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ABSTRACT The inspection of live excised tissue specimens to ascertain malignancy is a challenging task
in dermatopathology and generally in histopathology. We introduce a portable desktop prototype device that
provides highly accurate neural network classification of malignant and benign tissue. The handheld device
collects 47 impedance data samples from 1 Hz to 32 MHz via tetrapolar blackened platinum electrodes.
The data analysis was implemented with six different backpropagation neural networks (BNN). A data set
consisting of 180 malignant and 180 benign breast tissue data files in an approved IRB study at the Aurora
Medical Center, Milwaukee, WI, USA, were utilized as a neural network input. The BNN structure consisted
of a multi-tiered consensus approach autonomously selecting four of six neural networks to determine a
malignant or benign classification. The BNN analysis was then compared with the histology results with
consistent sensitivity of 100% and a specificity of 100%. This implementation successfully relied solely
on statistical variation between the benign and malignant impedance data and intricate neural network
configuration. This device and BNN implementation provides a novel approach that could be a valuable tool
to augment current medical practice assessment of the health of breast, squamous, and basal cell carcinoma
and other excised tissue without requisite tissue specimen expertise. It has the potential to provide clinical
management personnel with a fast non-invasive accurate assessment of biopsied or sectioned excised tissue

in various clinical settings.
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I. INTRODUCTION
The accurate detection of cancer is a challenging task.
According to the Centers of Disease Control and Preven-
tion (CDC), breast cancer is the most prevalent cancer in
women and in 2013 accounted for 230,815 women and
2,109 men being diagnosed with breast cancer [1]. We imple-
ment a cascaded neural network cancer classification algo-
rithm based solely on utilizing statistical variation and central
tendency information between malignant and benign breast
tissue impedance data as input to the neural network.
NovaScan Inc. has developed a portable noninvasive device
that successfully characterizes benign versus malignant tissue
based on an analysis of the frequency sampled impedance
data collected [2]. That analysis is based on one of the
four parameters in the Cole-Cole model, fc, the relaxation
or characteristic frequency of the least squares fit to the
impedance data [3], [4]. The fitting parameter R (ohms) is

low frequency resistance, Ro, (ohms) represents high fre-
quency resistance, alpha(e) is a unit-less parameter, ranging
from O to 1 and is a measure of the dispersion of the data,
and j is the complex /-1. The complex quantity Z* has a
real (resistive) component, Z’ and an imaginary (reactive)
component Z”. The model is embodied in (1).

+ Roo ey

Cole and Cole [3], [4] credited with the development of (1)
is most noted for his contribution to biophysics, however,
his earlier work also included collaborations with [5], [6]
that describe the voltage-current relationship of living cell
membranes. The effort of [7] expanded this effort to “obtain
simultaneous measurements, in some simple artificial sys-
tems, of the electrical properties mentioned and to modify and
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extend the kinetic theory of ion motion to cover the observed
phenomena to the extent that they may be physical rather
than metabolic.”” A significant physiological characterization
related to the Cole model is called the equilibrium or reverse
potential. It is the value of transmembrane voltage where the
movement of ions and electrical activity exist such that there
is no net ion flow across the membrane. The equilibrium
potential for any ion can be calculated using the Nernst equa-
tion [7] depicted in (2). Nernst [7] attributes this phenomenon
as the membrane being in thermodynamic equilibrium where
there is no net flux (z) of ions.
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Vm is the membrane potential (in volts or joules/coulomb),
[ion]outside 18 the extracellular ion concentration in (moles/m3),
[ion]inside is the intracellular ion concentration in (moles/m?),
R is the ideal gas constant in ( joules/Kelvin/mole), T is
the temperature in Kelvin, and F is Faraday’s constant in
(coulombs/mole), z is the number of electrons transferred in
the reaction.

The model in (2) is valid when expressing one specific
ion, however since various ion channels and transport mech-
anisms provide varying permeability to distinct ions such
as Nat, K+, Ca**, and CI~, a voltage differential exists
between the intracellular cytoplasm and extracellular space.
This potential difference, Vi, is the membrane potential [8].
A cell is considered depolarized when Vm is less negative
and depolarized due to conductance charges, or 1/Z ’in rela-
tionship to the Cole model in (1). A model that encompasses
varying ionic conductance and takes into account multiple
ions is the model equation in (3) developed by [9] and [10].

Vo RT . Py, +[Natl, + Pg+[Na™], + Pg-[CI7],
"7 F 7 Pyg+[Nat); + Pg+[Natl; 4+ Po-[CI7;

|7 ()

3

It is well established that cancer cells possess bioelec-
trical properties distinctly different than normal cells and
electrophysiological analysis in cancer cell types report a
depolarized Vm that contributes to cellular proliferation and
migration. Recent research suggests that Vm has a functional
role in cancer migration [8].

Figure 1 displays a list of Vm values gathered by and
provided courtesy of the authors in [8].

We can now calculate the Nernst equation for generally
accepted values of transmembrane ionic K™, where K;;Side =
100 (mM) and K:utside = 10 (mM) to calculate Vm, which
is approximately —70mV. If we now vary the range of K
inside and outside the cell, we can depict depolarized Vm and
its relationship to malignancy and the correlation to the Cole
relaxation frequency, fc, Fig 2.

The data used in this work were collected in an IRB
approved study at two different Aurora Medical Center facil-
ities in Milwaukee, WI. The database consisted of 232 histo-
logically confirmed malignant and 191 benign excised breast
tissue patient impedance files consisting of 47 frequency
samples in the range, 1 Hz — 32 MHz. Statistics reported

2800607

Vm (mV)

Tumor Cells Non-tumor Cells

: 0 Fertilized egg

= <—{ Proliferating CHO -
Leukemic myeloblast 10 - 3
- —— Proliferating 3T3 =
(Soeaip T ) 5
-20 Praliferating fibroblast =
4 cell embry 3
(MD.-‘\-MB-ZZH breast L'(!H(ZL’I’.)/ «—\__4 cell embryo o]
Ccervix tumor =30 16 cell embryo
C_MDA-MB- 468 breast L'Jncur>/
uall fibrosarcoma
: 40
MCF-7 breast cancer
50
PC-3M prostate cancer e
Stomach smooth muscle -
-60 - Corneal epithelium g
CHO, 313 cells k]
-70 Fibroblast =
-]
2
-80 E
90

Skeletal muscle

FIGURE 1. Vm (mV) for various tissue types provided courtesy of [8].
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FIGURE 2. Nernst calculation for K* depicting depolarized Vm and the
resulting Fcole, fc, probabilities.

in a publication of the results from that study [2] indicated
sensitivity of 100% and specificity of 85%. Erroneous false
positive (FP) or false negative (FN) results can lead to over
diagnosis or under diagnoses respectively. Screening mam-
mograms can account for about a 20% false negative rate [11].
The analysis reported in [2] reduced the FN rate compared
with screening mammography to 0%; however, the goal of
this endeavor is to further reduce the FP rate of 15%.

Il. METHODS AND PROCEDURES

The raw impedance based files utilized to implement the mul-
tiple neural network classification schemes were collected
from a previous study database [2]. The device developed by
Novascan used to collect impedance data from excised tissue
samples were: a symmetric planar four electrode sensor array
consisting of silver/silver chloride (Ag/AgCl) or blackened
platinum (BPt) with each electrode measuring 5 mm long
by 0.5 mm wide separated by 0.5 mm spacing. The outer
electrodes serve to apply current while the inner electrodes
sense the resulting specimen voltage. Applying Ohm’s Law,
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FIGURE 3. Smooth Frequency Response windowed for 256x256 Mel filter
bank interpolation for 4 Tissue types displaying sub-band power
variability.
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FIGURE 4. Direct Cosine Transfrom of inverted cepstrals windowed for
256x256 Mel filter bank interpolation for 4 Tissue types displaying
sub-band power variability.

impedance (Z*) = voltage (V) / current (I) provides the mea-
sured complex impedance based on a fixed complex applied
alternating current voltage and known current. The device and
electrode circuitry is optically connected to a laptop computer
which stores the real (Z’) and imaginary (Z”) components
of Z* from 1 Hz — 32 MHz. The laptop also provides a
graphical user interface to monitor the Z* components and
view the final Cole analysis result. A local regression non-
parametric smoothing method, Loess [13]-[15], is applied to
the data before the smoothed data is then fit to the Cole-Cole
function where the Cole relaxation constant, fc is extracted.
This parameter is then used to designate or classify data files
cancer (CA) or benign (BE). A total of 360 files comprised on
180 CA and 180 BE files confirmed through pathology were
randomly chosen from the database for inclusion as input
to the neural networks. The dataset was then apportioned as
follows; 70% of each CA and BE set (126 each) were set
aside for training, 15% of each set (26 each) reserved for a
validation set and the remaining 15% (26 each) was used as
test sets that would not be introduced to the networks until
the final stage.

The primary focus of this study is to distinguish cancer
(inclusive of all types mentioned above) from benign normal
tissue. The study did include tissue samples of fatty tissue
and skin which contributed to confirmation that impedance
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FIGURE 5. 47-sample dataset averages of 180 CA and 180 BE impedance
files from 10 Hz - 5 MHz displaying potential conflicts in data
differentiation.

data agreed with established and well documented impedance
values.

One consideration to extract features for the neural network
examined spectral features to discern malignant from normal
tissue. Fig. 3 and Fig. 4 utilize analysis developed in [16]
show the viability and feasibility of Mel-frequency cepstral
coefficients as neural network input, however, the statistical
variability analysis explained later formed a solid basis for
neural network input.

An important aspect in the design of a neural network is
judicious scrutiny of the datasets that will be used as input
to the network. Fig 5 depicts the 47 sample raw impedance
datasets averaged over each frequency in the 1 Hz — 32 MHz
range. It can be observed that data in the imaginary part of
Z* for CA and BE overlap at approximately 15 Hz and data
at the higher frequencies around 5 MHz could also induce or
contribute to error between the two datasets.

Malignant vs Normal Z-imaginary Comparison, CA-Fc = 2.18e+05, BE-Fc = 3.20e+02
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FIGURE 6. 33-sample dataset averages of Z" for CA and BE from 10 Hz -
4 MHz displaying the Cole frequency, fc and the frequency range of
interest.

The decision to exclude lower frequency data was moti-
vated by several works expounding the advantage of eliminat-
ing adverse electrode polarization effects that is particularly
noticeable below 1 kHz [17]-[19]. It was then necessary to
consider excluding data above 3.2 MHz, Fig. 6 displays the
result of the modified 1e3 kHz — 3.2 MHz datasets. The
dashed vertical lines in Fig. 6 demarcate the frequency range
where the probability that the highest incidence of CA is
expected based on our experimentation in [2].

We consider 33 data samples in the frequency range 1 kHz
to 3.2 MHz excluding potential error in the classification
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paradigm to address adverse polarization effects particularly
noticeable below 1 kilohertz (kHz). Fig 6 includes the Cole-
Cole parameter, fc, for the averaged and smoothed Z’-CA
and Z”-BE.

The vertical lines in Fig. 6 demarcate the frequency range
where the probability that the highest incidence of CA is
expected based on our observations in [2].

To confirm these observations a statistical analysis was
performed. The first approach was a two-sided two-sample
Kolmogorov-Smirnov test for Z* of the CA and BE aver-
aged 47 and 33 sample datasets to determine the probability
they are from the same distribution. The significantly small
p-value for both datasets were an indication to reject the null
hypothesis that the 2 datasets are from the same distribution
and led to acceptance of the alternative hypothesis that the
two datasets, CA and BE, are different. Another tool uti-
lized to provide insight into the 47 and 33 sample datasets
is the Kruskal-Wallis test, a nonparametric version of one-
way ANOVA, and an extension of the Wilcoxon rank sum
test. The test makes a rank comparison of the medians of
the groups of data in question to determine if the samples
come from the same dataset. A p-value of 0.999 for the
Kruskal-Wallis Z’ comparison and 0.987 for the Z” test
indicate significant differences in both sets. An examination
of one final comparison is a balanced one way ANOVA
to ascertain some insight regarding the mean of the CA
and BE datasets. Fig. 6 displays the modified CA and BE
datasets.

Results of the statistical analysis displayed in Figs. 7, 8,
and 9 for the modified datasets indicate that the CA and
BE datasets display a significant amount of statistical vari-
ation that can be utilized as features that will contribute to
a robust input data set to the neural networks. The results
of the statistical analysis are summarized in Table 1. The
high amount of outliers in the original 47 sample dataset
can have deleterious effects on statistical analysis that could
contribute an increased amount of error in the variance and
bias and subsequently might adversely affect the regression
algorithms utilized in the neural networks [20].

Kolmogorov-Smirnov CDF of Z'-CA and 2'-BE, 1e3 kHz-3.2e6 MHz, p-value = 6.98e-011
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¥ Kolmogorov-Smirnov CDF of Z"-CA and Z"-BE,1e3 kHz-3.2e6 MHz, p-value = 4.56e-009
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FIGURE 7. Kolmogorov-Smirnov nonparametric test of the comparison of
the probability distribution for the 47 sample and 33 sample datasets.

Cross correlation and the results based on a 95% con-
fidence interval in Table 2 was also performed to confirm
that there was a significant difference in the 47 sample and
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TABLE 1. Group statistics for ca and be datasets.

KW Result, KS Result, ANOVA
Kruskal S Kolmogoro A =Y one way ooy, Imtra-Group Correlate
wallisp- %" ysmimev OO'P anova €SUL  Correlation d p-value
medians medians Group means
value p-value p-value p-value <0.05
equal equal equal
ZCAVZ BE47 09970  NO 0.0000 NO  0.0000 NO 0.0300 YES
I'CAVZ'BE-47 00320  YES 0.0000 NO 05819 YES 0.0000 YES
Z'CAvZ BE-33 0.9873 NO 0.0000 NO 0.0000 NO 0.4700 NO
Z'CAVZ'BE-33 09986  NO 0.0000 NO  0.0000 NO 0.1100 NO

Z'CA-47 Z'CA-33 Z'BE-47 Z'BE-33  Z"CA-47 Z"CA-33 Z"BE-47 Z"BE-33

Mean 621.38 669.50 273.42 268.47 -36.14 31.14 -22.27 -12.47

VAR 30714.46 3713.57 2640.77 378.52 29731.22 1188.02 5856.32 9.27

STD 175.26 60.94 51.39 19.46 172.43 34.47 76.53 3.04
ANOVA QUTLIERS 3 [ 4 1 8 2 13 Y]

Z' One Way ANOVA (Le3 kHz-3.2e6 MHz), p-value = 0.00012

9 =]

Z'CA Z'-BE
2'CA means = 535.05 is significantly different than Z'BE means = 245,79

FIGURE 8. One way ANOVA for the 33 sample CA and BE datasets with a
p-value of 0.00012 indicating significant difference in the datasets.

Kruskal-Wallis One Way ANOVA (Le3 kHz-3.2e6 MHz), p-value = 0.999
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FIGURE 9. Kruskal-Wallis nonparametric test displaying a rank
comparison of the medians between the 33 samples BE and CA datasets.

TABLE 2. Correlation statistics for ca and be.

Number of . S~
Correlation P Value Significant
Samples
7'-CAvZ'-BE a7 0.3176  0.0296 YES
Z"-CAvZ"-BE a7 0.6625  0.0000 YES
Z'-CAvZ'-BE 33 0.1642  0.4654 NO
7"-CAvZ"-BE 33 0.3485 0.1119 NO

33 sample datasets. A Receiver Operating Characteris-
tic (ROC) curve was also utilized to discern the dataset
integrity and is displayed in Fig 10.

Ill. NEURAL NETWORK BACKGROUND

The use of artificial neural networks (ANN) as computational
implementations of biological neural networks has been uti-
lized to solve various machine learning tasks such as speech
recognition [16]. The supervised learning algorithm of a
binary classifier utilizing a single layer or perceptron can be
attributed to [21]. Problems defined by equation 4 can be
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FIGURE 10. 33-sample dataset averages of the imaginary CA and BE
impedance files from 10 Hz - 5 MHz displaying Fcole (fc) and the
frequency range of interest.

addressed by a two dimensional perceptron.
Y = WpXy + Wp—1Xp—1 + ... +Wix1 + wo 4)
This can be expressed as:
y=wix] +wo =mx + b &)

Where w,, indicates the weight vector, x,, the input vector,
and w, the bias, the equation of a line or hyperplane and is the
limiting factor that determines accurate perceptron output.

Machine learning problems that involve vectors that are not
linearly separable may require one or more additional hidden
layers for increased computational capability are referred to
as multilayered perceptrons (MLP) [15], [21]-[26].

The six backpropagation MLPs chosen for this implemen-
tation are:

1) Gradient descent with momentum and adaptive learn-

ing rate backpropagation [27].

2) Levenberg-Marquardt backpropagation [28].

3) Resilient backpropagation [29].

4) Scaled conjugate gradient backpropagation [30].

5) Conjugate gradient backpropagation with Powell-

Beale restarts [31], [32].
6) Conjugate gradient backpropagation with Fletcher-
Reeves updates [33].

An important facet of neural network design is the develop-
ment of a network that generalizes well to avoid overfitting.
K-fold cross validation is sometimes used to increase the
likelihood that the random partition of data for training, val-
idation, and test sets will provide better classification results
providing a scheme where all the data is seen by the network
in the test set once and all the data is trained at least k-1 times.
We observed however in the statistical analysis that standard
error in the CA and BE datasets was minimal and should
provide robust and reliable input to the neural networks. One
can achieve a similar result to cross validation by randomly
dividing the data into training and test sets k different times.

Three of the neural network architectures, (4-6) employ
conjugate gradient methods and are similar in their optimiza-
tion approach to reset the search direction to the negative

VOLUME 5, 2017

TABLE 3. Correlation statistics for ca and be.

Network Adjustable Parameters
Max

S5 Min Perf Linesearch
EPOCHS Perf Goal Validation i .
) Gradient  routines (10)
Fails
GD w/M (10) 500 le5 4 o 1es
LM (7) 40 le-6 4 le-6
RP(9) 300 1e5 4 le-5
SCG (7) 300 le-6 4 le-6 Trust Region*
CGB (5) 500 1e-5 4 le-5 Charalambous
CGF (5) 500 le-6 4 le-6 Charalambous

of the gradient but differ in how the reset point is deter-
mined. [30]-[35]. Network architectures (1-3) vary in how
the weights and bias are altered to achieve the same end
result of minimization. All of the networks provide a common
parameter to stop training early that helps avoid over fitting
by monitoring validation data performance. Early stopping of
training occurs when error on the validation data increases.
Table 3 lists a summary of some of the parameters that can
be adjusted or initialized at the initial onset of training. The
values in parenthesis are the actual number of parameters that
can be changed.

An indication of neural network performance can include
a linear regression to compare network output versus input
for each phase of network performance as depicted in Fig 11
of the Levenberg-Marquadt network. The correlation coef-
ficient (R) based on the regression fit in this iteration
indicated good performance in the training and validation
phases (~0.99 for each) and acceptable overall performance
(~0.99). This measure indicates that this network should
reliably generalize test data newly introduced to the network.

Training: R=0.9999 Validation: Re0 39397

- 1 1
§ g
E os s 05
E :
T+ o Data vE o Data
5% Fu =2 Fit
£Z.0s veT Ef s Yat
ar 88
T = 18
4 a 1 4 o 1
Tost: R=0.89578 Al R=0,89888
1 1 i
2 Ve g
£ 05 g os
1+ 4 Data v . Dsta
S i =% Fil
S5.0s ¥=T 25 05 y=T
(=39 ab
Ax -
K] o i ] o 1
Target Target

FIGURE 11. Linear regression fits with correlation coefficients for initial
Levenberg-Marquadt neural network.

The process to iteratively and exhaustively test network
performance after adjusting single parameters or experimen-
tation with additional hidden layers led to reliable and robust
final configurations for the six neural networks. Table 3
summarizes individual adjustable network parameters gener-
ally common to each network with some algorithm specific
parameters excluded.

IV. RESULTS
Six feedforward backpropagation neural networks were con-

figured for this implementation using MathWorks eMatlab
software [34] augmented with modified regression algo-
rithms provided by the author in [16]. Individual network
architecture of each network is displayed in Fig. 12. Network
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FIGURE 12. Neural network architectures depicting the number of hidden
layers and neurons in each hidden layer for the six systems implemented.

Output

]

TABLE 4. Simulation results for test data.

Optimized Simulated Test Data Neural Network Sensitivity

CG
“oeAE  marauaroT o ep | FLEICHER L ucuenmu

TP 27 27 27 27 27 27

FP 0 0 0 0 0 0

TN 27 27 27 27 27 27

FN 0 0 0 0 0 0
Sensitivity (%) 100.00  100.00  100.00 100.00  100.00  100.00
Specificity (%)  100.00  100.00  100.00 100.00 100.00  100.00
PPV (%) 10000 10000 100.00 100.00 100.00  100.00
NPV (%) 10000 100.00  100.00 100.00  100.00  100.00
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FIGURE 13. Simulation of CGF and RP neural network output response to
correct classifications for BE and CA.

implementation is discussed in [15]. The final simulated test
data results are summarized in Table 4.

The validation stage provided opportunity to adjust early
stopping parameters of the neural networks such as regular-
ization with retesting network performance. The test set led
to robust results listed in Table 4.

Simulation results of the test data unseen by the networks
until the final stage confirm that the networks generalized to
data not seen previously by the networks. The possibility that
sample files from the CA and BE datasets could be corre-
lated providing similar output were addressed with software
decision analysis based on network output. The simulation in
Fig.13 depicts CGF and RP network response to random CA
and BE test files. The output responses for the four neural
networks not shown were similar.
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FIGURE 14. Network performance based on mean squared error.

Simulated CG Powell-Beale (Test Result = BE)

Simulated CG Powell-Beale (Test Result = CA)

Input samples - BE Decisions Input samples - CA Decisions

FIGURE 15. Network performance based on mean squared error.

Fig. 14 depicts trained network performance providing
insight and indication of how fast some of the regression algo-
rithms converge and how well the networks might generalize
based on the slope of the mean squared error (mse).

Fig. 15 displays the network output for one test file. Two
network outputs are provided that compare the input data
under test to an expected BE result and an expected CA result
such that the network output is not absolute but relative to
the ensuing comparative statistical analysis of each output
response.

V. CONCLUSIONS

The incentive to improve cancer detection accuracy utiliz-
ing neural networks appears plausible based on the positive
neural network implementation, Frequency dependent vari-
ation in impedance data appears to be a viable discerning
feature for cancer classification. Data feature selection at the
onset contributed to a successful network utilization. System-
atic optimization of each neural network that differ in their
approach to optimization contributed to highly predictive
networks. The overall majority rule analysis calling for 4
of the 6 networks to agree seems prudent to ensure a high
level of sensitivity and specificity. This algorithm can poten-
tially be applied in real time immediately after an impedance
based tissue scan and can be a useful tool particularly in
environments lacking diagnostic apparatus or the requisite
skilled practitioners needed to operate that equipment. The
NovaScan device is currently being tested on excised squa-
mous and basal cell carcinoma tissue. Successful completion
of this feasibility study will lead to applying the technology
directly to suspicious lesions on patients. The positive results
thus far with breast tissue (N = 423) and limited skin tissue
(N = 50) provide strong evidence that the self contained
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device consisting of a laptop computer, handheld Probe, and
all requisite hardware and software providing an automated
analysis is user friendly and highly portable and has the
potential to be a beneficial tool in cancer detection. The
definitive high level of classification accuracy, sensitivity,
and specificity indicated by the results has the potential to
dramatically increase and enhance clinical management flex-
ibility by providing an effective patient tissue assessment
tool in clinical or non-clinical environments. This device and
software could help alleviate the challenges associated with
tissue specimen interpretation and ease workflow integration
by providing reliable, accurate, and consistent results. Specif-
ically the technology could provide accurate prognostic value
as a precursor to histologic or cytologic evaluation of biopsied
tissue assisting in pathologic time management. It also has the
potential to be utilized intraoperatively providing an oncolo-
gist or surgeon with valuable tissue assessment information.
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