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Host immunity and demographics (the recruitment of susceptibles via birth-

rate) have been demonstrated to be a key determinant of the periodicity of

measles, pertussis and dengue epidemics. However, not all epidemic cycles

are from pathogens inducing sterilizing immunity or are driven by demo-

graphics. Many sexually transmitted infections are driven by sexual

behaviour. We present a mathematical model of disease transmission where

individuals can disconnect and reconnect depending on the infectious status

of their contacts. We fit the model to historic syphilis (Treponema pallidum)

and gonorrhea (Neisseria gonorrhoeae) incidence in the USA and explore poten-

tial intervention strategies against syphilis. We find that cycles in syphilis

incidence can be driven solely by changing sexual behaviour in structured

populations. Our model also explains the lack of similar cycles in gonorrhea

incidence even if the two infections share the same propagation pathways.

Our model similarly illustrates how sudden epidemic outbreaks can occur

on time scales smaller than the characteristic demographic time scale of the

population and that weaker infections can lead to more violent outbreaks.

Behaviour also appears to be critical for control strategies as we found a

bigger sensitivity to behavioural interventions than antibiotic treatment. Thus,

behavioural interventions may play a larger role than previously thought,

especially in the face of antibiotic resistance and low intervention efficacies.
1. Introduction
It has been hypothesized that syphilis incidence cycles due to host immunity

[1]. Recent important work by Grassly et al. [1] identified 8–11 year cycles in

syphilis incidence (figure 1) and proposed deterministic and stochastic

susceptible–infected–recovered (SIR) models to describe dynamics [2]. While

the stochastic SIR model exhibited cycles in incidence, evidence for sterilizing

immunity after syphilis infection is weak [3–5], and purposefully ignores

human sexual behaviour, vast heterogeneities in which have been demon-

strated [6]. Additionally, this model does not explicitly consider control of

syphilis, both through the use of antibiotics and changes in behaviour [7].

The observed syphilis incidence data (figure 1) do show some evidence of

cycling in incidence both from 1941 onward and when restricted to a single gen-

eration (1960–1993, as demonstrated by Grassly et al.), though the cycles are

more striking when observing the period 1960–1993. Thus, if cycles do exist,

they may be more likely driven by a change in behaviour beginning in the

early 1960s and lasting through the early 1990s [3], than changes in the

immunological status of individuals. In this paper, we explore the effects of

changing behaviour on sexually transmitted infection (STI) transmission

dynamics. Specifically, we model the transmission dynamics of syphilis and

gonorrhea (Neisseria gonorrhoeae) using a novel, network-based susceptible–

infected–susceptible (SIS) model which incorporates adaptive disconnection/

reconnection depending on the infectious state of an individual’s neighbours

[8]. The model illustrates how behaviour can drive cycles in syphilis trans-

mission and not in gonorrhea transmission dynamics, while also describing

the evolution of the underlying contact network for transmission. Other effects

of adaptive behaviours are discussed, namely self-organized network topology

and the relevance of behaviour to epidemic re-emergence. Finally, the model is
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Figure 1. Syphilis and gonorrhea dynamics. (a) Syphilis and (d) gonorrhea incidence, respectively ( per 100 000) as reported to the US Centers for Disease Control
(CDC) for the entire USA (black line) and for the largest 62 US cities ( points). (b,e) Are the Fourier power spectra of the cities with complete reports from 1941 to
2002 for syphilis and gonorrhea, respectively; (c,f ) are the Fourier spectra in cases from cities from 1960 to 1993 for syphilis and gonorrhea, respectively. Thick lines
report the median power, whereas thin the inter-quartile range (IQR). (Online version in colour.)
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used to compare the effects of chemotherapy versus

behavioural change for syphilis infection control.
2. Results
2.1. Network model with adaptive behaviour
To examine the impact of behaviour on transmission

dynamics, we adapt and expand a previously presented SIS

model on adaptive networks [9–11]. Our model examines

the effects of long-term behaviour change on epidemic

dynamics [12,13]. Briefly, at every time step, every infectious

individual transmits the disease to their susceptible neigh-

bours at rate b, and recovers to become susceptible again at

rate r. Meanwhile, every susceptible individual can discon-

nect from an infectious neighbour at rate g. The network

also undergoes its natural growth, independently of the dis-

ease, such that individuals can create links at rate r. These

links are created with an individual regardless of its state,

but according to a preferential attachment (PA) process

where individuals differ in their probability of being

chosen. Heterogeneous levels of individual activity can thus

be included in the model. Demographics were also con-

sidered, through a homogeneous death rate and birth of

zero-degree individuals, but its effect on the dynamics

appeared minimal. Similarly, different connection schemes

were considered—e.g. serosorting, where only susceptibles

create links and/or only susceptibles are chosen for links—

did not qualitatively change the dynamics. See the Material

and methods section for these variations.
We follow the system through a heterogeneous mean-

field approximation, where individuals are distinguished by

their states (S or I) and by their number of connections

(degree k). This formalism allows us to describe the evolution

of both the epidemics and the underlying network even

in the presence of significant heterogeneity [14–18]. The

mean-field approximation is given by

d

dt
Sk ¼ rIk � bkQsiSk þ g[(k þ 1)QsiSkþ1 � kQsiSk]

þ r Sk�1 � Sk þ
C(k � 1)Sk�1 �C(k)SkP

k0 C(k0)(Sk0 þ Ik0 )

� �
(2:1)

and

d

dt
Ik ¼�rIk þ bkQsiSk þ g[(k þ 1)QisIkþ1 � kQisIk]

þ r Ik�1 � Ik þ
C(k � 1)Ik�1 �C(k)IkP

k0 C(k0)(Sk0 þ Ik0 )

� �
, (2:2)

where Qsi and Qis are mean-field quantities giving the aver-

age probability that a link stemming from a susceptible

(infectious) node leads to an infectious (susceptible) node,

respectively. They are

Qsi ¼
[SI]

2[SS]þ [SI]
and Qis ¼

[SI]

2[II]þ [SI]
, (2:3)

where [XY] is the relative density of links joining a node in

state X with a node in state Y. The dynamics governing

contacts are given by

d

dt
[SS] ¼ rSoutSin � 2bkk2lQsi[SS]þ r[SI], (2:4)
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Figure 2. Self-organization of network from adaptative behaviour. Asympto-
tic degree distribution obtained through the heterogeneous mean-field for
both our model and one without PA on networks adapting to a disease
with parameters: r ¼ 1, b ¼ 2/3, r ¼ 1/50 and g ¼ 1/2. The total
degree distribution ( pk ¼ Sk þ Ik) has a longer tail than a normal distri-
bution (but is not statistically different (KS Test, D ¼ 0.196, p ¼ 0.615))
for the case without PA (kkl ¼ 2:32) and features an exponential tail
( pk/ exp (2lk) with l � 1.2, kkl ¼ 2:00) for the case with PA.
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d

dt
[SI] ¼ r[SoutIin þ IoutSin]þ 2bkk2lQsi[SS]þ 2r[II]

� (rþ g)[SI]� b(kk2lQsi þ 1)[SI] (2:5)

and
d

dt
[II] ¼ rIoutIin þ b(kk2lQsi þ 1)[SI]� 2r[II], (2:6)

where kk2l ¼
P

k k(k � 1)Sk=
P

k kSk is the average excess

degree of susceptible individuals and Sout/in (Iout/in) are the

probabilities that a new link stems out from a susceptible or

an infectious individual or reaches in a susceptible (infec-

tious) individual; e.g. written Sout ¼
P

kSk and Sin ¼P
kC(k)Sk/

P
kC (k)(Sk þ Ik). In all cases, C(k) corresponds to

the preferential factor given to an individual of degree k
when choosing a neighbour. When PA is considered, we

use C(k) ¼ k þ 1; such that a node of degree k is chosen

with probability proportional to k þ 1 to allow for nodes of

degree zero to also receive new connections. Otherwise, we

use C(k) ¼ 1 for all k for a uniform attachment. The resulting

network topology is shown in figure 2. With this process, our

model can self-organize to reproduce the exponential degree

distributions observed in many sexual networks [19]. The

goal of this model is to qualitatively reproduce the observed

syphilis dynamics and not estimate transmission-relevant

parameters, though they are based on the natural history of

syphilis and gonorrhea [20,21]. Thus, when comparing to

historical data, PA is considered and parameters are chosen

to reflect those in the literature rather than through statistical

model-fitting. Monte Carlo simulations are conducted on

networks of size 20 000 to represent the sexually active popu-

lation of a population of size 200 000. When only theoretical

results are desired, we use uniform attachment and r ¼ 1

for simplicity and faster model integration.
2.2. Cycles from host behaviour
Though it has been suggested that cycles in syphilis inci-

dence are due to cycling in immune status of the
population [1], evidence for long-lasting acquired immunity

to repeat infection remains limited [3–5]. In simulations of

our model, we find roughly 10 year cycles in syphilis inci-

dence driven by behaviour (figure 3). As the prevalence of

infection rises, individuals are more likely to be connected

to an infected individual and thus causing more disconnec-

tions globally. As the prevalence decreases there are less

infectious individuals and thus new links are more likely

to remain. Importantly, these disconnection/reconnection

decisions are made locally, and do not depend on the

state of the entire system, nor directly on prevalence. Our

mean-field formalism is shown to roughly follow the

average time evolution of the model and to accurately pre-

dict its periodicity (figure 4). Note that although the peak

height predicted by the ODEs is decreasing with time

(damped oscillator), this is mostly due to the spread

between individual realizations as they go out of phase. It

is not surprising that the mean-field formalism only

approximates the time evolution of the actual model as it

has been previously shown that similar dynamics are

highly dependent on knowing the state of one’s neighbours

[11]. Consequently, a more compartmentalized model

would be more accurate; such as the one first published

by Marceau and colleagues [11,18,22] where nodes are dis-

tinguished by their state, degree and number of infectious

neighbours (i.e. Sk,i and Ik,i). However, the current model

is much simpler and accurate enough for the purpose of

this work. We thus hereafter concentrate on analytical

results rather than Monte Carlo simulations.

We find long-period cycles over broad ranges of par-

ameters, and a strong influence of link creation rate on the

observed dynamics (figure 5). Figure 5 also shows the rela-

tive contribution of behavioural change (link creation/

disconnection rates) to biological change (transmissibility).

We find changes in link creation rate to be at least as effective

in changing the cycle length as changes in transmissibility

(figure 5a). Halving transmission from 0.02 to 0.01 (with con-

stant link creation) increases the periodicity from 7.4 to 10.4

years, which is the same effect as halving the link creation

rate from 0.0006 to 0.0003 (with constant transmission).

Halving link creation from 0.00024 to 0.00012 (with

transmission ¼ 0.02) increases the periodicity from 13 to 26

years, whereas halving transmission from 0.008 to 0.004

(with link creation ¼ 0.0006) increases the periodicity from

10.4 to 17.4 years.

Observed transmission dynamics differ markedly between

syphilis and gonorrhea. Gonorrhea incidence shows no domi-

nant peaks in the Fourier spectra for either 1941–2002, or the

generation 1960–1993 (figure 1). This is either evidence for

no cycling or a cycle whose period is greater than the

observed window of data [23]. Our model captures this

lack of periodicity for gonorrhea. Syphilis induces greater

sequelae than gonorrhea [3,24], and thus there are less

asymptomatic infections. This suggests two assumptions:

we assume gonorrhea has a longer infectious period and

does not influence changes in network topology. That is, an

individual’s probability of disconnection is driven by their

partner’s infection with syphilis, and not gonorrhea. This is

reflected in differences in reporting rates between gonorrhea

and syphilis [25], particularly exhibiting a lack of saliency in

reporting gonorrhea [26]. Thus, this lack of periodicity in

gonorrhea is a result of its longer characteristic time scale

which offers robustness to short behavioural cycles in the
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Figure 3. (a) Simulated syphilis and (b) gonorrhea dynamics. (a,c) Show 50 simulated syphilis and gonorrhea incidence ( per 100 000 points) and observed national
data (lines). (b,d ) Show the Fourier power spectra of the simulated time series. Following Grassly et al. [1], we take the first difference of our time series before
calculating the spectral density with Daniell smoothers of 3 years. For simulated data, we remove the first 5 years of the time series to allow for stochastic burn-in
and let the contact network stabilize. For the mean-field approximations, Fourier transforms were taken on the undifferenced time series as the ODEs are smooth
and oscillate around a stable mean. Thick lines report the median power, and thin the IQR. Dynamics are similar to observed incidence in US cities. Note, for
gonorrhea, the dominant contributions to the power spectra are longer than the observed data window (50 years). The model uses PA and parameters were
chosen to reproduce the prevalence and periodicity observed in the data assuming a 79 days average recovery period for syphilis. Full parameters: link creation
rate (r) ¼ 1/10 yr21, disconnection rate (g) ¼ 1/158 d21, transmissibility (b) ¼ 1/53 d21, recovery rate (r) ¼ 1/79 d21 (syphilis), 1/6.5 yr21 (gonorrhea).
Thus, the behavioural parameters reproducing the periodicity were found to be an average disconnection period of the order of five months and an average delay for
new connections of the order of 5 years (with wide variations). (Online version in colour.)
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host population. Our results are similar when using an

infectious period of gonorrhea three times smaller.

2.3. Epidemic re-emergence of weak infections
Interestingly, our model features a universal lack of an

epidemic threshold in the limit of infinite population size.

This complements earlier work [27]. That is, for any initial

condition of the network and any biological parameters of

the disease, every transmissible pathogen (non-zero value

of the transmissibility parameter) corresponds to a non-zero

epidemic steady state. Even if the disease is at first incapable

of spreading throughout the population, links will systemati-

cally be created until the network topology is dense and

heterogeneous enough to initiate spread. This has been

observed in several countries where syphilis incidence is

low and behavioural change eventually led to severe out-

breaks. For instance, in the French Caribbean islands

where low incidence in the 1990s led to the cancellation of

mandatory notification programmes, while social precarious-

ness led to increase in epidemic potential and re-emergence

of syphilis [28,29].

In the case of realistic population sizes, diseases with low

transmissibility will experience epidemic re-emergence. Our

model explains why diseases may repeatedly survive at

very low number of infected individuals before re-emerging

and subsequently disappearing again when individuals

start disconnecting. This phenomenon may be unsurprising

considering our model can be considered as a variation on

the work of Zhou et al. [9] which also featured epidemic re-

emergence. However, our model shows how assumptions

previously thought necessary for epidemic re-emergence are

in fact superfluous: the introduction of new nodes (demo-

graphics) and isolation avoidance (enforcing all individuals

to maintain at least one contact at all times). Removing the

first illustrates how epidemic cycles and re-emergence can

occur on time scales much smaller than the characteristic

demographic scale [30], and the second is especially relevant

in the context of cycles in STIs, where there is no requirement

that every member of a population must maintain at least one

sexual partner at all times [6].

With this phenomenon of epidemic re-emergence, our

model also generalizes the notion of building epidemic
potential through the recruitment of susceptibles [31]. Our

model builds epidemic potential through individual behav-

iour, potentially explaining epidemic bursts occurring on

short time scales. Interestingly, unlike demographics, this

build-up of epidemic potential is significantly coupled with

the disease dynamics, leading to interesting effects caused by

adaptive behaviour. For instance, we can illustrate how, in

the context of epidemic bursts, lower transmissibility does

not imply smaller outbreaks. Consider two diseases subject

to similar dynamics, with one being slightly less transmissible

than the other (b2 , b1). If the difference is small enough, we

can expect the two diseases to have a similar equilibrium

around which they will both cycle. Consider now that both

diseases are approaching this equilibrium from the higher

values of I1(t) and I2(t) (i.e. from ‘above’). The network will

be able to push the less virulent disease to a lower fraction

of infectious individuals (i.e. I2(t) , I1(t)). In return, this

implies that the network will be able to create more links

before I2(t) gets to its equilibrium than it can for I1(t), as the

second disease has now both lower incidence and is trans-

mitted slower than the first. These additional links can then

be translated into more infections during the epidemic

cycles. In short, although the disease with a slightly smaller

transmission rate will oscillate more slowly than the other, it

will do so by featuring more violent epidemic re-emergence

(figure 6).

2.4. Epidemic control
The CDC has outlined treatment guidelines [32] for

syphilis that include parenteral injection with penicillin G

or oral macrolides or tetracyclines which increase clearance

of the spirochete. They have also launched a programme

to eliminate syphilis in the USA [7]. The Syphilis Elimina-

tion Effort (SEE) has three major threads: enhancement

of public-health services, evidence-based interventions

that are culturally appropriate and accountability [33].

A major component of the plan is ‘the development and

testing of effective biomedical and behavioural interven-

tions to reduce syphilis transmission. . .’ [7, Chapter 4,

p. 13]. In the face of increasing antibiotic resistance in syphi-

lis [34], it may be worth the added effort of implementing

behavioural interventions preferentially.
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Here we explore treatment of syphilis with both antibiotics

(chemotherapy) and through behavioural interventions. We

assume chemotherapy acts through reducing transmissibility

and increasing recovery rate and behavioural interventions act

through changing the probability of an individual severing or

creating contacts. In both cases, we refer to the ‘efficiency’ of

the intervention as the percentage change in the focal parameter

(transmissibility, recovery rate, disconnection/reconnection

probability). Examples of behavioural interventions considered

here would include partner notification (disconnection initiated

from the uninfected), abstinence and monogamy education [35],

all key interventions in the CDC’s SEE program [7].

For low levels of intervention efficacy (approx. 5%), we

find behavioural interventions to be between 27% and 75%

more effective than chemotherapy, depending on the time of

initiation (figure 7). For higher levels of intervention efficacy,

we find behaviour to be more effective if interventions are

begun early. However, we find chemotherapy to become

more effective as intervention is delayed until it can capture

the ‘momentum’ of the epidemic cycles. More precisely, this

happens just after the maximum of a given epidemic cycle

where chemotherapy reduces the spread of the disease,

while the intervention still benefits from the natural adaptive

behaviour of the population.

Consequently, we find relatively large differences in the

effectiveness of chemotherapy depending on the state of

the epidemic (rising incidence or falling incidence) when

the intervention is initiated. Figure 7c shows three example

time series with and without chemotherapy treatment. Treat-

ment initiation before the crest of the epidemic is 23% less

effective than treatment after the crest (37% reduction in

total cases versus 48% reduction). Additionally, the simulated

incidence after treatment is 4.2 � 105 times lower when treat-

ing after the crest than treatment before (1.6 � 10210 versus

3.7 � 1026) increasing the odds of eradication. This unrealis-

tically small incidence is due to the continuous nature of the

mean-field approximation, but can be directly translated to a

stochastic probability of eradicating the pathogen. It is impor-

tant to note that we find behavioural interventions are
less influenced by the timing of initiation, which becomes

important under imperfect surveillance.
3. Discussion
We have presented an adaptive network model of disease

transmission and behaviour to explain the observed cycles in

syphilis. We found that dynamic rewiring of an individual’s

sexual contacts alone can cause epidemics to wax and wane.

Our simple model recreates the dynamics of both syphilis

and gonorrhea over similar time periods and broad ranges of

realistic parameters (including incorporating demography

and serosorting behaviour), and recreates observed distri-

butions of sexual partners. Furthermore, our model illustrates

how sudden epidemic bursts can occur on short time scales

and how weaker infections (smaller transmissibility) can actu-

ally lead to larger, but rarer, epidemic peaks. This work further

highlights the importance of including human behaviour when

examining the transmission dynamics of STIs.

Following the CDC’s national SEE, we examined two

forms of syphilis control—chemotherapy with antibiotics and

behaviour modification—and found differences in effectiveness

depending on the timing of treatment initiation. In the light of

the global rise in antibiotic resistance of T. pallidum to macrolides

and tetracyclines [34], and the relative difficulty of successful

behavioural interventions [36], the CDC acting through public-

health departments must strike a balance between effectiveness

of intervention and the risk of potential antibiotic failure in the

future. Importantly, behavioural interventions may play a

larger role than previously thought, especially when interven-

tion efficacies are low. We have presented the effectiveness of

relative changes in transmission in response to behaviour or che-

motherapeutic interventions, but it should be noted that due to

the difficulties in implementation, the costs of say, a 25%

reduction in acquisition of new partners may not be equivalent

to a 25% increase in treatment. Additionally, behavioural inter-

ventions are often difficult to implement in high-risk

populations (e.g. intravenous drug-users), but nonetheless

should be considered. Detailed cost–benefit analyses should

be conducted, and we leave this for future research.

Our model is relatively simple and was chosen to favour

parsimony over detail [37]. Many details of syphilis and

gonorrhea biology and human behaviours were simplified.

Despite this, qualitative predictions are possible. Specifically,

we focused solely on primary and secondary syphilis infec-

tion, though latent syphilis is not transmissible [32], and

tertiary syphilis incidence is very low [3], and we limited

behaviour to a simple rewiring probability dependent on the

immune status of one’s partner. Further work could expand

the model to include more detailed behaviour mechanisms

(e.g. considering demographic dynamics, disconnection unre-

lated to epidemiological status or heterogeneity in personal

tolerance to a contact’s infection status) and a more systematic

exploration of treatment strategies should be undertaken.

Despite these limitations, our simple model captures the

dynamical consequences of including a natural simplification

of human behaviour, namely that individuals disconnect from

those who are infected. This is important given that vast changes

in human behaviour over the course of the twentieth century

have shaped the dynamics of syphilis in the USA. With concen-

trated effort and a balance of chemotherapy and behaviour

change, the twenty-first century may see its eradication.
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4. Materials and methods
4.1. Empirical data
Primary and secondary syphilis and gonorrhea cases and inci-

dence rates (cases per 100 000 population) from 1941 to 2002

were obtained from to the US Centers for Disease Control and

Prevention. We consider the data to be reliable, though it is

worth noting that gonorrhea infection tends to be non-specific

in men and women, and it may be that chlamydia infection

has contaminated the gonorrhea case numbers.

4.2. Testing different modelling assumptions
The only necessary feature of the model is the possible discon-

nection of links that connect a susceptible individual to an

infectious individual. While other assumptions have been con-

sidered, all were removed to maintain the simplest possible

model. Our aim was to gain insights through the qualitative

reproduction of the observed data.
As we focused over a long-time horizon, we considered popu-

lation demographics through a homogeneous death rate for all

individuals regardless of their state, and with birth of degree-

zero individuals at a rate fixed to maintain a stable population

size. We also considered different schemes of creating new links:

only susceptible individuals are allowed to create and/or receive

new links (serosorting behaviour). As shown in the electronic sup-

plementary material, none of these possible variations yield

significant variations in the predicted dynamics for syphilis and

are consequently ignored in the main text.

4.3. Spectral analysis
Following Grassly et al. [1], we take the first difference of our time

series before calculating the spectral density with Daniell

smoothers of 3 years. For simulated data, we remove the first 5

years of the time series to allow for stochastic burn-in and let

the contact network stabilize. For the mean-field approximations,

Fourier transforms were taken on the undifferenced time series

as the ODEs are smooth and oscillate around a stable mean.



rsif.roy

8
Acknowledgements. The authors thank Nick Grassly for kindly provid-
ing syphilis incidence data in US cities, Sam Scarpino and Simon
DeDeo for helpful comments on the text, and Calcul Québec for
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