
grative and targeted approaches may in the end lead to a better
understanding of how CT alters brain function.

Lastly, although most studies show that CT is able to in-
duce either clinical cognitive improvement or lead to changes
in brain activity and/or connectivity, few studies report on an
actual association between CT-induced alterations in brain
function and the change in neuropsychological measures.
Yet, from a clinical perspective, it is essential to demonstrate
these associations between neural alterations and improve-
ment on neuropsychological measures and, even more so, in
measures of everyday function. Furthermore, the organization
of brain networks may serve as a predictive biomarker for
treatment response to facilitate personalized CT programs
(i.e., precision medicine). Multiple studies in neurological
and psychiatric populations have shown that the individual
variation in pre-training brain morphological and/or network
characteristics, e.g., brain modularity or cortical volume, is
related to the variability in CT-induced cognitive improve-
ment (Arnemann et al., 2015; Engvig et al., 2012; Gallen
et al., 2016; Strangman et al., 2010; Verghese, Garner,
Mattingley, & Dux, 2016; Vermeij et al., 2016). In addition,
neural activation and functional connectivity after CT report-
edly predict the persistence of neuropsychological and behav-
ioral improvement at follow-up testing (Subramaniam et al.,
2012, 2014; Parisi, Rocca, Mattioli, et al., 2014).

Conclusion

There is convincing evidence that cognitive process-based
training alters brain activation and connectivity patterns.
CT-induced changes occur mainly in neural networks im-
portant for cognitive function and seem to counteract dys-
functional activation and connectivity patterns associated
with aging and neurodegenerative diseases, either indica-
tive of a restorative or compensatory process – or a com-
bination thereof. In order to improve our understanding of
CT-induced neural alterations and the associated cognitive
improvement, we advocate a network view of the brain to

better comprehend the complex, dynamic changes in the
brain induced by training. It is essential to harmonize the
methodology and improve trial quality to increase compa-
rability between studies and ultimately enable quantitative
meta-analyses. Knowledge of how CT alters the brain net-
work and how this relates to cognitive improvement may
ultimately improve CT efficacy and accelerate individual-
ized cognitive training programs.
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