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Abstract

As humans populated the world, they adapted to many varying environmental factors, including climate, diet, and pathogens.

Because many of these adaptations were mediated by multiple noncoding variants with small effects on gene regulation, it has been

difficult to link genomic signals of selection to specific genes, and to describe the regulatory response to selection. To overcome this

challenge, we adapted PrediXcan, a machine learning method for imputing gene regulation from genotype data, to analyze low-

coverageancienthumanDNA(aDNA). First,weusedsimulatedgenomes tobenchmarkstrategies foradaptingPrediXcan to increase

robustness to incomplete data. Applying the resulting models to 490 ancient Eurasians, we found that genes with the strongest

divergent regulation among ancient populations with hunter-gatherer, pastoralist, and agricultural lifestyles are enriched for met-

abolic and immune functions. Next, we explored the contribution of divergent gene regulation to two traits with strong evidence of

recent adaptation: dietary metabolism and skin pigmentation. We found enrichment for divergent regulation among genes pro-

posed to be involved in diet-related local adaptation, and the predicted effects on regulation often suggest explanations for known

signalsof selection, forexample,atFADS1,GPX1, andLEPR. Incontrast, skinpigmentationgenes showlittle regulatorychangeovera

38,000-year time series of 2,999 ancient Europeans, suggesting that adaptation mainly involved large-effect coding variants. This

work demonstrates that combining aDNA with present-day genomes is informative about the biological differences among ancient

populations, the role of gene regulation in adaptation, and the relationship between genetic diversity and complex traits.
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Introduction

In the last decade, the number of ancient DNA (aDNA) sam-

ples from anatomically modern humans has increased dra-

matically (Marciniak and Perry 2017). These samples span

time periods from several hundred to tens of thousands of

years ago and provide a rich data source for understanding

genetic changes and adaptations that occurred as humans

expanded across the globe. However, linking genetic differ-

ences in aDNA samples to phenotypes poses several

challenges (Irving-Pease et al. 2021). First, although the sam-

ples are often paired with archaeological information, this is

limited to what biological material has survived for thousands

of years. Thus, most phenotypes of interest are not directly

measurable. Second, due the complexity of many phenotypes

and gaps in our knowledge of the genetic architecture of

most traits, drawing conclusions about most phenotypes of

interest based on genetic information alone is challenging (Li

et al. 2020; Benton et al. 2021).
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To date, most studies have focused on comparing aDNA

from different geographical regions to map migrations and

their relationship to archaeological changes (Skoglund and

Mathieson 2018). Shifts from a hunter-gatherer lifestyle to

pastoral herding and agricultural farming have been of par-

ticular interest, because these changes had profound implica-

tions for multiple aspects of life. These include changes in day-

to-day activities, population density, interactions with the en-

vironment, and substantial dietary shifts, such as increased

reliance on domesticated grains (Goude and Fontugne

2016; Olsson and Paik 2016). These shifts likely modified se-

lective pressures on populations as their lifestyles, diets, and

pathogen exposures changed.

Genomic scans in present-day populations have identified

many loci with evidence of positive selection (Voight et al.

2006; Grossman et al. 2013; Field et al. 2016; Rees et al.

2020). In some cases, selection can be linked to changes in

the coding sequence of specific genes (Lamason et al. 2005;

Grossman et al. 2013). In others, it can be linked to changes in

gene regulation. For example, selection at the FADS1 locus is

linked to increased expression (Buckley et al. 2017; Ye et al.

2017; Mathieson and Mathieson 2018). However in most

cases, the molecular basis of signals of selection remains

poorly understood, even when a specific gene can be impli-

cated. For example, the leptin receptor (LEPR) is surrounded

by a haplotype that has experienced recent positive selection

(Voight et al. 2006), and protein-coding changes in LEPR have

been implicated in increased cold tolerance (Hancock et al.

2008). However, altered expression of this gene is also asso-

ciated with altered appetite regulation and metabolism (Loos

et al. 2006; Kentish et al. 2013). Due to the difficulty in mea-

suring environmental variables and disentangling linkage dis-

equilibrium (LD) patterns, it remains unclear whether selection

is acting on coding variants, expression changes, or both, and

which environmental variable is the source of the selective

pressure (Luca et al. 2010). Even these examples are excep-

tional; most selection signals cannot even be confidently at-

tributed to specific genes. Selection peaks often span many

genes, with little indication of which might drive changes in

fitness or the underlying molecular mechanisms. This moti-

vated us to ask whether information about variants associated

with gene expression, such as expression quantitative trait

loci, could help to identify genes under selection—analogous

to the way in which expression quantitative trait loci data can

inform variant–gene–phenotype mapping in genome-wide

and transcriptome-wide association studies.

We therefore developed an approach to identify genes

whose regulation shifted in coordination with lifestyle

changes in recent human history. These differences in regu-

lation between ancient human groups in distinct environ-

ments suggest adaptation. To quantify gene regulation

from aDNA samples, we adapted the PrediXcan-based ap-

proach we previously used to study gene regulation in archaic

hominins (Gamazon et al. 2015; Colbran et al. 2019). Since

available human aDNA have variable quality and coverage,

we conducted simulations and control analyses to evaluate

how models for imputing gene regulation perform when ap-

plied to low-coverage data, and how to ameliorate the effects

of missing variants. These yielded heuristics for determining

when regulation could be accurately modeled.

Guided by these simulations, we applied PrediXcan models

for thousands of genes to hundreds of ancient humans rep-

resenting populations from hunter-gatherer, pastoralist, and

agriculturalist lifestyles. We found enrichment for metabolic

and immune pathways among the genes most divergently

regulated between lifestyle groups. This reflects both the al-

tered metabolic requirements and immune pressures of life-

style shifts and highlights specific genes and pathways

involved. For example, divergent regulation of LEPR suggests

that its functions in metabolism and appetite regulation were

relevant for recent adaptation. We also analyzed the predicted

regulation of 20 diet-related genes in genomic regions with

evidence of recent local adaptation. Supporting the accuracy

of our approach, we rediscover the FADS locus regulatory

haplotype that has been previously shown to vary by lifestyle

and is likely the target of selection. We also identified diver-

gent regulation between aDNA samples for selected genes

involved in response to selenium (GPX1) and carnitine

(SLC22A5) levels.

Modeling gene regulation using aDNA also allows us to

characterize the nature of selection on specific phenotypes.

To illustrate this, we investigated changes in predicted regu-

lation of genes involved in skin pigmentation—the phenotype

Significance

Humans adapted to diverse environmental pressures as they spread around the globe, but identifying the biological

systems and genetic changes underlying these adaptations remains challenging. We adapted a machine learning

framework to analyze newly available ancient DNA data and predict differences in the control of genes between

ancient human populations. We found differences for many genes involved in metabolism and the immune system

between ancient populations with different diets and lifestyles, indicating that changes in the regulation of genes in

those systems contributed to recent human adaptations. In contrast, we did not observe consistent regulatory differ-

ences associated with changes in skin pigmentation, suggesting that changes to genes themselves drove adaptation in

pigmentation.
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that is most clearly under directional selection in these pop-

ulations—using PrediXcan models trained on expression data

from melanocytes. We find that skin pigmentation genes

show no consistent change in regulation over time suggesting

that, for this particular phenotype, evolutionary change was

driven by coding variants rather than regulatory changes.

Overall, this work provides an atlas of imputed regulation

for hundreds of ancient humans across thousands of genes

to facilitate future exploration of gene regulatory shifts in re-

cent human evolution, and demonstrates the utility of com-

bining molecular predictive models with ancient DNA to

understand the evolution of complex traits.

Results

Gene Regulatory Patterns Can Be Imputed Using Low-
Coverage aDNA Data

The genetically regulated component of gene expression can

be predicted by machine learning models trained on gene

expression. Previous approaches have applied these models

to genome-wide common variant data from present-day

humans (fig. 1A), for example, to perform transcriptome-

wide association studies (Gamazon et al. 2015; Zhou et al.

2020; Zhu and Zhou 2020), and to high-coverage archaic

hominin genomes (Colbran et al. 2019). Here, we adapt

this approach to enable application to low-coverage genotype

data from ancient human individuals, considering the unique

attributes of these data. In particular, aDNA data vary in cov-

erage, depth, and quality. This creates a trade-off between

number of individuals available for analysis and the genotype

quality.

To explore this trade-off and the feasibility of this approach

on available aDNA data, we created simulated ancient

genomes by removing variants from present-day individuals

with whole-genome sequencing from the 1000 Genomes

Project (1 kG) (1000 Genomes Project Consortium 2015).

(fig. 1B and supplementary fig. 1, Supplementary Material

online; See the supplementary materials, Supplementary

Material online, for detailed discussion.) First, we found that

PrediXcan models trained using common variants identified

from present-day whole-genome sequencing data are robust

to random patterns of missing data (Spearman q > 0:75 with

up to 45% of variants missing; supplementary fig. 2A,

Supplementary Material online). However, nearly all aDNA

samples used here were genotyped by targeted capture of

�1,240k variants (1240k set), largely chosen to maximize

overlap with existing genotyping arrays (Fu et al. 2015;

Haak et al. 2015). Furthermore, many of the ancient samples

have low genotyping coverage resulting in many missing var-

iants (supplementary fig. 2B, Supplementary Material online).

Thus, we next matched the missing data to patterns observed

in aDNA and compared the performance of different predic-

tion models applied to full genomes versus genomes with

simulated missing data (supplementary fig. 1B,

Supplementary Material online). These models’ consistency

decreased substantially when applied to genomes with miss-

ing data matched to that in ancient DNA samples (median

Spearman q ¼ 0:39; fig. 1C).

To address this, we trained prediction models using only

variants from the 1240k set. The predictions of these models

were correlated with those of the full models (median

Spearman q ¼ 0:67), as expected given the LD between var-

iants in the 1240k set and those in the full models. We also

identified a set of variants that were most frequently available

in the highest quality ancient samples; this resulted in a set of

the 600,000 most-informative variants from the 1240k set

(top600k set). We then trained models using these variants

targeted to the aDNA data (top600k) and evaluated their

performance on full genomes and simulated ancient genomes

(see Materials and Methods). Although predictions made by

the 1240k and top600k models were largely consistent with

those made by the Full models when applied to genomes with

no missing data (median q0.82 and 0.79, respectively), only

the 1240k models maintained consistency when applied to

incomplete genomes (fig. 1D). We therefore concluded that

the 1240k trained models strike a balance between accuracy

and sample size when applied to ancient data, and thus, we

used these models for the rest of our analysis.

Imputing Gene Regulatory Differences between Ancient
Human Populations

We collected ancient human samples with genetic data from

a variety of sequencing and genotyping platforms (see

Materials and Methods). Based on the analyses in the previous

section, we ranked individuals by the number of sites success-

fully genotyped, and took the top quartile of individuals

(>771,240 SNPs, or 0.74� coverage), restricting to individuals

from Eurasia due to sample density and genetic similarity to

the training data (fig. 2A). The samples ranged in date from

90 to 45,000 years before present (yBP), with the majority

between 2,500 and 6,000 yBP (fig. 2B).

We then assigned individuals to a lifestyle (hunter-gath-

erer, pastoralist, or agricultural) by literature review of the

associated archaeological culture based on information

from the original aDNA publications. In general, hunter-

gatherers were from sites: 1) dated to times before any

evidence of domestication or 2) with evidence only for for-

aging and meat consumption and no domesticated plants

or animals. Agriculturalists were from sites with evidence

for domesticated grains and animals. Pastoralists can be

difficult to distinguish from agriculturists, and here refers

to individuals from often seminomadic societies focused on

domesticated animals (primarily the Yamnaya and similar

groups). In addition, in some cases, the lifestyle distinction

was based on genetic similarity to other groups, so the

categories used here are based on a combination of
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genetics and archaeology. Because of these difficulties, we

focused primarily on comparisons between hunter-

gatherers and the other groups. This process resulted in

490 ancient Eurasian individuals with an assigned lifestyle

and aDNA for further study (fig. 2C).

We then applied the 210,800 “1240k” gene regulation

prediction models described in the previous section to the 490

ancient samples, as well as to 503 present-day Europeans

from the 1000 Genomes Project (1000 Genomes Project

Consortium 2015). This resulted in normalized expression pre-

dictions in different tissues (predicted regulation) for 14,873

unique genes. The observed expression level of a gene in a

tissue in an individual is a combination of genetically regulated

and environmental factors. The output of our prediction

A

B

C D

FIG. 1.—Gene regulatory prediction models can be trained for application to low-coverage ancient DNA. (A) Schematic of the framework for training

and testing PrediXcan models. PrediXcan consists of statistical models for imputing genetic regulation of gene expression that are trained on genetic variants

and normalized transcriptomes from diverse tissues collected as part of the GTEx Project. For each gene, PrediXcan considers genetic variants within 1 Mb of

the gene (gray box) and uses elastic net regression to learn a combination of variants and weights to predict variance in its expression across individuals.

Variants included in the final model are illustrated by red vertical lines. (B) To evaluate the potential for gene regulatory prediction using aDNA, we performed

several analyses. First, we evaluated the effects of using three different variants for model training: full (all common variants in GTEx), 1240k (all variants in the

aDNA 1240k capture set), and top600k (the 600k most representative variants from the 1240k capture set; see Materials and Methods). We also simulated

the presence of missing data in the prediction phase by masking variants from genomes from the 1000 Genomes project such that only variants from each of

the three sets (Full, 1240k, top600k) were available for use in prediction. (C) Distribution of Spearman q between predictions per individual in four tissues

(Skeletal Muscle, Whole Blood, Liver, Ovary) when considering the complete genome versus 1240k-matched simulated ancient genomes. (D) q between

predictions from a range of targeted models on down-sampled genomes to the Full PrediXcan models applied to all variants available for 1 kG individuals.

Models were trained on different variant subsets (x axis, top row: all, 1240k, top600k) and applied to complete or downsampled 1 kG genomes (x axis,

bottom row: all, 1240k, top600k). There is one point per individual sample.

Colbran et al. GBE

4 Genome Biol. Evol. 13(11) https://doi.org/10.1093/gbe/evab237 Advance Access publication 28 October 2021



model is not a direct proxy for the observed expression, but

rather a quantification of the genetic component of gene

regulation. Thus, differences in predicted regulation between

individuals reflect potential differences in the inherited genetic

component of expression, not environmentally driven

differences.

Divergently Regulated Genes Are Enriched for Immune
and Metabolic Functions

To survey high-level differences among ancient individuals

from the three lifestyle groups, we identified divergently reg-

ulated genes in each tissue. Overall, 5,759 unique genes

showed evidence of divergent regulation between lifestyles

in at least one tissue (median 2 tissues; supplementary fig. 3A,

Supplementary Material online), and an average of 9.8% of

genes in each tissue were divergent (supplementary fig. 3B,

Supplementary Material online). For example, GPR84 in the

adrenal gland was among the most different in predicted

regulation between lifestyles (fig. 3A; predicted regulation

of �0.0421 in agriculturalists vs. 0.197 in hunter-gatherers;

corrected Kruskal–Wallis P¼2:78� 10�4). However, most di-

vergent genes had relatively small changes in magnitude be-

tween groups (e.g., maximum 1.17 magnitude difference

between hunter-gatherers and agriculturalists in

Subcutaneous Adipose) and the majority of these differences

are likely attributable to genetic drift, rather than the effects

of selection. We therefore imposed a genomic control (see

Materials and Methods) on the full distribution of 210,800

(genes� tissues) Kruskal–Wallis P values (fig. 3A), and report

significant results based on the corrected distribution. We fo-

cused on the 500 genes with the most evidence of divergent

regulation (corrected P < 3:46� 10�3, FDR¼ 0.586), which

are likely enriched for targets of selection.
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Pastoralist
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FIG. 2.—Attributes of ancient humans considered in this study. (A) Distribution of the number of variants with genotype call in the aDNA samples. The

maximum is 1,233,013, the number of SNPs on the 1240k genotyping chip. We analyzed individuals in the fourth quartile (red line, 771,029 SNPs). (B)

Distribution of the age of 490 Eurasian samples analyzed in yBP. (C) We assigned ancient Eurasians with sufficient genetic data to three lifestyles: green,

agriculturalist; blue, pastoralist; yellow, hunter-gatherer.
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We hypothesized that immune and metabolic traits were

among those under the most selective pressure as populations

transitioned between lifestyles. To identify systematic patterns

in the 500 most divergently regulated genes, we conducted

gene ontology (GO) overrepresentation analysis. The 20 most-

enriched annotation terms (fig. 3B) included immune-related

(e.g., antigen processing and presentation) as well as basic

metabolic processes and cellular functions (e.g., glycoprotein

metabolic process). In addition, we observed enrichment for

several general functional annotations that appear to be

driven by genes with pleiotropic immune system effects. For

example, the eight genes driving the enrichment of the

“DNA-templated transcription, elongation” term included

THOC5 (smallest P ¼ 2:6� 10�4), which also functions in

immunity and response to stimuli through cytokine-

mediated pathways (Tamura et al. 1999; Mancini et al.

2004), ELP1 (smallest P ¼ 6:1� 10�4), which has functions

in proinflammatory signaling (Cohen et al. 1998), and AFF4

(smallest P¼ 5:0� 10�4), a component of the super elonga-

tion complex, which is recruited in response to HIV-1 infection

(He et al. 2010; Chou et al. 2013). To confirm that these

trends are not influenced by the specific threshold we chose,

we also ranked all results by P value and conducted a gene set

enrichment analysis (see Materials and Methods). Again, the

GO terms most enriched among significant P values included

many immune and metabolic traits, several of which were

also highlighted in the overrepresentation analysis (supple-

mentary fig. 4, Supplementary Material online).

Many gene sets are likely to maintain similar regulatory

patterns across populations, regardless of lifestyle, and these

should not be enriched among the most divergently regulated

genes. To test this, we quantified the enrichment of three

such sets under strong functional constraint among the 500

most diverged genes between lifestyle groups across tissues:

1) genes that have experienced stabilizing selection on their

levels of expression across many species (Chen et al. 2019), 2)

genes responsible for core housekeeping functions (Eisenberg

and Levanon 2013), and 3) genes that are intolerant to loss-

of-function coding variation (LOF-intolerant) in present-day

humans (Lek et al. 2016) (see Materials and Methods). As

expected, LOF-intolerant genes and those under long-term

stabilizing selection are not enriched (table 1). Surprisingly,

housekeeping genes were slightly enriched (OR ¼ 1.33,

P¼ 0.0076). By definition, housekeeping genes have ubiqui-

tous expression across tissues, so this pattern could partially be

explained by increased power to model changes in their reg-

ulation in multiple tissues. However, many housekeeping

genes are also involved in basic cellular metabolism

(Eisenberg and Levanon 2003), which could require fine tun-

ing in response to changes in nutrient sources or other envi-

ronmental shifts. We also tested for enrichment of genes that

encode proteins that directly interact with viruses, since these

genes are known to evolve rapidly (Enard et al. 2016), but we

find no enrichment among the top 500 genes, suggesting

that selection at these loci could be driven by coding rather

than regulatory changes.

Several of the top divergently regulated genes underly-

ing the GO functional enrichments have been implicated in

local adaptation, for example, EP300 (smallest

P ¼ 1:7� 10�4) (Zheng et al. 2017) and several subunits

of HLA-DQ (smallest P ¼ 4:1� 10�4 for HLA-DQA2)

(Catassi and Catassi 2018; De Silvestri et al. 2018; Pierini

and Lenz 2018). In the next two sections, we explore the

connection between sequence signatures of recent adap-

tive evolution and divergent gene regulation with a focus

on diet and skin pigmentation.

A B

FIG. 3.—Immune and metabolic genes are among the most diverged between ancient lifestyle groups. (A) QQ plot for all gene regulation models in all

tissues. Observed P values are calculated after GC correction. The 500 most divergently regulated genes have at least one model above the red line. Inset:

predicted regulation of GPR84 in adrenal gland. (B) The most-enriched GO terms among the 500 most diverged genes. Point size scales with number of

diverged genes in each category (range 3–24).
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Changes in Gene Regulation Contributed to Adaptation to
Diet between Ancient Lifestyles

Many regions of the human genome bear signatures of recent

population-specific adaptive evolution. However, the pheno-

typic drivers and molecular mechanisms underlying these evo-

lutionary signatures are largely unresolved. Since diet was one

of the main factors that shifted with the change from hunting

and gathering to farming, we hypothesized that gene regu-

latory changes between lifestyle groups might be the target of

signals of selection at dietary genes.

We compared the predicted regulation of 20 diet-related

genes in regions with evidence of population-specific local

adaptation (Rees et al. 2020) between ancient human groups

with different lifestyles (see Materials and Methods). Models

for the 20 genes tested were enriched for lower P values

(P ¼ 1:19� 10�14, K–S test), with four unique genes among

the top 500 most diverged genes by group (supplementary

table 4, Supplementary Material online).

FADS1 showed the most consistent evidence for divergent

regulation between agriculturalists, pastoralists, and hunter-

gatherers, with nominally significant divergence for 17 tissue

models (supplementary table 2, Supplementary Material on-

line). In each tissue, hunter-gatherers had significantly lower

predicted FADS1 levels than in agriculturalists or present-day

Europeans, as would be expected from a diet containing

higher levels of long-chain plasma unsaturated fatty acids

(fig. 4B). We observed a similar trend among 32 ancient

Africans, indicating that this trend is not specific to Eurasian

populations (supplementary fig. 5A, Supplementary Material

online). The variants driving these regulatory differences are in

LD with the functional haplotype implicated in previous evo-

lutionary studies (supplementary fig. 5B and supplementary

table 3, Supplementary Material online) (Ameur et al. 2012).

Overall, FADS1 predicted regulation has increased over time in

Eurasia (coefficient P ¼ 1:2� 10�10; supplementary fig. 6A,

Supplementary Material online), which agrees with known

allele frequency trajectories (Buckley et al. 2017; Ye et al.

2017; Mathieson and Mathieson 2018).

Another gene in the FADS gene cluster, FADS2, functions

in the same pathway as FADS1 and is also among the 500

most diverged genes. However it shows evidence for diver-

gent regulation in fewer tissues than FADS1 (supplementary

table 4, Supplementary Material online), and the direction of

effect is not consistent across tissues. Its presence therefore

seems more likely to be due to overlap in regulatory variants

with FADS1 than to selection on FADS2 regulation specifically.

Our results further support the relevance of lifestyle differen-

ces between ancient populations in selection on the FADS

locus and highlights the potential importance of regulatory

changes of FADS1 in human dietary adaptation.

Among the putative diet adaptation genes, GPX1, an an-

titoxin selenoprotein, and SLC22A5, a transporter responsible

for recycling and uptake of carnitine (Console et al. 2018)

(supplementary table 4 and supplementary fig. 7,

Supplementary Material online) were also divergently regu-

lated. The GPX1 locus has experienced selective sweeps re-

lated to environmental selenium levels (White et al. 2015;

Engelken et al. 2016), and has been implicated in response

to viral infections (Guillin et al. 2019). Carnitine plays an im-

portant role in the transport of certain long-chain fatty acids

to the mitochondria for energy production; thus, modulation

of its regulation could suggest a difference in metabolism

related to variation in the energy demands of different life-

styles. Both selenium and carnitine levels are likely to have

differed in the primary diets of the ancient populations con-

sidered here (Flanagan et al. 2010; Mann 2018), suggesting

that both as potential targets of local adaptation.

LEPR is another putatively adapted gene that has been

suggested as the driver of nearby signatures of selection

due to its function in appetite and cold tolerance (Voight

et al. 2006; Hancock et al. 2008; Luca et al. 2010). LEPR

was divergently regulated between lifestyle groups in the cer-

ebellum (fig. 4B) (the only brain tissue with a model for LEPR),

both adipose tissues, and several other tissues. It was consis-

tently predicted to be downregulated in agriculturalists com-

pared with the other two groups in each tissue

(supplementary table 5, Supplementary Material online).

Leptin is a hormone produced by adipose cells that suppresses

appetite (Barrios-Correa et al. 2018), so this supports a possi-

ble connection between appetite regulation and the observed

signatures of selection. This is particularly relevant to modern

populations given the association of decreased LEPR function

with obesity and metabolic disorders (Farooqi et al. 2007;

Dehghani et al. 2018).

SLC22A5, GPX1, and LEPR also show changes regulation

over the last 50,000 years in Eurasians when analyzed as a

time course rather than a contrast between lifestyle groups

(supplementary fig. 6B–D, Supplementary Material online).

Table 1

Skin Pigmentation Genes with Nominally Significant Associations between Ancient Sample Age and Regulation

Gene b (All) (95% CI) P (All) b (<15 ky) (95% CI) P (<15 ky)

TYR �2.05e-6 (�3.1e-6 to 9.67e-7) 0.00021 �4.7e-6 (�6.43e-6 to �2.97e-6) 1.08e-7

TRPM1 �9.93e-7 (�1.97e-6 to �2.05e-8) 0.045 �2.039e-6 (�3.59e-6 to �4.83e-7) 0.010

MITF 1.65e-6 (1.08e-7 to 3.2e-6) 0.036 2.80e-6 (3.34e-7 to 5.27e-6) 0.026

KIT �3.62e-7 (�7.56e-7 to 3.16e-8) 0.071 �7.08e-7 (�1.33e-6 to �8.10e-8) 0.027

NOTE.—Betas and P values were calculated using a linear regression of the predicted regulation on the date, including the first ten ancestry principal components.
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The directions of change match the expectation given the

changing prevalence of ancestries from the different lifestyle

groups (i.e., those genes predicted to be highest in agricultur-

alists increase over time). Overall, these analyses suggest that

recent regulatory changes made a substantial contribution to

adaption to diet. More broadly, they demonstrate the poten-

tial for this method to explain observed signals of selection

and to disentangle its effects on nearby genes.

Skin Pigmentation Evolution Was Not Driven by Changes
in Gene Regulation in Melanocytes

We hypothesized that genes involved in complex phenotypes

under selection in a population would exhibit systematic

changes over time in their regulation. To test this, we focused

on skin pigmentation, a trait that is known to have been un-

der selection in humans in West Eurasia (Berg and Coop

2014; Wilde et al. 2014; Ju and Mathieson 2021) and for

which many of the genes involved are well-understood

(Sturm and Duffy 2012). We trained new PrediXcan models

using genetic variants and gene expression in melanocytes

from a diverse cohort (Zhang et al. 2018). We were able to

model 17 genes known to be involved in the melanogenesis

pathway (Sturm and Duffy 2012). Because skin pigmentation-

associated variants changed in frequency over time, we ap-

plied these models to a time series of 2,999 ancient

Europeans dated between 38,052 and 150 yBP, as well as

503 present-day Europeans from the 1000 Genomes Project

and tested for systematic changes over time in predicted

regulation.

Skin pigmentation genes are not enriched for differential

regulation compared with all 6,923 genes modeled in mela-

nocytes (K–S test P¼ 0.53; fig. 5A). Predicted regulation

showed a nominally significant linear relationship with time

for only four skin pigmentation genes (table 1), and only one

(TYR) remained significant after genomic control.

We predict that TYR’s expression increased over time

(fig. 5B) and is higher in non-African (particularly European)

populations compared with African populations (fig. 5C), and

in (more recent) agriculturalist populations compared with

hunter-gatherers (fig. 5D). TYR encodes an enzyme important

for one of the earliest steps of the melanogenesis pathway

and LOF mutations cause albinism (Ghodsinejad Kalahroudi

et al. 2014; Norman et al. 2017). It is therefore surprising that

increased expression would be driven by selection for de-

creased pigmentation. One possibility is that increased expres-

sion due to gene regulatory variants compensates for the

increase in frequency in Europeans of an activity-reducing

coding variant (rs1042602) in TYR (Wilde et al. 2014).

Selection on pigmentation could favor the coding variant,

whereas the maintenance of other functions of the gene

could require increased expression. Supporting this,

rs1042602 has a positive weight in the fitted PrediXcan model

showing that it in fact is associated with increased expression.

Finally, we were unable to build accurate melanocyte

PrediXcan models for many known pigmentation genes.

Some genes, including those with large-effect coding changes

(Lamason et al. 2005; Soejima and Koda 2007), have relatively

little cis-regulatory variation. Other known pigmentation genes

with regulatory variation are not expressed in melanocytes. For

example, despite its important role in melanocyte function,

KITLG is expressed not in melanocytes, but in the dermal papil-

lae and then transported to melanocytes (Botchkareva et al.

2001). Thus, it not modeled in our analysis. Overall, our results

suggest that changes in gene regulation in melanocytes did not

play a large role in the evolution of skin pigmentation in Europe.

This is consistent with observations that selection signals for

pigmentation-associated variants in Europe are mostly driven

by a relatively small number of large-effect, coding variants
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FIG. 4.—Ancient humans from different lifestyles had significant differences in regulation of key diet genes. (A) FADS1 shows divergence in predicted

regulation in Subcutaneous Adipose tissue between lifestyles (Kruskal–Wallis P ¼ 5:7� 10�24), as well as in eight other tissues. (B) LEPR regulation in

Cerebellum is divergent across lifestyles (Kruskal–Wallis P ¼ 3:6� 10�17). Plotted with 503 present-day Europeans for comparison. Purple, present-day

Europeans; green, agriculturalists; blue, pastoralists; yellow, hunter-gatherers.
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despite the polygenic nature of the phenotype (Ju and

Mathieson 2021).

Discussion

In this study, we adapted the PrediXcan approach for model-

ing the genetic component of tissue-specific gene regulation

and applied it to hundreds of low-coverage ancient DNA sam-

ples from individuals from three different lifestyles and to a

�38,000-year transect of ancient Europeans. Our simulations

and evaluations suggest that models of gene regulation for

thousands of genes retain utility even when variant data are

limited, as long as the models are trained for the specific ap-

plication and their limitations properly taken into account. This

is encouraging for the expansion of the PrediXcan approach to

other contexts in which different variants were assayed than

those used to train the original PrediXcan models. As more

accurate methods are developed, it will be important to keep

this aspect of their performance in mind.

Here, we found that over 5,000 genes showed evidence

for divergent regulation among ancient hunter-gatherers,

pastoralists, and agriculturalists in at least one tissue. The

500 genes most divergently regulated between lifestyles

were enriched for metabolic and immune processes, indicat-

ing that altered gene regulation has shaped these functions

during recent human evolution. Focusing on genes involved in

diet, we find enrichment for divergent regulation in genes

with nearby signals of recent selection, suggesting that

changes in gene regulation may play a substantial role in ad-

aptation to changes in diet.

Second, we trained new prediction models in melanocytes

to analyze changes in the regulation of skin pigmentation

genes in a time transect of ancient and present-day

Europeans spanning 38,000 years. In contrast to genes asso-

ciated with diet, we found that most genes we modeled show

little to no systematic change in regulation over time, suggest-

ing that selection on skin pigmentation mostly operated on a

few large-effect coding variants. The exception, TYR, is pre-

dicted to have been upregulated over time, which is contrary

(with respect to the trait) to the effects of a known coding

variant in the gene and the predicted effects of gene expres-

sion on the trait itself (Chaki et al. 2011; Wilde et al. 2014).

A B

C D

FIG. 5.—Most skin pigmentation genes show little change in regulation in the last 38,000 years in Europeans. (A) QQ plot with P values from linear

regressions of date versus predicted regulation for all modeled genes in melanocytes (see Materials and Methods). The 17 skin pigmentation are highlighted

in blue. (B) Predicted regulation of TYR increases over time in Europeans. The red line shows a regression calculated over all individuals, and the black

regression line was calculated only over individuals <15,000 yBP. (C) TYR predicted regulation in present-day 1kG populations, separated by continent of

ancestry. (D) TYR predicted regulation in ancient Eurasians, split by lifestyle.
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However, the increased expression in Europeans may be a

response to the increase in frequency of a coding variant

(rs1042602) that decreases activity. These results underscore

the wide variety of adaptive mechanisms in recent human

evolution, and the ability of ancient DNA to illuminate these

mechanisms. The other skin pigmentation genes that show

nominal changes in predicted regulation over time, MITF and

TRPM1, are closely linked to TYR in the melanogenesis path-

way, with MITF regulating both TYR and TRPM1 (D’Mello

et al. 2016). Further analysis of the predicted perturbations

of those relationships is needed to better understand the phe-

notypic consequences of these changes.

There are a several caveats to consider when interpreting

these PrediXcan results. Previous work has demonstrated

that, although there are some decreases in accuracy, the ap-

proach maintains utility when applied to non-European pre-

sent-day populations and to archaic hominins (Colbran et al.

2019; Petty et al. 2019). Furthermore, the ancient Eurasian

individuals considered here are less diverged from the GTEx

cohort used for training than in these previous applications.

However, due to the low coverage of the aDNA data and the

focus on commonly assayed variants, there are many regula-

tory effects that these models do not capture. These effects

would reduce our power to detect divergent regulation

though they are unlikely to create false positives. In addition,

the models do not capture the effects of environment (both

direct and indirect) on gene expression. Therefore, although

differences in predicted regulation do not necessarily indicate

a change in transcript expression levels, they do the identify

change in the genetic architecture of a gene’s regulation. Our

approach is therefore complementary to experimental assays

of the regulatory effects of ancient genomic variants in

present-day human cells (Weiss et al. 2021), and such

approaches could be used to test our computational predic-

tions. Another major limitation is that we are only able to

draw conclusions about genes with sufficient expression

and nearby present-day common variation. We also have

not developed a formal test for selection on gene regulation.

Although we have in some cases been able to link regulatory

variation to signals of selection based on genomic data, many

of the differences we observe were likely the result of genetic

drift. Developing tests for selection on gene regulation that

consider aDNA remains an important area for future work.

Finally, our analysis does not distinguish between cases where

gene regulation was divergent among the ancestral popula-

tions that differentially contributed to lifestyle groups, and

cases where it changed within groups after they adopted a

specific lifestyle. This is also true of the time series analysis;

although all diet genes tested showed significant changes

over time, this pattern is likely attributable to changes in prev-

alence of lifestyle groups (and relevant ancestries) rather than

shifts within a continuous population.

Despite these limitations, we demonstrate the utility of

considering regulatory effects of variants in combination in

ancient individuals. In particular, the frequent occurrence of

metabolic and immune genes among the most divergently

regulated genes between ancient lifestyles underscores the

contribution of gene regulation to adaptation to the substan-

tial changes in lifestyle that the shift from nomadic hunting

and gathering to stationary farming had on humans. Our

targeted analysis of diet genes with evidence of results adap-

tive evolution further suggests that adapting to diets with

different nutrient and fat compositions required population-

level shifts in the regulation of many metabolic genes. In con-

trast, the lack of consistent gene regulatory changes in skin

pigmentation genes suggests that adaptation in this trait was

mainly mediated by coding variants.

Lifestyle and sun exposure are not the only variables that

differ among the ancient humans with genetic information,

and more diverse aDNA data are rapidly becoming available.

Therefore, extending this analysis to ancient individuals across

other evolutionary shifts will promising. It will also be infor-

mative to expand studies into non-European populations,

both ancient and present-day, to learn when gene regulatory

shifts are unique to specific populations or shared.

Overall, this study demonstrates the power of focusing

evolutionary analyses on combinations of variants with estab-

lished relationships to molecular phenotypes. Our approach is

well-positioned to use the increasing availability of present-

day and ancient genome data to provide both mechanistic

explanations of selection signals and to generate hypothesis

about phenotypic differences between ancient and present-

day groups. Although this study focused on gene regulatory

shifts in response to changes in lifestyle and temporal shifts in

regulation of skin pigmentation genes, similar methods could

be applied in many other questions and sets of ancient sam-

ples. Given the importance of gene regulation in recent evo-

lution, this is a necessary step in identifying and interpreting

candidate regions that have been shaped by recent human

evolution. Further analyses using this approach will contribute

to understanding the genome’s response to large-scale envi-

ronmental changes and the influence of these changes on

humans today.

Materials and Methods

Ancient Genotype and Lifestyle Data

For the lifestyle analyses, we obtained ancient human geno-

types from a set compiled and analyzed by the Allen Ancient

DNA Resource (v42.4; accessed March 1, 2020), then lifted

them over the Genome Build hg38 using liftOverPlink. We

filtered out samples that did not pass their QC procedure

and ranked remaining samples by genotype count (i.e., the

number of variants with a genotype call), and removed all

samples outside the top quartile. We also filtered samples

by their continent of origin, and primarily focused on 490

ancient Eurasians to whom we could assign a lifestyle. The

Colbran et al. GBE
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FADS1 analysis additionally considered 32 ancient Africans.

For a present-day comparison, we used genomes for 503

European samples from the 1000 Genomes Project (1000

Genomes Project Consortium 2015). Missing variants were

assumed to be homozygous reference.

We manually assigned ancient samples to lifestyle groups

by literature review based on archaeological information

about the site and previous research about the associated

culture. More specifically, we used lifestyles as assigned by

the original publication of the sample where available. We

then propagated those lifestyle labels to other samples based

on the associated culture (again, as assigned by the original

publication), then conducted a further literature review to

match any unassigned cultures to a lifestyle based on similarity

to those already matched. Samples were removed from con-

sideration when there was not enough lifestyle-related evi-

dence to make a call. The distinction between pastoral and

agricultural groups was often difficult, and when there was

ambiguity the groups were preferentially assigned to the ag-

ricultural category (supplementary file 1, Supplementary

Material online).

Adapting PrediXcan for aDNA

Model Training

PrediXcan models scripts were adapted from the PredictDB

Pipeline (https://github.com/hakyimlab/PredictDBPipeline; last

accessed November 19, 2018). We first filtered the expression

data to identify genes expressed in each tissue, then normal-

ized and corrected for covariates such as sex and ancestry

(specific procedure for each training set described below).

Models were trained using an elastic net algorithm as imple-

mented by the R glmnet library (alpha¼ 0.5 and

nk_folds¼ 10), and considered all input variants that were

within 1 Mb upstream or downstream of the gene in ques-

tion. Fitting a model was only attempted for genes with at

least two variants in that window with multiple alleles present

in the training data.

Final Models for aDNA-Based Gene Regulation Prediction

The set of models used to evaluate performance in differing

scenarios and for all lifestyle analyses were trained on whole-

genome sequencing and RNA-seq data from GTEx v8 for 49

tissues. The genotypes included variants with a minor allele

frequency >0.05 and in Hardy–Weinberg equilibrium

(P> 0.05), and were LD pruned (r2 ¼ 0:9). The expression

data were normalized by GTEx, which involved the following:

genes were selected based on expression thresholds of >0.1

TPM in at least 20% of samples and at least six reads in at

least 20% of samples, then expression values were normal-

ized between samples. For each gene, expression values were

normalized across samples using an inverse normal transform.

Expression was then corrected for covariates including sex,

sequencing protocol, sequencing platform, the first five gen-

otyping PCs, and 15–60 PEER factors, depending on the sam-

ple size of the tissue. For each tissue, we considered only

models that explained a significant amount of variance

(FDR< 0.05, r2 > 0.01). For the lifestyle analyses, we focused

on models trained using the �1,240,000 variants that were

genotyped by first enriching for the targeted variants (1240k

set) (Fu et al. 2015; Haak et al. 2015), and further required

that each 1240k-trained model maintain high correlations

with the original full GTEx model (r> 0.5) over all 2,504

1 kG individuals. All LD calculations for variants in all 1 kG

Populations were made using LDLink (Machiela and

Chanock 2015).

The set of models used to study skin pigmentation were

trained on genotype and RNA-seq data collected from mela-

nocytes from 106 male skin samples (Zhang et al. 2018). We

imputed all genotypes to 1000 Genomes using the NIH

TOPMed server (Das et al. 2016) with the following settings:

ref: 1 kG Phase 3 v5; pop ¼ other/mixed; rsq filter 0.001;

phasing ¼ eagle v2.4. We filtered genes to those with mea-

sured expression in at least ten samples, with RSEM>0.5 and

>6 reads, then each gene was inverse quantile normalized to

a standard normal distribution across samples. We then cor-

rected for ancestry using the first three principal components

and ten PEER factors (not sex, as all samples are male). We

trained the PrediXcan models using only �1,240,000 SNPs

that were genotyped by first enriching for those targeted

SNPs (1240k set) (Fu et al. 2015; Haak et al. 2015), and in-

cluded any gene for which the model was able to explain a

nominally significant amount of variance in the observed ex-

pression (P< 0.05). We focused on a set of 17 genes (Sturm

and Duffy 2012) involved in skin pigmentation for which we

were able to build models.

We abbreviate the 49 GTEx tissues considered as follows:

Adipose—Subcutaneous, ADPS; Adipose—Visceral

Omentum, ABPV; Adrenal Gland, ADRNLG; Artery—Aorta,

ARTA; Artery—Coronary, ARTC; Artery—Tibial, ARTT;

Brain—Amygdala, BRNAMY; Brain—Anterior Cingulate

Cortex, BRNACC; Brain—Caudate, BRNCDT; Brain—

Cerebellar Hemisphere, BRNCHB; Brain—Cerebellum,

BRNCHA; Brain—Cortex, BRNCTX; Brain—Frontal Cortex,

BRNFCTX; Brain—Hippocampus, BRNHPP; Brain—

Hypothalamus, BRNHPT; Brain—Nucleus Accumbens basal

ganglia, BRNNCC; Brain—putamen basal ganglia, BRNPTM;

Brain–Spinal Cord Cervical C-1, BRNSPN; Brain–Substantia

Nigra, BRNSN; Breast, BREAST; Cells—Transformed

Fibroblasts, FIBS; Colon—Sigmoid, CLNS; Colon—

Transverse, CLNT; Esophagus—Gastroesophageal Junction,

ESPGJ; Esophagus—Mucosa, ESPMC; Esophagus—

Muscularis, ESPMS; Heart—Atrial Appendage, HRTAA;

Heart—Left Ventricle, HRTLV; Kidney Cortex, KDNY; Liver,

LIVER; Lung, LUNG; Minor Salivary Gland, MNRSG; Cells-

EBV-transformed Lymphocytes, LYMPH; Ovary, OVARY;

Pancreas, PNCS; Pituitary, PTTY; Prostate, PRSTT; Skeletal
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Muscle, MSCSK; Skin—Not sun-exposed, SKINNS; Skin—sun-

exposed, SKINS; Small Intestine, SMINT; Spleen, SPLEEN;

Stomach, STMCH; Testis, TESTIS; Thyroid, THYROID; Tibial

Nerve, NERVET; Uterus, UTERUS; Vagina, VAGINA; Whole

Blood, WHLBLD.

Evaluating Strategies for Applying PrediXcan to aDNA

To evaluate the performance of different strategies for train-

ing PrediXcan regulation prediction models and applying

them to aDNA, we carried out several simulations. In the ran-

dom simulations, for each percentage missing threshold, we

randomly selected 20 European individuals from 1 kG (1000

Genomes Project Consortium 2015), then randomly removed

that percentage of genotype calls from their genomes before

applying PrediXcan models to the simulated genomes (sup-

plementary fig. 1, Supplementary Material online). For each

downsampled genome, we calculated a Spearman correlation

between the predicted regulation of each gene in four tissues

for the downsampled versus the full genome. Thus, each box

in supplementary figure 2A, Supplementary Material online,

has 80 (20� 4) points. We then calculated the Spearman

correlation between the median correlation between down-

sampled and full model predictions for each threshold and the

percentage of variants missing at that threshold.

We also simulated missing data by matching patterns of

missing variants from aDNA samples (supplementary fig. 1B,

Supplementary Material online). We used 3,383 ancient human

samples compiled and made available by the Allen Ancient

DNA Resource on March 1, 2020 (v42.4). We selected three

random Europeans from 1kG, then for each ancient sample,

we created three matching masked genomes that were missing

exactly the same variants. For each masked genome, we cal-

culated the Spearman correlation between the predicted reg-

ulation of each gene in all four tissues for the masked versus the

full genome (i.e., one correlation per individual).

We also evaluated three different sets of variants for train-

ing PrediXcan models. The “full set” consisted of all variable

sites identified in GTEx v8 (this included both single nucleotide

variants and short indels in hg38 coordinates). The “1240k

set” was formed by intersecting the full set with the variants

genotyped on the 1240k chip, which totaled 714,959 variants

after lifting them over to hg38. Lastly, we assembled the

“top600k set” of variants, which is a subset of the 1240k

set with high “support.” We calculated the “support” for

each variant over N aDNA samples as
PN

n¼1 NumVarsn,

where NumVars is the number of variants successfully called

in sample n. In other words, support for a variant is the num-

ber of samples in which that variant was successfully geno-

typed, weighted by the quality (i.e., number of genotyped

variants) of the sample. A variant can therefore obtain a

high support either by being genotyped in many low-quality

samples, or in fewer high-quality samples. We ranked the

variants by their support. We identified the top 600k variants,

and for the purposes of simulating the behavior of models

when applied to incomplete data, we also considered the top

500k variants with the highest support (“top500k”;

N¼ 499,666). For each set of variants, we trained a set of

models and created a set of 1 kG genomes masked to only

include those variants (fig. 1A). We assessed the performance

of combinations of models and genomes by calculating the

correlation of predictions made by each model-genome pair

with predictions made by the Full models on the Full 1 kG

Genomes (i.e., one correlation was calculated per individual

1 kG sample for each pair).

Identifying Divergent Gene Regulation between Ancient
Lifestyles

To identify genes with evidence for divergence in predicted

gene regulation between the three lifestyle groups, we applied

a Kruskal–Wallis test for the predictions of each gene model

over individuals from each group. We initially accounted for

multiple testing with a Bonferroni correction within each tis-

sue. The 5,759 genes passing this correction in at least one

tissue are said to show evidence for divergent regulation; how-

ever in many cases this divergence is small and expected to be

due to genetic drift. To further isolate the genes that are the

most likely to be diverged due to selection rather than drift, we

used genomic control to correct for population stratification by

calculating the genomic inflation factor k and recalculating the

raw P values based on the expected value of v2=k (Devlin and

Roeder 1999). To focus our discussion on the genes with the

strongest evidence for divergence, we sorted all models by

GC-corrected P value and identified the top 500 unique genes

(corresponding to 1,236 models), which corresponded to

those with at least one model with a GC-corrected

P< 3:46� 10�3 and FDR¼ 0.586.

For select genes of interest (FADS1, LEPR, SLC22A5, and

GPX1), we conducted an additional time series analysis, using

all 763 Eurasians in the top quartile by coverage. We then

calculated a linear regression for all samples of predicted reg-

ulation versus sample date, including the first ten principal

components to control for broad-scale ancestry changes.

We then did the same over just those samples <15,000 yBP

since the number of older samples is somewhat limited.

Gene Set Enrichment among Diverged Genes

To conduct functional enrichment analyses on the top 500

most diverged genes, we tested for GO annotation overrep-

resentation using WebGestalt with default parameters (Liao

et al. 2019) Specifically, we compared the biological process

GO terms among the 500 most diverged genes versus all

genes with a model in at least one tissue. To confirm that

observed trends were not due to the particular threshold we

chose, we also conducted a gene set enrichment analysis.

Specifically, we ranked genes by the KW P value, choosing

the smallest one for genes modeled in multiple tissues, then
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took the log 10ðPÞ and used WebGestalt’s GSEA implemen-

tation to identify the 20 most enriched and depleted biolog-

ical process GO terms.

We also tested for enrichment of several other gene sets of

interest among the top 500 diverged genes: 1) genes whose

expression in particular tissues is under stabilizing selection

across 17 mammalian species (Chen et al. 2019); 2) genes

that are intolerant to LOF variants in their protein products

(called if the upper bound of the 95% confidence interval of

the observed/expected ratio is lower than 0.35) (Lek et al.

2016); 3) housekeeping genes that show consistent expres-

sion across tissues (Eisenberg and Levanon 2013); and 4) a set

genes encoding virus interacting proteins (Enard et al. 2016).

We calculated an odds ratio for each, and used a Fisher’s

exact test to determine significance. For the genes under sta-

bilizing selection on gene expression, we considered only

those tested in that study before calculating statistics.

Skin Pigmentation Time Series Data and Analysis

We obtained ancient human genome data from the Allen

Ancient DNA Resource (v44.3; accessed February 8, 2021).

We filtered for individual human samples from Europe (west

of 59� East), and in the case of duplicate individuals chose the

sample with the highest average coverage. We filled in miss-

ing dosages using the mean dosage across the other samples.

This resulted in 2,999 ancient Europeans, to which we added

503 European samples from the 1000 Genomes Project (1000

Genomes Project Consortium 2015) to construct a time series

ranging from 38,052 yBP to present (31 samples were older

than 15,000 yBP).

To identify genes which showed a systematic change in

regulation over time, we obtained predicted regulation values

for each gene in each individual using the melanocyte

PrediXcan models. We then regressed the predicted regula-

tion on the date of the sample using a linear regression frame-

work, including the first ten principal components to correct

for ancestry. We further controlled for population stratifica-

tion using genomic control (Devlin and Roeder 1999), and

identified the skin pigmentation genes for which the effect

size of date was significant (corrected P< 0.05). We addition-

ally compared the predicted regulation of TYR in all 2,504

individuals from the 1000 Genomes Project (1000 Genomes

Project Consortium 2015), separated by continental ancestry.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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