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Abstract

Cells and tissues are exposed to stress from numerous sources. Senescence is a protective

mechanism that prevents malignant tissue changes and constitutes a fundamental mecha-

nism of aging. It can be accompanied by a senescence associated secretory phenotype

(SASP) that causes chronic inflammation. We present a Boolean network model-based

gene regulatory network of the SASP, incorporating published gene interaction data. The

simulation results describe current biological knowledge. The model predicts different in-sili-

co knockouts that prevent key SASP-mediators, IL-6 and IL-8, from getting activated upon

DNA damage. The NF-κB Essential Modulator (NEMO) was the most promising in-silico

knockout candidate and we were able to show its importance in the inhibition of IL-6 and

IL-8 following DNA-damage in murine dermal fibroblasts in-vitro. We strengthen the specu-

lated regulator function of the NF-κB signaling pathway in the onset and maintenance of the

SASP using in-silico and in-vitro approaches. We were able to mechanistically show, that

DNA damage mediated SASP triggering of IL-6 and IL-8 is mainly relayed through NF-κB,

giving access to possible therapy targets for SASP-accompanied diseases.

Author summary

The senescence associated secretory phenotype is developed by cells undergoing perma-

nent cell cycle arrest. This phenotype is characterized by the secretion of a variety of fac-

tors that facilitate tissue breakdown and inflammation and is therefore theorized to, in

part, be causal for aging and age-related diseases. In recent years the SASP has been impli-

cated in a variety of chronic inflammatory diseases. Due to these advances, it is imperative

to better understand the dynamics of this cellular phenotype and to find ways to disrupt
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it. We have developed a Boolean network incorporating the major signaling pathways of

the SASP that allows us to specifically investigate interactions of the pathways and genes

involved. We validated our model by reliably reproducing published data on the SASP.

We utilized our model to uncover components that directly control the detrimental effects

of the senescence associated secretory phenotype that are largely caused by IL-6 and IL-8,

two major factors of the SASP in establishing and spreading senescence as well as causing

local inflammation. In subsequent in-vitro experiments, we were able to verify our

computational results and could suggest NEMO as one potential target for therapy of

SASP-related diseases.

Introduction

Age-related diseases can be held accountable for the major part of morbidity and mortality in an

ageing population. Additionally they cause a large proportion of yearly health costs [1]. Cellular

senescence is one of the most prominent events that is likely to contribute to ageing. It refers to

the irreversible cell cycle arrest that is essential when cells encounter detrimental changes. Once

in permanent arrest, these cells are normally cleared by the immune system before they are able

to do any harm to the organism [2]. However, some of these cells persist and develop a secretory

phenotype releasing a variety of factors among which pro-inflammatory cytokines, chemokines

and extracellular matrix degrading proteases are included. Together these shape the senescent-

associated secretory phenotype or SASP [3–5].

While the SASP can cause chronic inflammation in tissue, it can also reinforce senescence

in autocrine and paracrine manner [6, 7]. This feature of the SASP not only keeps senescent

cells in their growth arrested states but it promotes senescence spreading to healthy bystander

cells. Therefore, the SASP contributes to the accumulation of senescent cells during ageing,

but also supports the emergence of age-related chronic diseases and tissue dysfunctions by

elevating inflammatory processes [6, 8]. Major soluble factors that facilitate this bystander-

infection of healthy cells are IL-6 and IL-8. Both have been shown to be important in the main-

tenance and spreading of oncogene- and DNA-damage-induced senescence [3]. Also, both

have been shown to be highly overexpressed by senescent cells and are known to locally and

systemically play important roles in the regulations of a variety of processes in the aging body

[3, 4, 9]. IL-6, in fact, most likely contributes to organ dysfunction during aging thus promot-

ing frailty [8].

To allow for a deeper understanding of the SASP and the dynamics of its complex interac-

tions a computational model of the Regulatory Network (RN) [10] and subsequent simulations

can be insightful. RNs can be described by different mathematical models such as differential

equations, Bayesian networks, and Boolean networks among others [11]. The Boolean network

model [12, 13], as opposed to other model approaches, can be based on qualitative knowledge

only. In gene-gene interaction, for example, the expression of a gene is regulated by transcrip-

tion factors binding to its regulatory regions. The activation of a gene follows a switch-like

behavior depending on the concentration of its transcription factors. This behavior allows

common approximation of the possible states of a gene to be active or inactive [14, 15]. Ulti-

mately, this can be encoded as Boolean logical values: true (“1”) or false (“0”). The interactions

between genes, e.g. whether a factor acts as an activator, repressor or both can be described by

functions. These Boolean functions are the basis to simulate dynamic behavior, i.e. changes

over time. As every regulatory factor has two possible states (active or inactive) in a Boolean

network model, 2x possible state combinations (i.e. gene activation patterns) exist for x genes.

A SASP model after DNA damage

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005741 December 4, 2017 2 / 30

Graduate Training Centre GRK 1789 “Cellular and

Molecular Mechanisms in Ageing (CEMMA)”, and

collaborative Project FKZ0315894A SyStaR -

Molecular Systems Biology of Impaired Stem Cell

Function and Regeneration during Aging, and

Collaborative Research Centre CRC1149 Danger

Response, Disturbance Factors and Regenerative

Potential after Acute Trauma and the Förderlinie

Perspektivförderung “Zelluläre Entscheidungs- und
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For any activation pattern, iterative updates of genes in the network through consecutive appli-

cation of the Boolean rules eventually lead to sequences of gene activation patterns that are

time-invariant, called attractors. These attractors can correspond to observed expression pro-

files of biological phenotypes or can be used to create hypotheses to further evaluate in wet-lab

experiments [16, 17]. Different update strategies for the Boolean functions exist. Using a syn-

chronous update strategy means applying all Boolean functions simultaneously, also assuming

that regulatory factors interact independently of one another and that their interaction has a

similar time scale resolution. Relaxing these assumptions leads to the concept of asynchronous

updates where each Boolean function of is updated separately one at a time in any order. This

allows a more direct modelling of different time scales. The asynchronous update strategy also

usually generates trajectories that are different from those of synchronous Boolean networks.

The state transition graph of an asynchronous Boolean network becomes a Markov chain

which requires the additional definition of transition probabilities in each node of the state

graph. Interestingly, point attractors (those with one state) in asynchronous Boolean networks

are the same as those in synchronous Boolean networks. However, these networks can also

show loose/complex attractors [18] which are part of active research [19, 20]. Another exten-

sion of Boolean networks are probabilistic Boolean networks, which may define more than

one Boolean function for regulatory factors where each function has a specific probability to

be chosen for update. Although this concept may closer represent a biological system, it again

requires parameter estimation for the probabilities. However, estimation of the probabilities

naturally demands large amounts of interaction specific data which is, for larger networks, nei-

ther economically, nor experimentally viable. In our case, we decided to focus on synchronous

Boolean networks, partly due to their proven usability, and their ability to reveal key dynamical

patterns of the modelled system. However, to strengthen our models’ hypothesis, we addition-

ally performed in-silico experiments with an asynchronous update scheme (S1 Text).

Synchronous Boolean networks have been used to model the oncogenic pathways in neuro-

blastoma [21], the hrp regulon of Pseudomonas syringae [22], the blood development from

mesoderm to blood [23], the determination of the first or second heart field identity [24] as

well as for the modeling of the Wnt pathway [25]. The qualitative knowledge base that is neces-

sary to reconstruct [26] a Boolean network model consists mostly of reports on specific inter-

actions that describe local regulation of genes or proteins. Boolean network models utilize this

knowledge about local regulations to reconstruct a first global mechanistic model of SASP. In

summary, such a model allows to generate hypotheses about regulatory influences on different

local interactions. These interactions, in turn, can be tested in wet-lab in order to validate the

generated hypothesis and assess the accuracy of the proposed model.

Here, we present a regulatory Boolean network of the development and maintenance of

senescence and the SASP incorporating published gene interaction data of SASP-associated

signaling pathways like IL-1, IL-6, p53 and NF-κB. We simulated the model and retrieved

steady states of pathway interactions between p53/p16INK4A steered senescence, IL-1/IL-6

driven inflammatory activity and the emergence and retention of the SASP through NF-κB

and its targets. This Boolean network enables the highlighting of key players in these processes.

Simulations of knock-out experiments within this model go in line with previously published

data. The subsequent validation of generated in-silico results in-vitro was done in murine der-

mal fibroblasts (MDF) isolated from a murine NF-κB Essential Modulator (NEMO)-knockout

system in which DNA damage was introduced. The NEMO knockout inhibits IL-6 and IL-8

homologue mRNA expression and protein secretion in MDFs after DNA damage in-vitro,

possibly enabling at least a lowering of the contagiousness for neighboring cells and the pro-

tumorigenic potential of the SASP. The model presented in this article allows a mechanistic

view on interaction between the proinflammatory and DNA-damage signaling pathways and
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thereby helps to gain insights into the dynamics of the SASP. Furthermore, it enables to gener-

ate extensive hypotheses about possible knockout targets that can be experimentally tested and

verified in-vitro. To the best of our knowledge, this report is the first one that combined in-sil-
ico simulation of the SASP with its laboratory based experimental validation.

Results

The network model exhibits stable states for cell cycle progression and

senescence

The reconstruction of a Boolean network model for SASP requires screening for many candi-

date interactions in published literature and data. Although the model, after reconstruction,

may be reduced in the number of components [20, 27, 28], it would potentially hide some of

the interaction targets and regulatory factors with regard to the signaling cascade. The regula-

tory factors defined in this model are beneficial if one wants to extend the model and include

additional related signaling pathways. The subsequent model must accurately correspond to

the current understanding of the process at hand, i.e., able to predict well-known phenotypes

of SASP. Biological phenotypes represent a long-term behavior of a biological system based on

interaction of regulatory factors. In the same sense, attractors are the long-term behavior of a

Boolean network model based on the Boolean rules of modelled regulatory factors. Hence,

there is a natural correspondence between biological phenotypes and attractors in the Boolean

network. In the following, we use figures that depict the signaling cascade towards an attractor

as well as the attractor itself. The interpretation of these attractors in the context of SASP fur-

ther allows generation of hypotheses that can be tested in a biological system.

The information for the reconstruction of these networks was collected from published

data. An overview of the genes incorporated in this model and their interaction can be found

in Fig 1. The corresponding Boolean rules are listed in Table 1. The network depicts processes

following a cell cycle arrest inducing action, such as DNA damage and other cellular stresses.

Here, we analyze SASP under strong DNA damage and do not distinguish between different

levels of DNA damage.

We first analyzed if our model can render steady states for cell cycle progression when there

is no stress signal input. Our data show a normal cell cycle progression with active CDK2 and

CDK4, as well as phosphorylated Rb and hence an active E2F. No other signaling pathways

that are implemented in this model were activated which can be seen as normal cell cycle pro-

gression (Fig 2).

Upon the outside signal DNA damage, we observe first the activation of the DNA damage

response with a subsequent activation of p53 and p16INK4A signaling, leading to a stop in cell

cycle progression and at a later time point to permanent cell cycle arrest. Simultaneously NF-κB

signaling gets activated by the DNA damage response through NEMO, giving rise to beneficial

but also detrimental effects of NF-κB like the senescence associated secretory phenotype (Fig 3).

After entering p53/p21 and p16INK4A mediated permanent cell cycle arrest upon DNA

damage, the activation of NF-κB leads to an increase of IL-1, IL-6 as well as IL-8 expression

among others [29–33]. Our model shows the direct activation of these cytokines and chemo-

kines by NF-κB after its activation through the DNA damage response and NEMO (Fig 3).

The Boolean network describes published knock-out and

overexpression phenotypes

The NF-κB pathway has been studied extensively and there are knockout mice available for all

proteins of the pathway, however some of them are embryonically lethal due to the importance
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of NF-κB signaling in regulating development and apoptosis. We therefore focused on pub-

lished in-vitro knockout and overexpression phenotypes. IL-6 and IL-8 are extremely impor-

tant in maintaining and spreading the SASP in an autocrine as well as paracrine fashion.

Hence, we followed the question what knockouts and/or overexpressions the Boolean network

model suggests to inhibit the expression of IL-6 and IL-8 under the assumption of existing

DNA damage. These simulations are included in S1 Text.

Fig 1. Boolean network for gene regulation during cell cycle progression and the onset of cell cycle arrest after DNA damage. The overview

shows the network wiring of the known gene regulations during DNA damage with a focus on the DNA damage repair/cell cycle arrest signaling. Cell

cycle arrested cells over time show a tendency to develop a secretory phenotype that causes them to secrete high amounts of proinflammatory factors

that can negatively influence neighboring cells. Major signaling pathways of these factors are included in this overview and in the Boolean network.

Arrows indicate gene activation and inhibition is depicted as bar head. However, the interaction may be more complex and the corresponding Boolean

rules are given in Table 1.

https://doi.org/10.1371/journal.pcbi.1005741.g001
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Table 1. Boolean network for gene regulation during cell cycle progression and the onset of cell cycle arrest after DNA damage. Boolean Rules

using operators “&” (logical and), “|” (logical or) and “¬” (logical not).

DNA Damage/Senescence signaling

Regulatory Factor at

time t+1

Boolean rule update given regulatory

factor state at time t

DNA Damage, Defective Telomeres, etc.

DNAD DNAD This rule serves as an input signal to any kind of severe DNA damage.

Oncogene induced senescence

Oncogene IL8 | IL6 Active IL-6 or IL-8 signaling characterize the activation of Oncogene. Moreover, IL-6 and IL-

8 also required for oncogene induced senescence [3].

Hypoxia Hypoxia Exogenous factor describing Hypoxia.

In presence of DNA damage, a cell activates regulatory factors ATR and ATM, which subsequently activate checkpoints CHK1 and

CHK2.

ATM DNAD ATM is active in presence of DNA damage [57–59].

CHK2 ATM ATM subsequently activates CHK2 [60].

ATR DNAD ATR is active in presence of DNA damage [57, 59].

CHK1 ATR ATR subsequently activates CHK1 [61].

p53 (CHK2 | CHK1 | ATM) & (¬MDM2) p53 can be activated by any of CHK1 [62], CHK2 [62, 63] or ATM [62, 64]. However, MDM2

is a strong inhibitor of p53 [62, 65].

HIF1 Hypoxia & (¬p53) HIF1, which is active during Hypoxia [66], is inhibited by p53 [67].

p21 p53 | HIF1 p21 is activated by p53 [68] as well as by HIF1 [69].

CDK2 E2F & (¬p21) CDK2 requires activation of E2F. p21 inhibits the CDK2 complex [68].

RB ¬(pRB | CDK4 | CDK2) RB, which is active in its hypophosphorylated state (RB) is hyperphosphorylated and

inactivated (pRB) by CDK4 and CDK2 [70–72].

pRB (CDK4 | CDK2) RB is phosphorylated (pRB) in presence of any cyclin dependent kinases CDK4 and CDK2

[70–72].

E2F (pRB | E2F) & ¬RB E2F is positively autoregulated and active in presence of hyperphosphorylated RB (pRB).

Active RB, however, inhibts E2F [38].

MDM2 p53 & ¬ATM p53 activates MDM2 [65, 73, 74], while ATM inhibits MDM2 [64].

p16INK4 Oncogene | DNAD Activation of p16INK4 depends on either DNA damage or Oncogene or both [75].

CDK4 ¬(p16INK4 | p21) CDK4 is inhibited by p16INK4 [75] and p21 [68].

NEMO DNAD NEMO is activated by DNA damage [76, 77].

IKK NEMO | NIK | Akt IKK can be activated by any of NEMO [78], NIK [79] or Akt [80].

IkB (NFkB |IkB) & ¬(IKK & NEMO) IkB is activated NFkB complex or IkB itself [81]. IKK [82] and NEMO [83] together are

required to inhibit IkB.

NFkB IKK & ¬IkB NFkB is activated by IKK, while inhibited by IkB [82, 83].

IL-1 signaling

IL1 NFkB IL1 is activated by NFkB [29, 30].

IL1R IL1 IL1 binds to and activates IL1 receptor (IL1R) [84].

MyD88 IL1R MyD88 is an adaptor molecule in IL1-IL1R pathway and bridging IL1R to the IRAK complex

IL1R [84].

IRAK IL1R | MyD88 | IRAK IRAK is autoactivated [85, 86] and also is activated by IL1R [84, 86] and MyD88 [85, 87].

TRAF6 IRAK TRAF6 is activated by IRAK [85].

TAB (TRAF6 | IRAK) TAB is activated by any of TRAF6 [88, 89] or IRAK [89].

TAK1 (TRAF6 | TAB) TAK1 is activated by any of TRAF6 [88, 89] or TAB [90].

MEKK TRAF6 MEKK is activated by TRAF6 [89].

MKK (TAK1 | MEKK) MKK is activated by any of TRAK1 [91, 92] or MEKK [93].

JNK MKK & ¬MKP1 JNK is activated by MKK [94, 95] while is inhibited by MKP1 [96].

p38 MKK & ¬MKP1 p38 is activated by MKK [97] while inhibited by MKP1 [98].

cJun (p38 | JNK | ERK1_2 | CEBPbeta) &

cFos

cFos is required for the action of cJun and can be activated by any one of p38 [99, 100],

JNK [101], ERK1_2 [102] or CEBPbeta [103].

(Continued )
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RelA binds with p50 to form a transcriptionally active heterodimer (called NFkB in this

model). In its inactive state, it is bound with the inhibitor of kappa B (IκB) and resides in the

cytoplasm. Upon NF-κB activation, the inhibitor is phosphorylated by the inhibitor of kappa B

kinases (IKK) and degraded which releases the RelA/p50 heterodimer to translocate to the

nucleus and regulate the transcription of target genes. To investigate the role of RelA on the

expression of IL-8, we set NFkB = 0, simulating the ablation of the transcriptionally active het-

erodimer (Fig 4). The predictions of the model simulations are consistent with knock-out

experiments where the absence of RelA caused a significant reduction in IL-8 production in

human fibroblast (IMR-90) [7].

We also simulated the overexpression of IκB by constantly activating IκB (IkB = 1) and

could show an effect comparable to the knock-out of RelA (Fig 5). In our model the overex-

pression of IκB leads to the inhibition of IL-8 and IL-6 expression which is in line with a previ-

ously published report, where the overexpression of a non-degradable IκBα completely

abolishes IL-8 production, among other soluble factors, in human epithelial and cancer cell

lines [34].

Another promising knockout described by our network is inhibitor of nuclear factor

kappa-B kinase subunit gamma also known as NEMO, which is able to prevent IL-6 and IL-8

expression after DNA damage activated the DNA damage repair apparatus and cell cycle pro-

gression has been stopped in-silico (Fig 6). In studies with murine NEMO knockout models it

has already been shown that murine embryonic fibroblasts (MEFs) isolated from these mice

show reduced NF-κB activity and IL-6 secretion upon stimulation with typical NF-κB activa-

tors like IL-1 and TNF [35].

Table 1. (Continued)

DNA Damage/Senescence signaling

cFos p38 | JNK | Elk1 | CEBPbeta | STAT3 cFos can be activated by any one of p38 [104], JNK [104], Elk1 [103, 105, 106], CEBPbeta

[103] or STAT3 [107].

AP1 cJun & cFos AP1 complex consists of both cJun and cFos [104, 108].

MPK1 AP1 AP1 activates MPK1 [96, 109, 110].

IL8 NFkB | AP1 | CEBPbeta IL8 is activated by anyone of NFkB [31, 111, 112], AP1 [31] or CEBPbeta [3] signals.

NIK TAK1 NIK is activated by TAK1 [91, 92].

IL-6 signaling

IL6 (NFkB | ERK1_2 | CEBPbeta) IL6 is activated by anyone of NFkB [32, 33], ERK1_2 [113, 114] or CEBPbeta [3, 115]

signals.

IL6R IL6 IL6 binds to and activates IL6 receptor (IL6R) [88, 116].

GP130 IL6 GP130 is activated by IL6 [117, 118].

PI3K JAK PI3K is activated by JAK [119].

JAK IL6R & ¬SOCS3 Active IL6 receptor (IL6R) activates JAK [117], while JAK is inhibited by SOCS3 [120].

Akt PI3K Akt is activated by PI3K [121, 122].

mTOR Akt mTOR is activated by Akt [123].

SOCS3 STAT3 SOCS3 is activated by STAT3 [124].

GP130, MEK1_2, and ERK1_2 together depend all on the activation of IsL6 to form a cyclic signaling cascade

MEK1_2 GP130 & IL6 MEK1_2 is activated by GP130 [116, 125] as well as IL6 [116].

ERK1_2 MEK1_2 & IL6 ERK1_2 is activated by MEK1_2 [126] and IL6 [127].

Elk1 ERK1_2 Elk1 is activated by ERK1_2 [128].

CEBPbeta Elk1 CEBPbeta is activated by Elk1 [103].

STAT3 JAK | (cFos & cJun) | mTOR STAT3 is activated by JAK [119] or mTOR [129]. Alternatively is can be activated in

presence of both cFos and cJun [130].

https://doi.org/10.1371/journal.pcbi.1005741.t001
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NEMO is essential for DNA damage triggered NF-κB activation

Apart from being important for the assembly of the IKK-complex, NEMO also acts as a shuttle

relaying the ATM-mediated DNA damage apparatus to cellular response mechanisms. Upon

DNA damage ATM can bind NEMO and trigger its translocation from the nucleus to the cyto-

plasm where it activates NF-κB signaling [36]. This in turn will help cells avoid clearance

through apoptosis, increasing the number of long-term senescent cells in tissues and organs of

the organism and might also increase and sustain the inflammatory potential of the SASP.

In order to evaluate proposed knockouts NEMO was depleted from murine dermal fibro-

blasts (MDFs) using a NEMO-floxed mouse line. These MDFs were isolated from murine skin

and subsequently transfected with a Cre-recombinase coding plasmid including a fluorescence

reporter construct (Fig 7). To purify NEMO knockout MDFs, these cells were FACS sorted

two days post-transfection (S1A Fig). Successful NEMO knockout was assessed by PCR (S1B

Fig) and western blot (S1C Fig). To study the effect of DNA damage, overnight-starved MDFs

were treated with 25 μM etoposide, an established DNA damage and senescence inducer, for 3

h followed by a 24 h incubation period [37]. Afterwards cell media supernatant was taken and

total RNA was isolated. We first measured p21 mRNA expression as an indicator for DNA

damage and cell cycle arrest. Without a significant reduction of cell viability (Fig 8A), p21

mRNA expression was upregulated more than twofold in etoposide treated compared to

untreated MDFs (Fig 8B). NEMO is of high importance for DNA damage mediated nuclear

translocation of the NF-κB signaling molecule p65. As shown by immunofluorescence staining

of untreated NEMO wildtype MDFs compared to etoposide treated wildtype and knockout

MDFs, the translocation of p65 into the nucleus upon DNA damage is significantly increased

in wildtype whereas it is brought down to the level of untreated wildtype MDFs when NEMO

is knocked out (Fig 8C).

NEMO mediates DNA damage induced expression and secretion of IL-6

and IL-8

As we have observed the effect of a NEMO knockout on the nuclear translocation of p65 and

thereby activation of NF-κB, we further explored the possible suppressive effect on IL-6 and

IL-8 activation. To achieve this we isolated total RNA and analyzed the mRNA expression of

IL-6 and the murine homologues of IL-8 CXCL1 (KC), CXCL2 (MIP-2) and CXCL5 (LIX).

Upon DNA damage, we observed a significant reduction in IL-6 mRNA expression with a

strong downregulation in untreated knockout compared to untreated wildtype. An even stron-

ger downregulation in etoposide treated NEMO knockout compared to wildtype MDFs was

detected. Taken together a NEMO knockout could reduce DNA-damage mediated IL-6

mRNA expression by almost tenfold (Fig 9A). Next, we measured the secretion of IL-6. While

there is nearly no secretion of IL-6 in untreated wildtype as well as knockout MDFs, a strong

increase in IL-6 secretion occurred in etoposide treated wildtype MDFs, whereas the NEMO

knockout MDFs only shows a small increase in secretion with a more than hundredfold reduc-

tion when compared with etoposide treated wildtype cells (Fig 9B). We additionally analyzed

the mRNA expression of three murine IL-8 homologues to assess the impact of a NEMO

knockout on DNA damage mediated IL-8 expression. We found that all three chosen

Fig 2. Naturally occurring network states. Without DNA damage the resulting network state is expected to

show normal cell cycle progression. As shown here this includes the activation of CDK2 (t = 5) and CDK4

(t = 2) with a subsequent phosphorylation of RB (t = 3) leading to a release of E2F (t = 4) which will release the

cell into cell cycle progression. The temporal sequence is shown as t = n. Active genes are shown as green,

inactive genes as dark purple.

https://doi.org/10.1371/journal.pcbi.1005741.g002
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homologues were significantly downregulated in NEMO knockout MDFs compared to wild-

type MDFs after DNA damage. The total expression of IL-8 homologues mRNA in NEMO

knockout MDFs was reduced by at least fivefold when compared to treated wildtype MDFs

(Fig 9C). There is detectable secretion of IL-8 homologues in untreated wildtype and NEMO

knockout MDFs, however the secretion strongly rose upon etoposide treated in wildtype cells

whereas there is no detectable increase in the NEMO knockout MDFs. This effect was similarly

found for the studied IL-8 homologues KC and MIP-2 (Fig 9D). However, we did not find any

significant alteration in the expression of two housekeeping genes, such as beta-actin and 18s

rRNA in the NEMO knockout MDFs, compared with NEMO wildtype (S2A Fig). In addition,

we also did not observe any significant alteration in the expression of a wide array of genes

that were predicted by Boolean network not to be changed after NEMO knockout (S2B Fig).

These data show the importance of NEMO and NF-κB signaling for the activation of IL-6 and

IL-8 in the case of DNA damage. In early stages DNA damaged and cell cycle arrested MDFs

most likely activate secretory SASP signaling through NF-κB rather than other stress

pathways.

Discussion

In the model of DNA damage and proinflammatory signaling presented here we collected and

combined previously published knowledge on major regulators of the SASP. Using this model,

we identified attractors fitting cell cycle progression and cell cycle arrest as they physiologically

occur. This suggests reliability of this model in terms of reproducibility of current biological

knowledge. The network model allows us to time- and cost-effectively generate hypotheses

and predict gene knockouts that may influence the outcome of the SASP in-vitro.

In the process of modeling, we first created individual models of DNA damage and proin-

flammatory signaling. In a next step, we fused these two sub-networks to the model presented

here. In S1 Text, we analyzed the impact of integrating both pathways in one Boolean network

model. Our results indicate that there is not only an effect of DNA damage in the proinflam-

matory signaling but also vice versa. On one hand, we deduce a stabilization of the DNA dam-

age response network as the integration of both sub-networks leads to a reduction of possible

attractors (87 to 19). On the other hand, the inner dynamics of each sub-network stay intact,

showing biologically reproducible signaling cascades (e.g. Fig 4).

In the simulation without DNA damage, only activation of cell cycle regulation genes that

facilitate cell cycle progression were observed [38]. In contrast, when we entered DNA damage

into the network, we detected early activation of the DNA damage response (DDR) followed

by a p53/p21 mediated cell cycle arrest and at a later time point the activation of proinflamma-

tory signaling through NF-κB [39, 40]. We utilized the Boolean network to simulate knockout

and overexpression states that have the power to inhibit both IL-6 and IL-8 activation, such as

knockouts of ATM and RelA or the overexpression of IκBα, that have previously been pub-

lished to decrease IL-8 or IL-6 expression and secretion in-vitro [7, 9, 34]. One of the most

prominent knockout suggestions obtained was that of NEMO, which acts as an essential mod-

ulator of NF-κB signaling and is a major link between DDR and NF-κB signaling [41]. There-

fore, it is a suitable target to prevent NF-κB activation, while maintaining the repair potential

of the DDR. Taken together these in-silico data suggest NF-κB to be one of the major SASP

Fig 3. Naturally occurring network states upon DNA damage. Upon DNA damage the first response of the cell is

the activation of ATM/ATR mediated DNA damage repair (t = 2) with a subsequent activation of p53- and p16-mediated

cell cycle arrest (t = 3). The DNA damage signal is relayed by the DNA damage response through NEMO (t = 3) that in

turn activates NF-κB signaling (t = 4) which will ultimately lead to the activation of IL-1, IL-6 and IL-8 signaling (t = 7). The

temporal sequence is shown as t = n. Active genes are shown as green, inactive genes as dark purple.

https://doi.org/10.1371/journal.pcbi.1005741.g003
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activators in response to DNA damage activating all three mediators of proinflammatory sig-

naling depicted in this network.

For the sake of manageability, the model presented here was limited to a core set of path-

ways involved in senescence and the SASP. Of course, the value of the results could still be

enriched by adding even more components and additional pathways, such as a more detail

view on CEBP-signaling, growth factor signaling and the expansion of cell cycle related signal-

ing. This would enable to simulate an even deeper level of signaling involved in the SASP.

Another factor that was not viewed in this work is the influence of the intensity levels and tim-

ing of expression and stimuli on the outcome of the SASP. Physiologically occurring DNA

damage, for example, is not an all or nothing event but rather comes in different levels and

lengths of damage that can trigger a multitude of different reactions in the cell. In future

works, it would be interesting to add these into the model. Such extension would allow simula-

tions of the exact amount and timing of damage needed to trigger full-blown SASP rather than

senescence. Furthermore, it would possibly reveal at which point the cell decides that it is ben-

eficial to trigger SASP signaling in order to warn the system of the damage and initiate clear-

ance as opposed to trying to repair itself.

IL-6 and IL-8 reinforce senescence in an autocrine and paracrine way, concomitantly pre-

venting senescent cells from exiting cell cycle arrest and forcing neighboring cells into senes-

cence themselves [3, 42]. Persistent DDR activity, that is also known to induce IL-6 and IL-8

secretion [9], could be shown in various premalignant and malignant lesions in-vivo, and is

hypothesized to be one the main causes of aging [9, 43, 44]. Due to this ability to promote inva-

siveness of cancer cells and the spreading of senescence to neighboring cells IL-6 and IL-8 are

of special interest [3, 45]. While it is probably not detrimental to transiently activate the respec-

tive signaling pathways, the long-term persistence of unrepairable DNA damage leads to a

lasting activation of NF-κB through the DDR mechanisms and thereby to a prolonged stimula-

tion of IL-6 and IL-8. Ultimately, this initiates and perpetuates a vicious cycle from which cells

cannot escape and causes the development of the SASP.

To explore and validate previously generated in-silico results in-vitro, we isolated murine

dermal fibroblasts from NEMO-floxed mice and transfected these with a Cre-recombinase

plasmid to deplete NEMO. Contrary to NEMO knockout MDFs we observed RelA enrichment

in the nucleus in DNA damaged wildtype cells. This suggests that mainly NEMO is responsible

for the forwarding of DNA damage signals from the DDR to NF-κB signaling.

We were particularly interested in achieving inhibition of IL-6 and IL-8 expression and

secretion in-silico and in-vitro. As we could show in our in-vitro results, DNA damaged NEMO

knockout cells did not reveal any induction of IL-6 or IL-8 homologue mRNA expression, sug-

gesting that DNA damage-triggered IL-6 and IL-8 expression is mainly conferred by NF-κB sig-

naling. This was confirmed on protein level, showing a strong decrease in secretion of both IL-6

and IL-8 homologues in NEMO knockout MDFs. In conclusion, abolishing NEMO is sufficient

to not only block the signaling from DDR to NF-κB but also to decrease expression and secre-

tion of two of the most prominent and established SASP mediators IL-6 and IL-8.

The question arises why damaged senescent cells have to start expressing and secreting fac-

tors that are detrimental to themselves, surrounding cells and tissues. The secretion of many

SASP factors can be explained firstly by the attempt to clear senescent cells from tissue by cells

Fig 4. Knockouts that cause in-silico IL-6 and IL-8 inhibition for NFkB knockout. Network states present

the gene activity of all genes in the model. Green boxes indicate gene activation while red boxes show gene

inactivation. A knock-down or overexpression is simulated by setting a gene to 0 or 1, respectively. This

simulation shows the time course of expected states after DNA damage with NF-κB switched off (NFkB = 0)

which leads to an inhibition of proinflammatory signaling.

https://doi.org/10.1371/journal.pcbi.1005741.g004
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Fig 5. Knockouts that cause in-silico IL-6 and IL-8 inhibition for IkB overexpression. This simulation

shows an overexpression of IκB (IkB = 1) showing a similar outcome as in Fig 4.

https://doi.org/10.1371/journal.pcbi.1005741.g005
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of the innate immune system and secondly as a warning to the microenvironment that there is

a danger in the near vicinity. Senescent cells secrete different factors that attract phagocytic

immune cells and induce proteolytic enzymes to facilitate their migration through the extracel-

lular matrix [46]. As long as damaged cells can be cleared in early phases the SASP is probably

beneficial for the organism, however once the immune system cannot keep up with the emer-

gence of damaged cells, detrimental effects accumulate and tissue takes damage [2, 47]. In this

phase, it would be beneficial to have the possibility to counteract the SASP and give the

immune system time to catch up.

In summary, we could illustrate that in-silico identification of genes with mechanistic con-

tribution in the regulation of the SASP, confirmed under experimental conditions in-vitro, is a

highly suitable approach and holds substantial promise to identifying therapeutic targets to

delay or even prevent the detrimental SASP effects on tissue homeostasis and overall ageing.

Using our Boolean model, we were able to reproduce published data in-silico and generate var-

ious knockout proposals to shut down two of the most detrimental effectors of the SASP. This

is of major clinical relevance in terms of tissue aging. In fact, SASP factors like IL-6 and IL-8

have been correlated with inflammaging not only driving the aging process itself, but also

Fig 6. Knockouts that cause in-silico IL-6 and IL-8 inhibition for NEMO knockout. NEMO is switched off

(NEMO = 0) preventing NF-κB signaling from being activated. The outcome is similar to the two previously

described simulations in Figs 4 and 5.

https://doi.org/10.1371/journal.pcbi.1005741.g006

Fig 7. Schematic overview of the experimental workflow. Murine dermal fibroblasts (MDFs) are isolated

from NEMO-floxed mice. After short expansion in cell culture these MDFs are transfected with pCAG-Cre-

T2A-mRuby2 or pCAG-mRuby2, respectively. Because of mRuby2 expression, successfully transfected cells

can be sorted by FACS. Cells transfected with pCAG-Cre-T2A-mRuby2 are knocked out for NEMO while

pCAG-mRuby2 transfected cells are used as wildtype controls. After transfection cells are treated with 25 μM

etoposide for 3 h to induce DNA damage. 24 h after treatment cell culture media is taken for ELISA

measurement of secretion and cells are harvested for RNA isolation and subsequent RT-qPCR analysis.

https://doi.org/10.1371/journal.pcbi.1005741.g007
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promoting aging associated morbidity, frailty and mortality [48]. We additionally were able to

validate and prove one of the most prominent knockout suggestions in-vitro, keeping in mind

that there might always be detrimental off-target effects when altering a major signaling path-

way like NF-κB. However, targeting NEMO and its interaction partners, as already shown in

Fig 8. NEMO knockout murine dermal fibroblasts show a decreased nuclear translocation of p65. a. MTT assay

determined optimal experimental conditions. 80% viable cells was set as threshold. After overnight serum starvation MDFs were

treated with etoposide for 3 h followed by a 24 h incubation period. MTT assay was started afterwards to determine the viability

of cells. Values are presented as mean ± SEM in percent. (n = 3) b. In order to evaluate DNA damage response and cell cycle

arrest mRNA expression of p21 was analysed by RT-qPCR in MDFs treated with 25μM etoposide for 3 h followed by a 24 h

incubation time (n = 5). Values are presented as mean ± SEM of fold change. Comparison was made with two-tailed t-test; P-

value indicated the significance of difference. c. Representative immunostaining of γH2Ax (green) and p65 (red) in wildtype

(NEMO WT) and NEMO knockout (NEMO k/o) MDFs treated with 25μM etoposide for 3 h with a following incubation period of

24 h. Scale bars, 50μM. The graph shows the percentage of p65 in the cytoplasm (black bars) compared to the nucleus (grey

bars) as percentage of red pixels. Values are mean ± SEM in percent. Comparison was made with two-tailed t-test (n = 10); line

and P-value.

https://doi.org/10.1371/journal.pcbi.1005741.g008
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studies of inflammatory arthritis and diffuse large B-cell lymphoma, may hold promise for the

development of new therapies for age-related pathologies in which senescence and the SASP

play a role [49, 50].

Fig 9. DNA damaged NEMO knockout MDFs show a decrease in IL-6 and IL-8 mRNA expression and

protein secretion. a. To assess the influence of the NEMO knockout on DNA damage mediated activation of

SASP signaling IL-6 mRNA expression was measured by RT-qPCR in untreated and etoposide-treated MDFs

(n = 5). Cells with wildtype NEMO (black bars) or NEMO knockout (grey bars) were used. Values were presented

as mean ± SEM of fold change. Comparison was made with the two-tailed t-test. b. IL-6 secretion was measured

by ELISA in conditioned media of untreated and etoposide-treated MDFs (n = 5). Cells with wildtype NEMO (black

bars) or NEMO knockout (grey bars) were used. Values were presented as mean ± SEM of total secretion in pg/ml,

nd means non-detectable. Comparison was made with the two-tailed t-test. c. In addition to IL-6 murine IL-8

homologues KC, LIX and MIP-2 were used to further show activation of SASP signaling. mRNA of all three

homologues was measured by RT-qPCR in untreated and etoposide-treated MDFs (n = 5). Cells with wildtype

NEMO (black bars) or NEMO knockout (grey bars) were used. Values were presented as mean ± SEM of fold

change. Comparison was made with the two-tailed t-test. d. IL-8 homologue secretion was measured by ELISA in

conditioned media as previously described (n = 5). Values were presented as mean ± SEM of total secretion in pg/

ml, nd means non-detectable. Comparison was made with the two-tailed t-test.

https://doi.org/10.1371/journal.pcbi.1005741.g009
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Methods

Mice experiments

Murine dermal fibroblasts from an inducible connective tissue-specific NEMO-deficient

mouse model were used for in-vitro experiments. This mouse line (Col(I)α2-CreERT+;

NEMOf/f) was generated by crossing Col(I)α2-CreERT transgenic mice [51] with NEMO

floxed mice [35]. These mice were backcrossed to C57BL/6J for at least 6 generations. They

were maintained in the Animal Facility of the University of Ulm with 12 h light–dark cycle

and SPF conditions. The breeding of the mice and all experiments were approved by the ani-

mal ethical committee (approval number, Tierversuch-Nr. 1102, Regierungspräsidium

Tübingen, Germany). For mice genotyping standard PCR techniques were used. The

sequences of the primers used in this manuscript are summarized in S1 Table. Briefly, DNA

was isolated from the tail tip of an individual mouse using a commercial kit (Easy DNA kit,

Invitrogen). Purified DNA was later dissolved in TE and used for PCR amplification. The PCR

products were run in QIAxcel Advance system (Qiagen) using the program AM320 and then

documented digitally.

Isolation and culture of murine dermal fibroblasts

Murine dermal fibroblasts (MDFs) were isolated from ear skin of young mice and cultured as

previously described [52].

Induction of DNA damage

DNA damage was induced by adding etoposide to cell culture media at a concentration of

25 μM for 3 hours after overnight serum-starvation. Supernatants subsequently removed and

cells were rinsed with PBS before adding fresh culture media. Cells and/or media were used 24

h later for further analysis.

Cloning

Recombineering technology [53] was used to constract plasmids containing CDS of both Cre

recombinase and fluorescence reporter, mRuby2 or only mRuby2. pCAG-Cre vector (a gift

from Connie Cepko, Addgene plasmid # 13775) was used for the recombineering. In the first

construct, the aim was to insert the T2A-mRuby2 sequence before the stop codon of Cre

recombinase and in the second construct, the aim was to replace the Cre ORF with mRuby2

ORF. In brief, synthetic DNA fragments were synthesized either as gBlock (IDT) or as Gen-

eArt string (Thermo Scientific). Four DNA fragments were synthesized, the first one contained

5’ 50 bp homology regions to the vector (targeting 50 nucleotide upstream of Cre ORF stop

codon), chloramphenicol and ccdB cassettes and 3’ terminal 50 bp homology regions to the

vector (targeting 50 nucleotide downstream of last amino acid coding codon of Cre ORF, i.e.,

condon preceding the Cre ORF stop codon). The second synthetic fragment contained 5’ 50

bp homology regions to the vector (targeting 50 nucleotide upstream of Cre ORF start codon),

chloramphenicol and ccdB cassettes and 3’ terminal 50 bp homology regions to the vector (tar-

geting 50 nucleotide downsteram of Cre ORF stop codon). The third synthetic fragment con-

tained 5’ 50 bp homology regions to the vector (same as fragment 1), T2A sequence-mRuby2

ORF and 3’ terminal 50 bp homology regions to the vector (same as fragment 1). The fourth

synthetic fragment contained 5’ 50 bp homology regions to the vector (same as fragment 2),

mRuby2 ORF and 3’ terminal 50 bp homology regions to the vector (same as fragment 2). E.

coli containing pCAG-Cre was processed for electrocompetent using standard methods and

these electrocompetent E coli, containing pCAG-Cre were electroporated with a dual inducible
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expression plasmid pSC101-ccdA-gbaA (a gift from Prof. A. Francis Stewart) and selected for

ampicillin 100μg/ml and tetracycline 3.5μg/ml at 30˚C. Next day, 4–5 colonies were expanded

and the expression of recombineering proteins, λphage redα, redβ and redγ and recA (redgbaA)

was induced by L-rhamnose (1.4mg/ml). After 1 h of L-rhamnose treatment, the induced E.

coli were processed for electrocompetent and then electroprorated either with synthetic DNA

fragments 1 or 2. After 1 h of recovery in SOC medium, the electroporated E coli, were plated

in LB-agar containing ampicillin 100μg/ml, tetracycline 3.5μg/ml, chloramphenicol 25μg/ml

and 1.4mg/ml L-arabinose. L-arabinose addition induced the expression of ccdA, the antidote

of ccdB in that only recombined plasmid containing E. coli can survive. Thereafter colonies

from fragment 1 and fragment 2 electroporated E. coli plates were picked and expanded for

the verification of first recombinant product using restriction digestion analyses. The corre-

sponding colony was expanded and redgbaA expression was induced by L-rhamnose for 1 h.

The induced E. coli containing either recombined DNA fragment 1 or fragment 2 were made

electrocompetent for the second round of recombineering. The E. coli, containing recombined

DNA fragment 1 then electroporated with synthetic DNA fragment 3. The E. coli, containing

recombined DNA fragment 2 were electroporated with synthetic DNA fragment 4. The recov-

ered electroporated E. coli were plated in LB-agar containing ampicillin 100μg/ml and incu-

bated at 37˚C overnight. Colonies from both plates were picked, expanded and verified for the

second recombinant products. The correct plasmids were sequenced and verified through

commercial services (Sequiserve, Germany). Plasmid preparation was performed using a com-

mercially available kit (Qiagen plasmid plus kit, Qiagen). This plasmid (pCAG-Cre-T2A-

mRuby2) can be obtained from the authors on request and was deposited in the Addgene

repository (Accession ID 102989).

Initiation of Cre activity (NEMO knockout)

Early passage MDFs with a floxed NEMO allele were transfected with a Cre expressing vector

using an electroporation-based transfection method (Amaxa, Lonza Group). Transfer of the

plasmid was performed using a commercial kit with the AMAXA program N24 (Nucleofector

Kits for Mouse or Rat Hepatocytes, Lonza). Successful NEMO knockout was assessed by PCR

as explained before.

FACS sorting of positive cells

Two days after transfection cell populations were purified using the mRuby2-based reporter

system included in the previously described Cre-expressing vectors. Gating was set for living

cells and singlets, sorting was based on mRuby2 expression in the PE-channel. FACS-sorting

was performed with a FACSAria III system (BD Biosciences) and analysis was done on FACS-

Diva and FlowJo (Tree Star) software.

Immunofluorescence staining

Cells were fixed in 4% PFA in PBS for 15 min and thereafter treated with 0.1% Triton X-100

for 10 min at room temperature. Blocking was performed in 5% BSA for 1 h at room tempera-

ture. Anti-p65 (#8242, 1:200, Cell Signaling) and anti-γH2A.x (ab22551, 1:200, Abcam) were

used as primary antibodies overnight at 4˚C. Incubation with the secondary antibody Alexa

488 goat anti-mouse (for γH2A.x, 1:500) and Alexa 555 goat anti-rabbit (for p65, 1:500) was

performed at room temperature for 1 h.

A SASP model after DNA damage

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005741 December 4, 2017 20 / 30

https://doi.org/10.1371/journal.pcbi.1005741


Western blotting

Western blot analyses were performed as described earlier [54]. In brief, murine dermal

fibroblasts were lysed in RIPA lysis buffer (25mM Tris-HCl pH 7.6, 150mM NaCl, 1% NP-

40, 1% sodium deoxycholate, 0.1% SDS) supplemented with protease and phosphatase

inhibitors (Thermo Scientific). Cells in RIPA were sonicated using sonopuls HD 2070 and

MS72 microtips (Bandelin). The sonicator setting was 50% power 3 cycles and 10 sec for

three times. Following sonication, the lysate was centrifuged for 15 min at 14000 rpm and

4˚C. The supernatant was collected and protein concentration was measured by Bradford

Assay (Biorad). 50μg of protein from each lysate was resolved in 4–20% SDS-PAGE, fol-

lowed by transfer to nitrocellulose membrane and probing the membrane with anti-NEMO

antibody (1:1000, Abcam). The membrane was incubated with goat anti-rabbit IgG coupled

with HRP for 1 hr (Jackson ImmunoResearch). Thereafter the membrane was developed by

LumiGLO chemiluminescence reagent (Cell Signaling Technologies) using Fusion FX7 Gel-

doc system (Vilber Lourmat), followed by stripping with Restore Plus Western blot Strip-

ping Buffer (Thermo Scientific) and re-probed with anti-β-actin antibody coupled with

HRP (1:12000, Santa Cruz), finally developed the membrane using LumiGLO.

Quantitative PCR

Twenty-four hours after treatment, total RNA was isolated from cultured murine dermal

fibroblasts using a commercial kit (RNeasy Mini Kit, Qiagen) as described by the manufac-

turer. Two μg of RNA per sample were reverse transcribed using illustra Ready-To-Go

RT-PCR Beads (GE Healthcare). Quantity and quality of total RNA and cDNA was assessed

using Nanodrop 1000 (Thermo Scientific) and QIAxcel Advance system (Qiagen). The 7300

real time PCR system (Applied Biosystem, Life Technologies) was used to amplify cDNA using

Power SYBR green mastermix (Applied Biosystems, Life Technologies). Sequences for primers

used in all experiments and genotyping are provided in S1 Table.

ELISA

After etoposide treatment cells were supplied with fresh culture media. Culture media was

taken for analysis of secreted IL-6 and murine IL-8 homologues (KC and MIP-2) 24 h after

treatment. Media was stored at -80˚C until analysis.

Concentrations of secreted IL-6 and murine IL-8 homologues after DNA damage were

determined using commercial kits (Mouse IL-6/KC/MIP-2 Quantikine ELISA Kit, R&D) as

described by the manufacturer.

Statistical calculations

The influence of a NEMO knockout was compared to wildtype controls based on IL-6, IL-8

homologue and p21 mRNA expression as well as IL-6 and IL-8 homologue protein secretion.

The sample size for all experiments was 5 per group. The expression and secretion of the two

groups was tested using unpaired two-tailed t-test. Furthermore, the influence of the NEMO

knockout compared to wildtype controls on the nuclear translocation of p65 was measured

by the percentage of fluorescence intensity in the cell nucleus as well as cytoplasm (sample

size = 10). The fluorescence intensity was tested using unpaired two-tailed t-test. The exact

p-values are depicted in the respective figures. The figures show mean values. Error bars corre-

spond to the standard error of the mean.
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Boolean networks

In a first step, IL- and DNA-damage pathways included in the Boolean model of SASP were

reconstructed individually. To generate the independent gene regulatory networks of inflam-

matory and DDR signaling, we collected peer-reviewed literature that is considered relevant in

the context of SASP (see Table 1). This literature reports data about the local interaction of key

genes regulating each pathway. The information was collected in murine and human experi-

mental in-vivo and in-vitro studies. In order to control the complexity of model we restricted

the set of regulatory factors in the model to the most relevant for SASP and to those being

important components of each pathway. The modeled pathways were chosen based on the

requirement in the onset and maintenance of the SASP shown in studies related to senescence

and the SASP. In total 80 publications were used to determine the relationships between the

individual components of the model (Table 1).

After the reconstruction of Boolean network models of inflammation and DNA damage

response, both were combined into a larger network. The impact of combining the two net-

work models instead of simulating them independently is shown by additional analysis in S1

Text. Simulations based on specific environmental (input) conditions were performed to find

the corresponding attractors. Furthermore, to identify possible interaction targets, i.e., to gen-

erate testable hypotheses about interventions, we fixed corresponding regulatory factors to

either 0 or 1 (modelling of knockout or overexpression, similar to [55]) and reran the simula-

tions (S1 Text). Given an interaction target, we looked for the attractors that positively influ-

ence the DNA damage response phenotype.

Network figures were drawn with Biotapestry (www.biotapestry.org). Simulations of the

Boolean network were performed with the package BoolNet [12, 56] in R (www.r-project.org).

This model contains two external signals (DNA damage and Activated Oncogenes). These

signals do not coincide with genes within the network, but represent different stimuli from

external or internal sources that are known to activate the DNA damage response and/or cell

cycle arrest signaling through either p16INK4 or p53/p21.

Supporting information

S1 Fig. Establishment of a pure NEMO knockout murine dermal fibroblast (MDF) popula-

tion. a. To purify NEMO k/o MDFs, NEMO-floxed cells were transfected with a Cre-recombi-

nase vector including a mRUBY2-reporter construct. Two days post-transfection cells were

purified for the NEMO k/o using flowcytometry-based sorting, gating for living cells, cell sin-

glets and mRUBY2 signal (histograms; left to right). b. Successful NEMO k/o was determined

using PCR analysis. DNA was isolated from FACS-sorted MDFs and later used for PCR ampli-

fication. Cre-recombinase activity induced the deletion of floxed NEMO alleles resulting in a

bigger sized amplification product in successful knockouts as compared to wildtype cells. c. In

addition to PCR analysis a successful knockout on protein level was determined by western

blotting of cell lysates equilibrated to actin expression levels.

(TIF)

S2 Fig. Unaltered expression of selected genes (predicted to be unaffected in NEMO knock-

out) following NEMO knockout. The expression level of a set of genes that were predicted

not to be changed after NEMO knockout by the Boolean network model. In a setting of 2-fold

cutoff (blue dotted line), the expression of all genes remained unaltered between control and

NEMO knock out MDFs. Dotted line at value ‘1’ represents level of expression in the control

MDFs.

(TIF)
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