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Abstract

Phase variable expression, mediated by high frequency reversible changes in the length of simple sequence repeats,
facilitates adaptation of bacterial populations to changing environments and is frequently important in bacterial virulence.
Here we elucidate a novel phase variable mechanism for NadA, an adhesin and invasin of Neisseria meningitidis. The NadR
repressor protein binds to operators flanking the phase variable tract and contributes to the differential expression levels of
phase variant promoters with different numbers of repeats likely due to different spacing between operators. We show that
IHF binds between these operators, and may permit looping of the promoter, allowing interaction of NadR at operators
located distally or overlapping the promoter. The 4-hydroxyphenylacetic acid, a metabolite of aromatic amino acid
catabolism that is secreted in saliva, induces NadA expression by inhibiting the DNA binding activity of the repressor. When
induced, only minor differences are evident between NadR-independent transcription levels of promoter phase variants and
are likely due to differential RNA polymerase contacts leading to altered promoter activity. Our results suggest that NadA
expression is under both stochastic and tight environmental-sensing regulatory control, both mediated by the NadR
repressor, and may be induced during colonization of the oropharynx where it plays a major role in the successful adhesion
and invasion of the mucosa. Hence, simple sequence repeats in promoter regions may be a strategy used by host-adapted
bacterial pathogens to randomly switch between expression states that may nonetheless still be induced by appropriate
niche-specific signals.
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Introduction

Neisseria meningitidis is an important human pathogen which

colonises the nasopharynx in about 5–10% of healthy individuals.

Occasionally, and for reasons not fully understood, it can cause an

invasive infection leading to septicaemia and also meningitis [1,2].

In these cases, the meningococcus can rapidly undergo transcytosis

across the epithelial and endothelial barriers into the bloodstream,

where efficient replication and dissemination occurs. Consequent-

ly, the organism is able to cross the blood/brain barrier gaining

access to the meninges surrounding the brain as well as infecting

other organs. In order to ensure effective colonization and

transmission, as well as coping with the diverse stages of the

infectious cycle inside the host, the meningococcus must be able to

respond and adapt to different microenvironments through

regulated and stochastic expression of genes involved in patho-

genesis. The nadA gene, coding for an adhesin and invasin of

meninogococcus [3,4] is an important gene involved in bacterial

pathogenesis, whose gene product is one of the components of a

potential vaccine against meningococcal serogroup B outbreaks

[5,6].

The nadA gene is known to be present in approximately 50% of

meningococcal isolates and is absent in N. gonorrhoeae and in

commensal Neisseriae [3]. Due to the low %GC content of the nadA

locus, it is thought to have been acquired in the meningococcus by

horizontal transfer. NadA expression was shown to exhibit growth-

phase dependent behaviour with levels reported to be maximal in

the stationary growth phase of all strains tested [3]. Furthermore,

the expression of NadA is phase variable and a tetranucleotide tract

(TAAA) upstream of the nadA promoter has been demonstrated to

control this phenomenon [7]. In Neisseria, phase variation of many

genes is associated with reversible changes within simple DNA

sequence repeats located in coding or promoter regions of genes [8].

The number of repeats can be modified during replication through

slipped strand mispairing [9], and can consequently influence

translation or transcription by introducing frameshift mutations or

changing critical promoter spacing [10,11,12,13]. The loss or gain

of repeat units results in high frequency on-off switching (in the case
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of frameshift/translational control) or modulation of the level (in the

case of promoter control) of expression of genes usually associated

with surface-exposed antigens.

The phase variable tract of nadA is unique, as it is distally located

upstream of the nadA promoter, unlike the phase variable repeat

tracts found in the porA, fetA, and opc genes where the unstable

homopolymeric stretches are found between the 210 and the 235

promoter elements and are thought to result in altered sigma-

factor binding [10,14,15]. The frequency of phase variation of

nadA has been experimentally estimated as ca. 4.461024 [7]

creating variants where changes in the repeat number result in

promoters with low, medium or high activity. The transcriptional

regulators Fur and IHF were implicated in the control of nadA

promoter activity from the binding of both proteins to the nadA

promoter and from the analysis of mutants deleted for IHF- and

Fur-binding sites [16]. Moreover, it has been reported that loss or

gain of a tetranucleotide repeat affects the binding of the IHF

regulatory protein to the nadA promoter in vitro, and this was

proposed to be responsible for the modulation of transcription of

nadA in vivo [16]. Nonetheless, the mechanism governing

transcriptional regulation of nadA remains unclear and the inferred

role of IHF or Fur and their involvement in phase variation of

nadA expression remain to be elucidated. However, a novel

regulator of NadA expression has recently been identified which

was shown to repress NadA expression [17].

In this study we dissect the cis- and trans-acting elements

involved in transcriptional regulation of nadA as well as describe an

environmental factor that appears to induce expression of the

NadA protein. We propose a novel mechanism by which the

spontaneous changes in the number of simple sequence repeats

distally located with respect to the core promoter can alter the

promoter activity and lead to phase variable expression.

Results

All phase variant promoters are growth-phase regulated
Previous analysis of NadA expression in several meningococcal

isolates indicated that its expression is controlled by variation in

the number of tetranucleotide repeats (TAAA) upstream of the

core promoter [7] and that the protein is maximally expressed in

stationary growth phase [3]. In order to study transcriptional

regulation of the nadA promoter we generated isogenic N.

meningitidis MC58 strains, each carrying a nadA phase variant

promoter fusion with a defined number of repeats and determined

the relative level of the nadA transcripts. Steady state levels of nadA-

gfp transcript were measured by quantitative primer extension

analyses on RNA extracted from cells grown to the mid log and

the stationary growth phases. Figure 1 shows key elements of the

nadA promoter (panel A) and demonstrates the varying pattern of

transcript level between promoters with different numbers of

TAAA repeats (panel B). As previously reported [16], we confirm

that 4, 9 and 12 repeats result in low transcript level, and show

that 7, 8 and 10 repeats result in high transcript level, and 5, 6, 11,

13 repeats and a promoter mutant lacking TAAA repeats (D) give

varying intermediate levels, which when taken together represent a

quasi-periodic pattern in the transcript level. Furthermore, each

phase variant promoter exhibits a certain degree of growth-phase

dependent transcription, with a higher level of transcription in

stationary growth phase.

Regulatory proteins that bind the nadA promoter
In vitro DNA binding assays suggested that regulation of nadA

expression is under the control of the Fur and IHF regulatory

proteins and that loss or gain of TAAA repeats could affect IHF

binding, thus accounting for the different promoter activity of the

phase variants [16]. In order to gain insight into the molecular

mechanism controlling nadA expression, we mapped the precise

location where Fur, IHF, and RNA polymerase (RNAP) bind to

the nadA promoter. DNase I footprinting was performed with the

purified proteins and three radioactively labelled phase variant

promoters, corresponding to low (9 repeats), medium (6 repeats),

and high (7 repeats) transcript level.

Addition of increasing amounts of a recombinant Fur protein

(0.013–3.2 mM) showed a region of protection at 3.2 mM Fur

concentration (data not shown). This protection overlapped the

translational start site (+79) spanning from +61 to +96. However,

no differences in nadA transcription were detected in a Fur null

mutant background when compared with the wild type strain, or

in response to changing iron concentrations (data not shown).

Therefore, the observed in vitro binding of Fur to the nadA

promoter appears to have no correlation with in vivo regulation of

transcription by Fur in response to iron.

Addition of 43 or 172 nM of the IHF heterodimer to the

binding reactions resulted in a similar region of protection in all

three phase variant probes (Figure 2A). IHF binds upstream of the

distal border of the TAAA tract and the protection spans the first 5

repeats, from 2103 to 265 with respect to the promoter with 9

repeats (Figure 2A). Accordingly, no binding could be detected in

a similar footprinting experiment with the PD promoter variant in

which the TAAA tract was deleted (Figure 2A). Notably, variations

of the number of repeats from 6 to 9 resulted in no differential

binding of IHF.

As expected, addition of RNAP to the nadA promoter probe

resulted in a characteristic footprint over the core promoter spanning

from 237 to +17, as well as protecting two other regions, one directly

upstream of the core promoter spanning positions 243 to 276,

partially overlapping the TAAA tract, and the second distally

upstream spanning from 2116 to 2154 (Figure 2B). As both

upstream protected regions are AT-rich regions, a typical feature of

UP-like elements bound by the C-terminal region of the a-subunit of

RNAP to enhance transcription [18,19], we decided to verify such

a hypothesis in vitro by DNase I footprinting using the purified

Author Summary

Diversification strategies, through genetic switches that
randomly turn genes on and off, occur in many pathogenic
bacterial populations and confer adaptive advantages to
new environments and evasion of host immune responses.
This is often mediated by spontaneous changes in the
length of short DNA sequence repeats located in protein-
coding regions or upstream regulatory regions, leading to
deactivation or alteration of the associated genes. In this
study we describe how a repeat sequence, distally
upstream of the promoter region, alters the expression
of an important adhesin of N. meningitidis. We identify the
major mediator of this control, a negative regulator NadR,
which binds to sequences flanking the variable repeat.
Changes in the spacing between these sequences affect
the ability of NadR to shut down expression from the
promoter. We also identify a relevant metabolite that can
block NadR activity and therefore act as a signal to induce
adhesin expression. This finding sheds new light on the
role of DNA-repeats identified in intergenic regions for
which no role could be hypothesised, and may be a model
mechanism used by bacterial pathogens for fine-tuning
diversity within the host. Elucidating these mechanisms
can aid in our understanding and prevention of disease.

Regulation of NadA Phase Variable Expression
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a-subunit of the RNAP. Results showed a specific binding of the a
protein over the TAAA repeats at low protein concentration

(Figure 2B). Upon addition of increasing amounts of the a protein,

this protected region extended both to downstream and upstream

regions, including regions spanning positions 243 to 276 and 2116

to 2154 protected by the holoenzyme (Figure 2B). Furthermore,

because the nadA promoter is recognised and transcribed from the

same +1 in E. coli (data not shown), we decided to test whether the a-

subunit of RNAP could play a role in the transcription of PnadA in this

system. We measured promoter activity of a PnadA-gfp fusion (on

plasmid pGX-nad-gfp) in an E. coli strain over-expressing either a

wild type a-subunit (RpoA) or a C-terminally truncated a–subunit

(RpoAD256) of E. coli. Expression of the PnadA-gfp fusion in the strain

over-expressing the wild type a-subunit gave 63936254 Units

(fluorescence normalized with OD600), while in the strain over-

expressing the a truncated version the activity was reduced by over

50% giving 2867663 Units. No reduction in promoter activity was

apparent when the PD nadA fusion was co-expressed with the a or

truncated a subunit (data not shown). These data suggest that the

incorporation of a complete a-subunit into the RNAP allows

maximum transcriptional activity at PnadA, possibly through contacts

of the C-terminal region of the a-subunit to upstream DNA regions

containing AT-rich sequences sharing similarities to an UP element.

In conclusion, we have mapped multiple specific points of

contact for regulatory proteins on the nadA promoter, including

distal and proximal binding sites for the a-subunit of RNAP which

flank a single IHF binding site at the distal junction of the TAAA

tract. IHF is well known for its ability to bend DNA by up to 180u
[20], and this property may permit looping of the DNA and the

interaction of regulators at distal operators and the transcriptional

machinery over the promoter.

Identification of a cis-acting growth phase regulatory
(GPR) region in PnadA and the protein that binds to it

In order to identify regulatory regions within the PnadA promoter

we created a range of deletion mutants and measured the

Figure 1. The PnadA promoter and transcript level. (A) Schematic diagram of the PnadA elements. DR, direct repeat (border of region of
horizontal transfer); GPR, growth phase regulatory region; DP2-DP5 indicates the nucleotide positions of the 59 deletion mutants (Figure 3). The
nucleotide sequence of the promoter is shown with the regions bound and protected in DNase I footprinting shaded according to the regulatory
proteins tested in vitro: light grey, RNAP a-subunit; white, IHF; dark grey, NadR. (B) Transcription of each phase variant promoter is growth phase
responsive. Cultures of MC-PD, MC-P2(x4), MC-P2(x5), MC-P2(x6), MC-P2(x7), MC-P2(x8), MC-P2(x9), MC-P2(x10), MC-P2(x11), MC-P2(x12), MC-P2(x13)
strains, carrying single copy transcriptional fusions of the phase variant nadA promoter with a defined number of copies of the tetranucleotide repeat
(TAAAxN) and the repeated tract deleted (D) (Table 1), were grown to mid-log or stationary growth phase and total RNA was prepared. Quantitative
primer extension was performed using a gfp-specific primer as described in materials and methods. Autoradiographs of a representative experiment
are shown as well as the quantification of transcript levels as determined by phosphorimaging. The error bars on the graph represent the standard
deviations observed for the quantification of transcript levels between at least 2 biological replicates.
doi:10.1371/journal.ppat.1000710.g001
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transcript level from cells grown to the mid-log and stationary

growth phases (Figure 3A and 3B). While deletion of nucleotide

sequences upstream of 2170 with respect to the +1 transcriptional

start site had little or no effect on the level of transcript (promoter

P2 versus P1), promoter mutants lacking the region between 2170

and 2108, (P3 or P4) resulted in a significant increase in

transcription during log phase. This finding indicates that the

growth-phase dependent regulation is due to a repression of

expression in log phase. Accordingly, removal of the TAAA tract

did not alter the growth-phase regulation of the resultant mutants

(P4 versus P3, or PD versus P2). Therefore, we have identified a

distal upstream cis-acting region that we call the GPR region,

which is responsible for repression of transcription from PnadA in

log phase, possibly upon binding of a repressor protein.

To assess that a repressor factor could bind the GPR region we

analysed crude cell extracts of the MC58 strain for the ability to

retard a radioactively labelled GPR probe in Electrophoretic

Mobility Shift Assays (EMSA). Addition of 15 mg of MC58

extracts resulted in a shift of the GPR probe, which could be

outcompeted with cold GPR DNA but not with non-specific

competitor (Figure 3C). We also found that the P5 promoter probe

spanning from 29 to +79 of the PnadA promoter was specifically

retarded (lane 11, Figure 3C) by MC58 extracts but not an

unrelated intergenic region (Pcon) used as negative control (lane

13, Figure 3C). Subsequently, to identify this factor we performed

DNA affinity purification using the biotinylated GPR region as

‘bait’. The bound material was digested with trypsin, and the

resulting peptides were analyzed by MALDI-TOF mass spec-

trometry. Four of the seven major ions could be assigned to tryptic

peptides derived from the NMB1843 protein (Figure 3D and 3E).

To confirm the interpretation, the major parental ions were

fragmented. Spectra of fragmentation were consistent with the

expected NMB1843 amino acid sequence (data not shown). We

call this protein that binds the GPR region of the nadA promoter

NadR. The nadR gene encodes a transcriptional regulator of the

MarR family of repressors, is a homologue of FarR, the repressor

of the fatty acid resistance efflux pump of N. gonorrhoeae [21,22],

and was recently implicated as a repressor of nadA [17]. We

rename the meningococcal homologue NadR as, unlike the FarR

protein, it does not regulate the fatty acid efflux pump in the

meningococcus (Pigozzi E, unpublished data) and, therefore, is not

involved in fatty acid resistance.

NadR binds to three operators in the nadA promoter
To demonstrate that NadR is the GPR-binding factor we

generated a deletion nadR mutant by substituting the gene with an

antibiotic resistance marker. Cell extracts derived from the N.

meningitidis D1843 mutant no longer possessed binding activity

towards the GPR and P5 promoter probes (data not shown). We

amplified and cloned the nadR gene from the MC58 genome into

an expression plasmid and expressed and purified a recombinant

form of the protein with an N-terminal Histidine tag. We

performed DNase I footprinting analysis with the NadR protein

and a radioactively labelled probe consisting of the entire nadA

promoter. Figure 4A shows the autoradiogram of the results. On

addition of increasing amounts of NadR recombinant protein,

three regions of protection of the nadA promoter are visible. Two

appear on addition of 30 nM of NadR protein: the first (OpI)

spanning from 2139 to 2119 and the second (OpII) spanning

from 215 to +7 and, therefore, within regions of the GPR and P5

Figure 2. Regulatory proteins binding to the nadA promoter. (A) DNase I footprinting of IHF protein to three different phase variant nadA
promoters with 9, 6 and 7 repeats corresponding to low, medium and high transcript level in vivo, respectively, and the PD mutant nadA variant with
a deletion of the TAAA repeated tract. To 20 fmoles of each radioactively labelled probe, 0, 43 and 172 nM (lanes 1–3) of IHF heterodimer were
added. Relevant regions are marked and numbers correspond to nucleotide positions with respect to the transcriptional start site of a promoter with
9 repeats. (B) DNase I footprinting of RNAP or the a-subunit of RNAP to the indicated nadA promoter probe. The probe was incubated with 0, 0.25,
0.5, 1, 2, 4, and 5 U of RNAP (lanes 1–7) or 0, 0.17, 0.68, 2.7, 5.5, 11 mM of purified a-subunit (lanes 8–13).
doi:10.1371/journal.ppat.1000710.g002
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probes that were previously shown to be bound by the MC58

extracts as well as a third region (OpIII) spanning the TAAA tract

from 255 to 285. EMSA analysis confirmed that NadR exhibits

high affinity for the GPR and P5 operator regions and exhibits a

lower affinity for the TAAA tract. These observations were

supported by EMSA analysis with a probe spanning the entire

PnadA promoter as three differential protein-DNA complexes were

formed, most likely following sequential binding of the protein to

the operators located within the PnadA probe (Figure 4B).

From this analysis we conclude that NadR encodes the GPR-

binding repressor factor that binds to three operators; two high

affinity operators OpI and OpII within the distal GPR region and

Figure 3. Identification of a cis-acting element of the nadA promoter determining growth phase regulatory effects (the GPR region)
and the GPR-binding protein from cleared cell extracts of MC58. (A) Schematic representation of the mutant nadA promoter variants (based
on the MC58 nadA promoter with 9 repeats) present in single copy transcriptional fusion in the MC58 background in the strains, MC-P1, MC-P2, MC-
P3, MC-P4, MC-P5, MC-PD. The numbers indicate nucleotide positions with respect to the +1 transcriptional start site. DR, direct repeat; GPR, growth-
phase regulatory region; D, deletion of the TAAA repeats. (B) Transcription from the mutant promoter variant fusions in log and stationary phases.
The MC-P1, MC-P2, MC-P3, MC-P4, MC-P5, MC-PD strains were grown to mid-log and mid-stationary growth phase and total RNA was prepared from
each sample. Quantitative primer extension was performed as described in materials and methods. Autoradiographs of a representative experiment
are shown as well as the quantification of transcript levels. Similar results were found for deletion variants carrying 11 TAAA repeats (data not shown)
although the overall transcript levels for promoters containing 11 repeats was higher than that of 9 repeats, as expected. The relative quantities
between biological replicates with different numbers of repeats were reproducible within an error of 20% of the absolute value for each mutant
promoter. (C) Binding activity towards the nadA promoter in cell extracts of MC58. Cell extracts were prepared from mid-log cultures of MC58 and
increasing quantities were incubated with a radioactively labelled DNA probe consisting of the GPR region (2170 to 2108) or P5 (29 to +79) or an
unrelated intergenic region Pcon as negative control and submitted to EMSA analysis. To ca. 80 fmoles of radioactively labelled probe, 0, 0.2, 0.6, 1.8,
5.0, 15 mg of cell extract in lanes 1–6 were added, respectively; 0 mg in lanes 10 and 12; and 15 mg in lanes 7–9, 11 and 13, were added; and 130, 400,
and 1000 fmoles of cold GPR probe in lanes 7, 8, and 9 were added as specific competitor. (D) The peptide mass fingerprint spectrum of one ml of the
eluted fraction after DNA affinity purification of the binding factor of the GPR region. Four of the major ions, labelled, could be assigned to tryptic
peptides (positioning of the amino acids indicated above) of the NadR transcriptional regulator protein. In addition, BSA was added during the
process of purification, was eluted from the column, since 3 major signals observed in the spectrum corresponded to BSA tryptic peptides (marked
with an asterisk). (E) The amino acid sequence of the NMB1843 (NadR) protein showing the peptides that were identified by MS in bold and
underlined.
doi:10.1371/journal.ppat.1000710.g003
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overlapping the nadA promoter, respectively, and a lower affinity

operator OpIII which spans the TAAA repeat tract.

NadR represses differentially phase variant promoters
To further study the role of NadR in regulating NadA

expression, and its possible involvement in mediating differential

expression from phase variant promoters, we first selected five

representative strains bearing different numbers of tetranucleotide

repeat in their nadA promoter which correlate to high (8 repeats,

5/99) and low (9 repeats, MC58) as well as three intermediary (5

repeats, BZ83; 6 repeats, ISS838, and 12 repeats, 961–5945) levels

of NadA expression and generated isogenic knockouts of NadR in

each background. The level of expression of NadA and NadR in

the wild type and D1843 meningococcal strains was evaluated by

Western Blot, in order to evaluate the role that NadR may play in

NadA regulation across different strains of the meningococcus.

The wild type strains showed, as expected, levels of NadA

expression that can be associated with transcript levels of the nadA

phase variant promoter they bear, and NadR was constitutively

expressed in each strain (Figure 5A, lanes 1–5). Each of the

knockout strains exhibits higher levels of NadA expression than

their respective wildtype strain indicating that NadR represses

nadA expression in each strain (lanes 6–10 vs 1–5). Surprisingly, the

mutation of NadR results in almost equivalent levels of NadA

between the knockout strains, although the 5/99-D1843 and BZ-

D1843 still exhibit slightly higher NadA expression. This suggests

that NadR, although expressed to the same level, has a different

repressive activity on the nadA gene in each strain and this may

depend on the number of repeats in the different phase variant

promoters i.e. NadR does not efficiently repress the 8x promoter of

5/99 but very efficiently represses the 9x promoter of MC58. To

further test this hypothesis and to rule out effects due to strain

differences, we deleted the nadR gene in the isogenic MC58 strains

carrying high (x8), medium (x6) and low (x9) promoter variants

and measured the steady state levels of transcription from the

promoters at log and stationary growth phase in the presence or

absence of the NadR regulator. The results in Figure 5B confirm

that in the mutant (D1843) all three promoters are derepressed,

and, interestingly, little or no variation in transcript levels between

the phase variants is observed, suggesting that in the absence of

NadR the mechanism of transcriptional control exerted by

variable number of repeats is alleviated or negligible. It is worth

noting, however, that the maximum level of transcription in

exponentially growing cells is observed from the promoter variant

with 8 repeats, in agreement with higher NadA expression in 5/

99-D1843, suggesting that NadR is not the sole modulator of phase

Figure 4. The NadR repressor binds specifically to three
operators in the nadA promoter. (A) DNase I footprinting analysis
with purified NadR on the nadA promoter with 9 repeats. The NadR
protected regions are indicated (OpI–III) and numbers represent the
nucleotide positions with respect to the transcriptional start site. The
size of protected regions ranges from 20 bp (OpI and OpII), and 30 bp
(OpIII), a size compatible with the binding of a protein dimer.
Furthermore, in vitro cross-linking experiments with the purified NadR
protein revealed the presence of cross-linked oligomers which migrated
on SDS-PAGE with a molecular weight compatible with a dimer (data
not shown). Therefore, NadR, similarly to other members of the MarR
family of proteins is likely to be a dimer in solution. Binding reactions
contained 40 fmoles of probe radioactively labelled at one extremity
and 0, 7.5, 15, 30, 60, 120 nM of NadR purified dimer (lanes 1–6,
respectively). (B) EMSA with radioactively labelled GPR, TAAA and P5
probes containing the individual OpI, OpIII and OpII operators,
respectively, or the entire P2 nadA promoter spanning from 2170 to
+79 with increasing concentrations of recombinant NadR protein as
indicated. The retarded migration of protein DNA complexes are
indicated with asterisks.
doi:10.1371/journal.ppat.1000710.g004

Figure 5. The NadR repressor contributes to phase variable
expression. (A) Western Blot analysis of the level of expression of
NadA and NadR in wild type strains 5/99, BZ83, ISS838, 961–5945 and
MC58 carrying nadA promoters with 8, 5, 6, 12, and 9 repeats (lanes 1–
5), respectively, and their NadR null mutant derivatives, 5/99- D 1843,
BZ- D 1843, ISS-D1843, 961-D1843, MC-D1843 (lanes 6–10). Cells were
recovered from overnight culture on plates and 5 mg of total protein
were loaded on SDS-PAGE, blotted and stained with anti-NadA, anti-
NadR, or anti-NMB2091 polyclonal antiserum. Migration of the NadA
proteins is altered as these strains express NadA proteins with variations
in their amino acid sequences [3], however the promoter sequence in
each strain is identical apart from the altered number of repeats. (B)
Transcription of phase variant promoters with 8, 6, 9, and, no, repeats,
in the MC58 and NadR null mutant backgrounds. Total RNA was
prepared from cultures of strains MC-P2(x8), MC-P2(x6), MC-P2(x9), MC-
PD, D1843-P2(x8), D1843-P2(x6), and D1843-P2(x9), D1843- PD, grown
to mid-log and stationary growth phase. Quantitative primer extension
was performed as described in materials and methods. A representative
experiment is shown. The experiment was performed on at least 2
biological replicates and the standard deviations between the values
did not exceed 20% of the value.
doi:10.1371/journal.ppat.1000710.g005
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variable promoter activity and that there is another factor which

may establish differential RNAP contacts to modulate transcrip-

tion.

Furthermore, we also measured the transcript level of the PD
promoter, which lacks the TAAA tract and also no longer binds

IHF, in the wild type and D1843 backgrounds and results indicate

that NadR does not efficiently repress this mutant promoter (lanes

15 and 16 versus 7 and 8) and implicates a major role for IHF in

efficient NadR-mediated repression of the nadA promoter.

Ligand-responsive regulation of NadA expression
The MarR family of proteins regulates a wide variety of

biological processes including resistance to antibiotics and

antimicrobial agents, virulence and environmental sensing of

aromatic compounds [23,24]. They respond to small inducer

molecules which attenuate the ability of MarR homodimers to

bind their cognate DNA sequences [23], and are often the

molecular substrates for the efflux pumps or metabolic pathways

that are repressed by this family of regulators. We set about

identifying a small molecule inducer, which may regulate NadR-

mediated repression of NadA expression in the meningococcus.

We assessed broad-specificity inducers such as salicylic acid, which

have been shown to be active against many members of this

family, and also functionally relevant molecules such as long-chain

fatty acids, which are the substrate for the regulated efflux pump of

the gonococcal NadR homologue FarR [22] with no success.

However, we noticed that immediately downstream of the nadR

gene is an ORF which encodes a putative flavoprotein

oxidoreductase with 42% amino acid identity to the small subunit

of 4-hydroxyphenylacetic acid 3-hydroxylase. In addition, the

closest BLAST neighbour of NadR in the MarR family of

repressors is the HpaR protein (50% identity), which represses the

4-hydroxyphenylacetic acid (4HPA) catabolic pathway in E. coli.

Moreover, it is responsive to the 4HPA substrate of the pathway,

which binds to the repressor and induces expression of the

catabolic genes [25]. We, therefore, assessed whether the 4HPA

molecule could act as putative inducer of NadA expression in vivo.

Addition of 1 mM or 5 mM 4HPA (Figure 6A) to cultures of wild

type MC58 significantly induced NadA expression. No induction

could be detected in cultures of the D1843 mutant, indicating that

the 4HPA molecule induced a NadR-mediated derepression of

NadA expression. To confirm that the observed increases in NadA

expression could represent a direct interaction of the inducer with

NadR, the ability of the compound to dissociate purified

recombinant NadR from the high affinity operator OpI was

assessed by EMSA. The 4HPA compound was found to attenuate

the binding activity of the NadR regulator to the GPR probe in

vitro (Figure 6B). Furthermore, addition of 1 mM 4HPA to crude

cell extracts containing the native NadR meningococcal protein

resulted in complete inhibition of retardation of the GPR probe in

EMSA (data not shown), suggesting that the recombinant and

native NadR proteins respond in vitro similarly to the compound.

These data suggest that the 4HPA could be a ligand of the NadR

repressor and interaction of the ligand with the protein attenuates

the DNA-binding activity of the molecule for its specific operators

and results in derepression or induction in vivo of the nadA

promoter.

Discussion

Phase variation is the adaptive process by which bacteria

undergo frequent and reversible phenotypic changes resulting

from genetic alterations in specific loci of their genomes and this

process is crucial for the survival of pathogens and commensals in

hostile and ever-changing host environments. N. meningitidis has an

unprecedented potential for generating genetic diversity through

slipped strand mispairing of simple sequence repeats, as its genome

contains over 100 repeat associated genes [26,27]. The way in

which genes are affected by variation in the number of repeats is

largely thought to occur through biphasic on/off translational

control due to frameshifting within the ORFs of coding regions.

Recently the on/off switching of methyltransferase genes has been

shown to co-ordinate expression of a phase-variable regulon of

genes or ‘‘phasevarions’’ via differential methylation of the genome

[28,29]. The role of SSR in intergenic regions in modulating phase

variable expression, although frequently found, are less easy to

predict. However, differential spacing due to SSR tracts between

the core promoter elements modulating multi-phasic expression by

affecting RNAP sigma factor binding has been frequently reported

[10,15,30,31] as well as some documented examples where repeats

in 59UTR [32,33] and distally upstream [7,32,34,35] of promoters

have been shown to affect expression through unknown mecha-

nisms.

In this study, we dissect the cis- and trans-acting elements as

well as environmental factors that control transcriptional regula-

tion of the nadA promoter in order to elucidate the mechanism by

which SSR distally upstream of the PnadA promoter controls its

activity. We describe a complex promoter architecture in which

spontaneous changes in the number of simple sequence repeats in

a tract between the most distal regulatory regions and the core

promoter can alter the promoter activity and lead to phase

variable expression. We have shown that the NadR repressor is

the major contributor to the phase variable expression levels of the

promoter as it binds to two high affinity operators flanking the

Figure 6. Ligand-responsive regulation of NadA expression. (A) Induction of expression of NadA by addition of a small molecule ligand 4HPA.
Broth cultures of MC58 or D1843 were grown to OD600 of 0.24 without (lane 1) or with 1 mM or 5 mM (lane 2 and 3) 4HPA; or to OD600 of 0.24 and then
incubated with 0, 1 or 5 mM 4HPA (lanes 4–6) added for 1 h. Cells were harvested and 5 mg of total protein from each culture was subjected to SDS-
PAGE and Western Blot analysis with anti-NadA or anti-NMB2091 antibodies as negative control. (B) EMSA assays demonstrating dissociation of NadR
from OpI operator in the GPR probe in vitro following the addition of 4HPA (lanes 3–5) but not the broadly acting salicylic acid ligand (lanes 6–8).
doi:10.1371/journal.ppat.1000710.g006
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SSR. One operator overlaps the 210 region of the promoter and

the transcriptional start site and therefore binding of NadR is

consistent with its function as a repressor through sterically

hindering RNAP access to the promoter. The other high affinity

operator is on the distal upstream side of the phase variable repeat

in a cis-acting region that we call the GPR, which is functionally

active in repressing the promoter despite its distal location

(Figure 3). We have identified a single IHF binding site that is

located between these two high affinity operators and we show that

IHF binding to this promoter is necessary for efficient NadR-

mediated repression of PnadA. The IHF binding site comprises some

sequence upstream of the TAAA as well as part of the TAAA tract

itself. We found that if the TAAA tract is removed, the protein no

longer binds to the promoter (Figure 2) but that IHF binding is

unaffected by the number of TAAA repeats. However the number

of repeats changes the spacing of the DNA on the upstream and

downstream flanking regions of the tract and, therefore, may

influence the localisation, and possibly the orientation of proteins

that bind to the operators. The ability of IHF to bend DNA may

facilitate the looping of the DNA of the nadA promoter and bring

the GPR element proximal to the core promoter elements. A

looping mechanism would explain the function of such a distal

operator in repression of transcription, possibly through interac-

tions of dimers present on spatially proximal operators which lock

the promoter to RNAP similar to the mechanism described for the

lac operon [36,37]. However, in the completely derepressed form

there are still significant, albeit marginal differences in the

promoter strength of variants with different numbers of repeats.

The alpha-subunit of RNAP binds to the distal GPR regulatory

region and also immediately upstream of the core promoter

overlapping the TAAA tract which may function as UP-like

elements. We propose a model in which differential distancing

between the NadR operators and the contact points of RNAP

result in optimal or suboptimal configuration of the protein

complexes and, therefore, result in more or less efficient repression

mediated by NadR and/or more or less cis-enhancement of

RNAP activity on the basal promoter strength (Figure 7).

Interestingly, in the Pu promoter of Pseudomonas putida two distinct

UP elements, located close to the core promoter (279) and distally

upstream (2104), interact with RNAP a-subunits enhancing gene

expression [38]. This interaction is modulated by IHF that allows

the interchangeable positioning of the two a-subunits over the two

UP-elements [38,39]. This scenario resembles in part what we

observe with a-subunit interaction over the nadA promoter.

The gonococcal homologue of NadR is FarR, which has been

characterised in gonococcus as a repressor of the FarAB fatty acid

resistance efflux pump [22]. FarR binds two distal operators on the

farAB promoter (located similarly to OpI and OpII in the nadA

promoter) and represses transcription in an IHF dependent way. It

would appear from deletion analysis of the nadA promoter that all

regulatory elements necessary for control of nadA expression were

horizontally transferred together with the nadA gene, as the direct

repeat delineating the border of the transferred DNA is at 2193. The

intriguing question is: how did the nadA locus, which is present in only

a fraction of strains as a result of a horizontal transfer event, adopt such

a complex regulatory mechanism that pre-existed in Neisseria. The

nadR gene is well conserved in other Neisseria spp. such as N. mucosa, N.

cinerea, N. lactamica, N. subflavia and N. flavescens and, therefore, must

respond to signals in the ecological niches of all these species.

The NadR protein is a member of the MarR ligand-responsive

transcriptional regulators and the majority of MarR family

members are regulated by the non-covalent binding of low

molecular weight ligands. These signalling molecules regulate the

activity of the regulators. In this study, we have identified a

putative ligand, 4HPA, which is able to relieve the DNA binding

activity of NadR, thus derepressing or inducing NadA expression.

This molecule is a catabolite of aromatic amino acids and it is

secreted in human saliva [40] (and also urine), suggesting that the

inducer is present in the oropharynx and NadA may be induced in

the mucosal niche which is bathed in saliva.

The 4HPA molecule is a catabolite of the aromatic amino acids,

tyrosine and phenylalanine. Two groups of bacteria, the soil

inhabitants such as P. putida and the enteric bacteria such as E. coli

contain pathways for the breakdown of these amino acids to succinate

and pyruvate [41,42]. However, such a pathway is not present in the

meningococcal genome [43]. Nevertheless, nadR is present in an

operon-like organization with two downstream genes, one of which

shows significant homology to the HpaC small subunit of a

hydroxylase involved in the conversion of 4HPA to a less toxic form

(3,4-dihydroxyphenylacetic acid). It is unclear whether this operon

may be involved in the utilisation of the 4HPA inducer in some way in

the meningococcus, or whether it is the remnant of a partial catabolic

pathway that was acquired horizontally and the 4HPA molecule

simply acts as a signal inducing the expression of the adhesin, which is

necessary for colonization and invasion of the mucosa.

Phase variation functions as an adaptive strategy generating

spontaneous diverse sub-populations of the bacterium which may

be beneficial in adapting to different microenvironments within

the human host during the course of a natural infection. However,

in the case of nadA gene regulation, this type of mechanism is bi-

functional, in that the major mediation of phase variable

expression levels of NadA is through repression by NadR in the

absence of the correct inducer signal. Subpopulations expressing

low levels of NadA through promoter phase variations still have

the potential to respond to the correct niche signal, such as 4HPA,

and express high levels under certain environmental or niche-

specific conditions. Such variation will have an impact on the

interaction with the host tissues, as well as escaping immune

responses. Simple sequence repeats have been identified in distal

Figure 7. Model of regulation of NadA promoter. Two promoter
variants with 9 and 8 repeats representing low activity and high activity
promoter phase variants, respectively, highlighting the ability of NadR
to efficiently or less efficiently repress the promoters (top panels) and
NadR-independent effects on the derepressed promoter basal levels
possibly due to differential contacts with the a-subunit of RNAP
(bottom panels) due to different spatial organization of the NadR and
RNAP contact points resulting from the different number of repeats.
doi:10.1371/journal.ppat.1000710.g007
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promoter regions of known or potential virulence factors in other

pathogens including Helicobacter pylori [44], Campylobacter jejuni

[45,46], pathogenic Burkholderia [47], Haemophilus influenza

[32,48], Moraxella catarrhalis [49], Group B Streptococcus [34], and

pathogenic Mycoplasma [35], some of which have been shown to

control phase variable expression through unknown mechanisms.

This suggests that complex regulatory mechanisms such as what

we have elucidated for NadA involving stochastic variations and

environmentally-responsive transcription factors may be widely

used by pathogens. Elucidating these mechanisms is important for

our understanding of the intimate and complex relationship

between the host and disease-causing organisms.

Materials and Methods

Ethics statement
All animal experiments were performed in accordance to

European (directive 86/609) and Italian (D.Lgs 116/92) guide-

lines, regarding the protection of animals used for experimental

and other scientific purposes. Such experiments were carried out

under the supervision of Internal Animal Ethical Committee

(AEC), Novartis Vaccine and Diagnostics. Detailed information

about the policy and responsibilities can be found on the Novartis

web page: (http://www.corporatecitizenship.novartis.com/business-

conduct/responsible-rd/animal-welfare/our-policy.shtml). Studies

are carried out by individuals who are trained and qualified in

science and in the proper care, handling and use of animals and

experienced with the species being studied.

Bacterial strains and culture conditions
The N. meningitidis strains used in this study (Table 1) were

routinely cultured, stocked, or transformed as previously described

[50]. Liquid cultures were grown in GC broth (Difco) supple-

mented with Kellogg’s supplement I, 12.5 mM Fe(NO3)3 or

Mueller Hinton (MH) (Sigma, St. Louis, MO) containing 0.25%

glucose and, when required, erythromycin and/or chloramphen-

Table 1. Strains and plasmids used in this study.

Name Relevant characteristics Reference or source

Neisseria meningitidis

MC58 Clinical isolate, sequenced strain containing 9 TAAA tetranucleotide repeats in the nadA promoter [43]

5/99 Clinical isolate containing 8 TAAA tetranucleotide repeats in the nadA promoter Norwegian clinical isolate

BZ83 Clinical isolate containing 5 TAAA tetranucleotide repeats in the nadA promoter [3]

ISS838 Clinical isolate containing 6 TAAA tetranucleotide repeats in the nadA promoter [3]

961–5945 Clinical isolate containing 12 TAAA tetranucleotide repeats in the nadA promoter [3]

MC-D1843 NadR null mutant in MC58 strain, CmR This study

5/99-D1843 NadR null mutant in 5/99 strain, CmR This study

BZ83-D1843 NadR null mutant in BZ83 strain, CmR This study

ISS-D1843 NadR null mutant in ISS838 strain, CmR This study

961-D1843 NadR null mutant in 961–5945 strain, CmR This study

MC-P(1–5) Series of 5 derivatives of MC58, containing single copy transcriptional fusion of 59 deletions of the
nadA promoter fused to the gfp gene, EryR

This study

MC-PD Derivative of MC58, containing single copy transcriptional fusion of a mutant variant of the nadA
promoter, with the tetranucleotide repeats deleted, fused to the gfp gene, EryR

This study

MC-P2(x4–x13) Series of 10 derivatives of MC58, containing single copy transcriptional fusion of the nadA P2
promoter variants, containing from 4 to 13 tetranucleotide repeats, fused to the gfp gene, EryR

This study

D1843-PD, -P2(x8, X9) 3 Derivatives of MC-D1843, containing single copy transcriptional fusion of the nadA P2 promoter
with either 0, 8 or 9 tetra nucleotide repeats, fused to the gfp gene, EryR

This study

MC-Fko Fur null mutant of MC58 [60]

Fko-P2(x9) Derivative of MC-Fko containing single copy transcriptional fusion of the nadA P2 promoter with
9 repeats, fused to the gfp gene, EryR

This study

Plasmids

pGEMT Cloning vector, AmpR Promega

pD1843ko::Cm Construct for generating knockout of the NMB1843 gene, CmR This study

pGFP Construct for insertion of nadA promoter variants and mutants fused to gfp in single copy between
ORF nmb1074 and NMB1075 in the N. meningitidis chromosome, AmpR, EryR

[61]

pGX-1 Derivative pSC101 containing the gfp gene, CmR [62]

pGX-nad-gfp Derivative of pGX-1 with the nadA promoters cloned as a AatII/NheI fragment upstream of the gfp gene, CmR This study

plaw2 Expression vector for over-expression of a-subunit of RNAP under an IPTG-inducible promoter, AmpR [63]

plaw2D256 Expression vector for over-expression of N-terminus of the a-subunit of RNAP from amino acids 1–256,
under an IPTG-inducible promoter, AmpR

[64]

pHTT7f1-NHa Vector for expression of N-terminal Histagged a-subunit of RNAP protein under an IPTG-inducible promoter, AmpR [55]

pET15b Expression vector for N-terminal Histagged proteins, AmpR Invitrogen

pET15b-1843 pET15b derivative for expression of recombinant 1843 protein, AmpR This study

doi:10.1371/journal.ppat.1000710.t001
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icol were added to a final concentration of 5 mg/ml. E. coli DH5-a
[51] and BL21(DE3) [52] cultures were grown in Luria–Bertani

medium, and when required, ampicillin and/or chloramphenicol

were added at 100 and 20 mg/ml, respectively.

Construction of nadA promoter fusions
DNA manipulations were carried out routinely as described for

standard laboratory methods [53]. Plasmid pGFP, consisting of a

promoterless gfp gene and the ermAM erythromycin-resistance genes

flanked by upstream and downstream regions for allelic replace-

ment, was used to generate single copy promoter fusions by allelic

exchange in N. meningitidis strains (Table 1). A series of 59 deletion

variants of the nadA promoter were generated by PCR amplification

from the genome of MC58 using primers Nad-N1, Nad-N2, Nad-

N3, Nad-N4 and Nad-N5 as the forward primers and Nad-Sp as the

reverse primer (Table 2), generating P1, P2, P3, P4 and P5

promoter deletion fragments respectively, spanning from 2273,

2170, 2108, 249, and 29, respectively, to +79 with respect to the

transcriptional start site. Phase variant nadA promoters with different

repeat numbers were amplified by PCR with the Nad-N2/Nad-Sp

primer pair using genomic DNA as a template, derived from

different clinical isolates. All promoter fragments generated, were

then cloned as NsiI-SphI fragments into the pGFP plasmid and used

for transformation of strain MC58, generating the MC-P1, MC-P2,

MC-P3, MC-P4, and MC-P5 strains, respectively, for the 59

deletion variants, and MC-P2x4, MC-P2x5, MC-P2x6, MC-P2x7,

MC-P2x8, MC-P2x9, MC-P2x10, MC-P2x11, MC-P2x12, MC-

P2x13 strains, for the phase variants (Table 1 and Figure 3A). The

PD nadA promoter variant which lacks the TAAA tetranucleotide

repeat region was generated by PCR amplification of regions

upstream and downstream of the TAAA repeated tract using primer

pairs Nad-N2/n85-50R and n85-50F/Nad-Sp (Table 2). Subse-

quently, in a second round of PCR, the upstream and downstream

fragments were used in a self-priming PCR amplification for 5

cycles. The corresponding joined fragments were then amplified

using the external primers Nad-N2/Nad-Sp, and cloned into pGFP,

generating pGFP-PD. This plasmid was used for the transformation

of MC58 generating, MC-PD, containing a nadA promoter fusion in

which the TAAA repeated tract was substituted with an EcoRI site

(Table 1 and Figure 3). Transformants were analyzed by colony

PCR for verification of correct insertion of markers; nadA promoter

regions were amplified and sequenced to verify that phase variation

had not occurred during DNA manipulations.

Construction of knockouts
To knockout the nadR (NMB1843) gene in the Neisseria

background, the pD1843ko::Cm plasmid was constructed.

Upstream and downstream flanking regions of the NMB1843

Table 2. Oligonucleotides used in this study.

Name Sequence Site

Nad-N1 attcagatgcatGACGTCGACGTCCTCGATTACGAAGGC NsiI

Nad-N2 attcagatgcatTAAGACACGACACCGGCAGAATTG NsiI

Nad-N3 attcagatgcatCCGAACTACCTAACTGCAAG NsiI

Nad-N4 attcagatgcatTTGCGACAATGTATTGTATATATG NsiI

Nad-N5 attcagatgcatCTTTAATATGTAAACAAACTTGGTGG NsiI

Nad-Sp attcagcatgctacGCTCATTACCTTTGTGAGTGG SphI

Nad-B1 attcaggatcctacGCTCATTACCTTTGTGAGTGG BamHI

n-85/50F CTACCTAACTGCAAGAATTcTTGCGACAATGTATTG EcoRI

n-85/50R CAATACATTGTCGCAAgAATTCTTGCAGTTAGGTAG EcoRI

Bio-nad-N2 attcagatgcatTAAGACACGACACCGGCAGAATTG NsiI

nad-Aa2 attcaggacgtcTAAGACACGACACCGGCAGAATTG AatII

nad-Nh attcagctagcCATGCTCATTACCTTTGTGAGTGG NheI

1843-1 TACGTTCCGGCAGTTCGGCGG

1843-2b cgcatcctcgggatccGGGTAGGCATTGTTTAAGTCTCC BamHI

1843-3b caaatgcctacccggatccCGAGGATGCGTTGAACTCGTAATACGCCG BamHI

1843-4 ACCGCTCTTCGGGCGACAGGCCGG

1843-F attcacatATGCCTACCCAATCAAAACATGCG NdeI

1843-R attcaggatcCGGCGTATTACGAGTTCAACGCATCCTCG BamHI

IHF-Lex ctagaACTGCAAGAATTAAATAAATAAATAAATAAATAAATTGCGAC XbaI

IHF-Rex2 ctagaGTCGCAATTTATTTATTTATTTATTTATTTAATTCTTGCAGT XbaI

Gpe-3 GAATTGGGACAACTCCAGTG

1870-pe GAATCAGGGCAGTGGTCAGAG

Adk-PE CGCGCCTAAAAGTAATGC

gpr-R gattagcatgcCGGCATTAATATCTGTTAATATGTGC SphI

SR-F TCGGAAGCCGTCCGTTCCGAACC

SR-R attatggatccATAAACGCCAAACCCACCGCGAAGGTGG BamHI

Capital letters indicate N. meningitidis derived sequences, small letters indicate sequences added for cloning purposes, and underlined letters indicate restriction
enzyme recognition sites.
doi:10.1371/journal.ppat.1000710.t002
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(nadR) gene were amplified by PCR with the 1843-1/1843-2b and

1843-3b/1843-4 primers, respectively. Then in a second round

of PCR amplification the respective upstream and downstream

fragments were used in a self-priming PCR amplification

for 5 cycles, and then the corresponding united fragment

was amplified using the external 1843-1/1843-4 primers. This

product was cloned into the pGEM-T (Promega) vector and a

chloramphenicol cassette from pDT2548 [54] was inserted into

the unique BamHI site, between the flanking regions, generating

pD1843ko::Cm. The plasmid was linearised and used for

transformation of the meningococcal strains to make the

respective D1843 knockout mutants (Table 1).

Expression and purification of the E. coli RNAP a-subunit
and N. meningitidis NadR protein

The nadR (NMB1843) gene was amplified from the MC58

genome with the 1843-F/1843-R primer pair and cloned as a

448 bp NdeI-BamHI fragment into the pET15b expression plasmid

(Invitrogen), generating pET15–1843. For expression and purifi-

cation of NadR and the a-subunit of RNAP, the pET15–1843 and

pHTT7f1-NHa [55] plasmids were transformed into E. coli strain

BL21(DE3), respectively, and the resulting strains were grown in

200 ml of Luria-Bertani medium to an OD600 of 0.5. Expression

of the respective recombinant proteins containing N-terminal

histidine tags was induced for 3 h by adding 1 mM isopropyl-D-

thiogalactopyranoside (IPTG). The proteins were purified from

the harvested cells by Ni-nitrilotriacetic acid (QIAGEN) affinity

chromatography under nondenaturing conditions according to the

manufacturer’s instructions. The purified protein preparations

were diluted to 1 mg/ml and dialyzed overnight against Binding

Buffer (20 mM Tris-HCl pH 8, 50 mM KCL, 10 mM MgCl2,

0.01% NP40) containing 10% glycerol and then again overnight

against Binding buffer containing 50% glycerol. The purity of the

proteins was estimated to be .98% by SDS-PAGE. The

concentration of the proteins in these preparations was determined

by using the Bradford colorimetric assay (Bio-Rad), and aliquots of

the proteins were stored at 280uC. To generate anti-NadR

antibodies, 6-week-old female CD1 mice (Charles River Labora-

tories) were immunized with 20 mg of NadR protein given

intraperitoneally, together with complete Freund’s adjuvant in

three doses (day 1, 21 and 35). Bleed-out samples were taken on

day 49 and used for Western blot analysis.

Western blot analysis
N. meningitidis colonies from overnight plate cultures were either

resuspended in PBS until OD600 of 1 (Figure 5), or grown to

logarithmic growth phase (OD600 of 0.24, ca. 1 h incubation) from

a starter inoculum of OD600 of 0.05 (Figure 6). Sample volumes of

1–2 ml were harvested and normalised to a relative OD600 of 5 in

1 X SDS-PAGE loading buffer (50 mM Tris Cl pH 6.8, 2.5%

SDS, 0.1% Bromophenol Blue, 10% glycerol, 5% beta-mercapto-

Ethanol, 50 mM DTT). For Western blot analysis, 10 mg of each

total protein sample in 1 X SDS-PAGE loading buffer was

separated by SDS-PAGE, and transferred onto nitrocellulose

membrane using an iBlot Dry Blotting System (Invitrogen). Filters

were blocked overnight at 4uC by agitation in blocking solution

(10% skimmed milk, 0.05% Tween-20, in PBS) and incubated

with primary antibodies (anti-NadA, anti-NMB2091, or anti-

NadR polyclonal sera) for 90 mins at 37uC. After washing, the

membranes were incubated in peroxidase-conjugated anti-rabbit

or anti-mouse immunoglobulin (Biorad) in blocking solution for

1 h at room temperature (RT) and the resulting signal was

detected using the Supersignal West Pico chemiluminescent

substrate (Pierce).

Overexpression of RNAP a-subunit and nadA-gfp
transcriptional fusion in E. coli

Plasmids pXG-nad for expression of NadA-GFP translational

fusions were constructed from pXG-1 plasmid by substituting the

181 bp AatII/NheI fragment containing the PLtetO-1 promoter

with nadA promoter variants amplified with nad-Aa2/nadNh

primer pairs. E. coli strain DH5-a was co-transformed with pXG-

nad and either with pLAW2 (overexpressing a-subunit) or

pLAW2D256 (overexpressing the N-terminus of a-subunit)

(Table 1). After liquid growth to an OD600 of 0.5 in presence of

1 mM IPTG for induction of a expression, GFP fluorescence was

measured in 48 well plates using TECAN Infinite 200 with

excitation wavelength of 460 nm and an emission of 510 nm.

Experiments were performed in triplicate.

Crude extract preparation, DNA affinity purification of
GPR-binding protein and electrophoretic mobility shift
assay (EMSA)

N. meningitidis strains were grown to mid-log growth phase in

100 ml of GC broth. Cells were harvested by centrifugation and

resuspended in 10 ml of PBS, sonicated using UP50H Ultrasonic

Processor (Hielscher) at maximum power (20 impulse of 0.8 sec

each) for 5 times at 4uC with the cell debris being removed by

centrifugation at 8,0006g for 15 min. The cleared crude extract

was filtered using a 0.2 mm membrane with the filtrate stored at

4uC. Protein concentration was determined using the Bradford

colorimetric assay. For purification of GPR-binding protein from

MC58 crude extract, a probe corresponding to the GPR element

spanning from 2170 to 2106 with respect to the MC58 nadA

promoter was amplified using a 59 biotinylated primer Bio-nadN2

(Invitrogen) and a non-biotinylated gpr-R reverse primer. Twenty-

five pmoles of the fragment were incubated with 1.3 ml of crude

extract (0.6 mg/ml) in the presence of 100 mg of salmon sperm

DNA and 500 mg bovine serum albumin (BSA) to block non-

specific interactions for 20 min at RT with gentle rotation. The

mixture was then added to 2.5 mg of Dynabeads M-280

streptavidin (Invitrogen), previously washed 4 times with 250 ml

PBS, and incubated for 20 min at RT with gentle rotation. The

tube was then placed on a magnet for 2 min for magnetic

separation of the beads and after 3 washes with 250 ml PBS,

proteins bound to the biotinylated GPR were eluted in 400 ml of

1 M NaCl. The sample was then dialyzed overnight against H2O.

All fractions were analysed for binding activity using an EMSA

assay. The eluted fraction was further analyzed by MALDI TOF

mass spectrometry. For gel shift experiments, a probe correspond-

ing to the GPR element was amplified using the Nad-N2/gpr-R

primer pair; probes corresponding to P5 and P2 promoter

fragments were amplified as described in ‘‘Construction of
nadA promoter fusion’’ section; a probe corresponding to 6

TAAA repeats was obtained by annealed primers IHF-Lex and

IHF-Rex2; and a probe corresponding to an unrelated intergenic

region Pcon (157 bp between NMB2073 and NMB2074 converg-

ing ORFs) was amplified using SR-F and SR-R. Two pmoles of

each fragment were radioactively labeled at their 59 ends with

30 mCi of (c-32P)-ATP (6000 Ci/mmol; NEN) using 10 U of T4

polynucleotide kinase (New England Biolabs). The unincorporated

radioactive nucleotides were removed using the TE-10 chromas-

pin columns (Clontech). For each binding reaction, 40 fmoles of

labeled probe was incubated with increasing amounts of crude

extract or recombinant purified NadR protein in 25 ml final

volume of Gelshift Binding Buffer (25 mM Tris-HCl pH 7.5,

1 mM MgCl2, 10% glycerol) with 2 mg salmon sperm DNA as

non-specific competitor, for 15 min at RT, and run on 6% native
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polyacrylamide gels buffered with 0.5 X TBE at 100 V for 80 min

at 4uC. Gels were dried and exposed to autoradiographic films at

280uC and radioactivity was quantified using a phosphorimager

and the Image Quant software (Molecular Dynamics).

RNA preparation and primer extension analysis
N. meningitidis or E. coli strains were grown in liquid culture to

logarithmic or stationary growth phase in 20 ml sample cultures.

The cells were chilled by adding them to an equal volume of

frozen growth medium and were pelleted by centrifugation at

2,0006g in a benchtop centrifuge at 4uC. RNA was extracted

from the pelleted cells as previously described [56]. Primer

extension was performed as previously reported [50] using 20 mg

of total RNA and the Gpe3 primer. Quantification of the signals

from the primer elongated product was performed using a

Phosphoimager and ImageQuant software. For quantitative

experiments, assays were performed from at least two independent

biological replicates. Internal negative controls were performed on

each RNA set quantifying the specific transcript of a gene whose

expression is not altered, usually adk or NMB1870.

DNase I footprinting
The nadA promoter region was amplified from genomic DNA

from different clinical isolates with the appropriate number of

repeats as major clone and from pGFP-PD plasmid for no repeat,

using primers Nad-N1 and Nad-B1 and cloned as 320, 342, 346

and 354 bp (for no repeat, 6, 7, and 9 repeats respectively) NsiI-

BamHI fragments into pGEMT (Promega). A radioactive probe

for DNA footprinting of nadA promoters were prepared as follows:

approximately 2 pmol of the different plasmids were linearized

with BamHI, dephosphorylated, 59 end labeled using 5 pmol of

[c-32P]-ATP with T4 polynucleotide kinase and digested with NsiI.

nadA promoter fragments labeled at one extremity were purified by

preparative polyacrylamide gel electrophoresis (PAGE) as previ-

ously described [50], Protein-DNA complexes were formed in

50 ml of footprinting buffer (20 mM Tris-HCl, pH 7.9, 50 mM

KCl, 10 mM MgCl2, 0.01% NP-40, 10% glycerol) containing

approximately 20–40 fmol (10,000 c.p.m) of the labeled probe and

200 ng of sonicated salmon sperm DNA as the non-specific

competitor and recombinant NadR protein, N. gonorrhoeae purified

IHF protein [57], E. coli RNAP holoenzyme (USB) or a-subunit in

final concentrations as indicated were incubated for 15 min at RT.

Following the initial incubation, the samples were treated for

1 min at RT with 0.03 U of DNase I (Roche) and 5 mM CaCl2.

The reactions were stopped and samples were purified and loaded

on urea-6% polyacrylamide gels as previously described [58]. As a

molecular weight marker, a G+A sequence reaction [59] was

performed for each DNA probe and run in parallel to the

corresponding footprinting reactions.

MALDI TOF mass spectrometry
Proteins eluted from Dynabeads M-280 streptavidin column

and dialyzed against H2O were dried with a Speed Vac.

(Labconco) and solubilized with 20 ml of 5 mM ammonium

bicarbonate containing 0.1% (wt/vol) of RapiGest SF surfactant

(Waters), incubated 5 min at 95uC and digested with 2 mg of

trypsin (Sequencing grade Promega). The reaction was allowed to

proceed for 15 h at 37uC. An aliquot of the reaction was diluted

10 times with 0,1% (vol/vol) of trifluoroacetic acid, and 0.7 ml was

directly spotted on a matrix PAC target (Prespotted AnchorChip

96, set for Proteomics, Bruker Daltonics). Air-dried spot was

washed with 0.6 ml of a solution of 70% (vol/vol) ethanol, 0.1%

(vol/vol) TFA. Peptide mass fingerprint spectra were recorded

with a MALDI-TOF/TOF mass spectrometer UltraFlex (Bruker

Daltonics). Ions generated by laser desorption at 337 nm (N2 laser)

were recorded at an acceleration of 25 kV in the reflector mode.

In general, about 200 single spectra were accumulated for

improving the signal/noise ratio and analyzed by FlexAnalysis

(version 2.4, Bruker Daltonics). External calibration was per-

formed using standard peptides pre-spotted on the target. The

data of MS were further analyzed through an in-house licensed

MASCOT, version 2.2.1 (Matrixscience Ltd), running on a local

server containing the protein sequence data downloaded from

NCBI. The following parameters were used for database searches:

monoisotopic mass accuracy, 75 pm, missed cleavages, 1,

oxidation of methionine as variable modifications.
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