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Large sets of whole cancer genomes make it possible to study mutation hotspots genome-wide. Here we detect, categorize, and
characterize site-specific hotspots using 2279 whole cancer genomes from the Pan-Cancer Analysis of Whole Genomes project and
provide a resource of annotated hotspots genome-wide. We investigate the excess of hotspots in both protein-coding and gene
regulatory regions and develop measures of positive selection and functional impact for individual hotspots. Using cancer allele
fractions, expression aberrations, mutational signatures, and a variety of genomic features, such as potential gain or loss of
transcription factor binding sites, we annotate and prioritize all highly mutated hotspots. Genome-wide we find more high-
frequency SNV and indel hotspots than expected given mutational background models. Protein-coding regions are generally
enriched for SNV hotspots compared to other regions. Gene regulatory hotspots show enrichment of potential same-patient
second-hit missense mutations, consistent with enrichment of hotspot driver mutations compared to singletons. For protein-coding
regions, splice-sites, promoters, and enhancers, we see an excess of hotspots associated with cancer genes. Interestingly, missense
hotspot mutations in tumor suppressors are associated with elevated expression, suggesting localized amino-acid changes with
functional impact. For individual non-coding hotspots, only a small number show clear signs of positive selection, including known
sites in the TERT promoter and the 5 UTR of TP53. Most of the new candidates have few mutations and limited driver evidence.
However, a hotspot in an enhancer of the oncogene POU2AF1, which may create a transcription factor binding site, presents

multiple lines of driver-consistent evidence.
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INTRODUCTION
Mutations accumulate in human genomes throughout life. The
majority are functionally neutral “passenger” mutations without
effect on cell viability. Instead, accumulation of the few “driver”
mutations that positively affect cell viability can cause cancer, as they
enhance cells’ ability to proliferate, escape apoptosis, and eventually
metastasize' . Driver mutations increase the relative fitness of
cancer cells and increase in abundance through positive selection. In
the past, driver discovery has focused on the identification of driver
genes using whole-exome sequencing data. Whole-genome sequen-
cing has enabled exploration of the 98% of the human genome that
is non-coding. Surprisingly, this has only led to the discovery of a few
well-confirmed non-coding cancer elements. The best-known
example is the promoter of the oncogene TERT, which is involved
in the elongation of the DNA telomere ends during replication®”.
Mutations that activate oncogenes, and hereby give the cell
growth advantages, are typically very specific and often recur in
the same positions across patients, as they often modify active
sites through a specific amino-acid change, as seen in KRAS and
BRAF oncogenes®®. Here, we call such individual recurrently
mutated genomic positions for hotspots. In contrast, hotspots in
tumor suppressors, which protect cells from abnormal growth, are
not expected to the same degree, as the disruption of function
can be obtained in many ways, such as gain-of-stop mutations,
frameshift insertions/deletions (indels), and structural rearrange-
ments®. The TERT promoter has two hotspots that both introduce
a binding site for the ETS transcription factor when mutated and
hereby increase transcription and cause overexpression of TERT'%™'2,
Creation or modification of specific binding sites would often

require specific changes of the DNA, potentially leading to
hotspots if recurring across patients. Recently a non-coding
hotspot of indels in the 5’ untranslated region (UTR) of TP53,
which may affect splicing, has also been reported'>.

The aim of this study is to detect, categorize, and characterize
somatic site-specific single nucleotide variant (SNV) and indel
hotspots genome-wide. The TERT promoter hotspots prove that
non-coding drivers exist, we, therefore, set out to systematically
evaluate the driver potential of hotspots outside protein-coding
genes. We develop measures to evaluate signs of positive
selection for individual hotspots applicable genome-wide. We
catalog and analyze the driver potential of hotspots in a pan-
cancer set of 2279 whole cancer genomes from the Pan-Cancer
Analysis of Whole Genomes (PCAWG) project under the Interna-
tional Cancer Genome Consortium'. To our knowledge, the few
previous genome-wide studies of hotspots have either been
based on smaller patient cohorts'>™"” or focused on mutational
mechanisms'®, whereas we focus on hotspot driver potential.

To assess the cancer driver potential of hotspots, measures such
as gene expression and difference in cancer allele fractions (CAFs)
between hotspots and other mutations can be used. Gene
regulatory driver mutations are expected to affect expression.
However, this effect may have been transient or dependent on
other factors and may not be observable in the available tumor
samples from patients, even if they have played a role during
cancer progression. Driver mutations are expected to have high
CAFs compared to passenger mutations, as key driver mutations
are expected primarily early in tumor evolution', whereas
passengers are expected throughout cancer evolution and thus
will more often be subclonal'2.
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In addition to recurrent positive selection, the heterogeneity of
the mutational processes in cancer may also cause hotspots.
Mutational processes often prefer a specific context leading to
highly localized accumulation of mutations and potentially
hotspots'®2'. Individual processes have distinct mutational
patterns, typically represented by mutational signatures®®-22,
Both external factors, such as exposure to carcinogens, like
smoke?® or UV radiation®*?°, and internal factors like defects in
repair genes or pathways, such as the BRCA genes*®*?’, can lead
to a distinct mutational pattern. Mutational signatures are usually
described using the nucleotide exchange and its +/—1 base pair
(bp) context, but examples of longer sequence preferences exist,
including a six-bp-long context for a UV mutational mechanism?®,
Many other complex sequence-dependencies and context-
dependencies undoubtedly exist, uncaptured by current muta-
tional signatures, which may contribute to the formation of
hotspots.

Technical artifacts may result in false mutation calls, potentially
recurrent across patients. In particular, sequencing errors are
known to accumulate in certain sequence contexts?’. Similarly,
mapping errors will often be recurrent, as caused by the structure
of the genome and potentially shared segregating polymorphism,
including structural variants®°.

Here we identify a total of 722,924 somatic site-specific
hotspots. We group hotspots according to their genomic regions
and relation to cancer genes. In our analysis of hotspot driver
potential, we evaluate the excess of cancer genes among hotspots
combined with an analysis of CAFs, expression, and for SNV
hotspots, signature contributions. Overall, we find more hotspots
than expected given models of the mutational background, and
the protein-coding regions have a general enrichment of SNV
hotspots compared to all other regions. Furthermore, we find an
excess of hotspots associated with cancer genes compared to
other genes in various regions, including enhancers, where an SNV
hotspot in an enhancer for the oncogene POU2AFT comes up with
signs of positive selection in multiple of our analyses. For a few
regions, we see expression aberrations of hotspots compared to
wild-type, and, interestingly, we observe a rise in the expression
level among missense mutations in tumor suppressors.

RESULTS
Hotspots are present across the genome

We analyzed the set of 2279 whole cancer genomes from PCAWG.
Sample collection, variant calling, and curation were done by the
consortium'®. In total, the dataset encompasses 30,171,668 SNVs,
1,477,513 deletions and 728,918 insertions. In the following, we
first identified somatic site-specific SNV-, deletion-, and insertion
hotspots as genomic positions or regions that were recurrently
mutated across patients. The hotspots were then grouped and
analyzed based on functional region and recurrence among
patients. We thereafter characterized hotspots by the comprising
mutations’ association with potential gain or loss of transcription
factor binding sites (TFBSs), high CAFs, gene expression, and, for
SNVs, contributions of specific mutational signatures. We also
characterized hotspots based on their location in different
genomic regions, such as homopolymer runs, repeat regions, or
duplicated genomic regions. We finally evaluated the evidence
that recurrent positive selection has caused hotspots, both by
evaluating enrichments among cancer genes and on a case-by-
case basis (see “Methods” section).

We identified somatic hotspots genome-wide for all three
mutation types. The genomic extent and practical definition of
hotspots depend on the type of mutation: SNV hotspots always
span a single genomic position; insertion hotspots always fall
between two consecutive genomic positions; whereas deletion
hotspots may have varying extent defined as the overall span of
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the individual included deletions (Fig. 1a). In addition to the
quality assessment of the underlying mutation calls by the PCAWG
consortium, we further included a conservative quality filter for
the high-frequency SNV hotspots (see “Methods” section).

Overall, we identified 722,924 hotspots; 566,760 of which
were SNV hotspots, 46,748 were insertion hotspots, and 109,416
were deletion hotspots. The majority (98.10%) of hotspots were
located in the intronic and intergenic regions, 0.61% in protein-
coding regions (3989 SNV hotspots, 101 insertion hotspots, and
346 deletion hotspots), and 1.29% in gene regulatory regions
(6558 SNV hotspots, 629 insertion hotspots, and 2113 deletion
hotspots).

Highly mutated hotspots are unexpected

The expected number of hotspots with a given number of
mutations can be evaluated using statistical models of the
distribution of mutations across the genome and patients. For
SNVs, we use two different models. The first model simply
assumes the same average mutation probability for each patient
and genomic position (binomial model; see “Methods” section).
The second model uses a rich set of genomic features to predict
the mutation probability at each genomic position of every
included sample3'2. It captures known sources of variation in the
mutation rate, including patient-specific mutational signatures by
considering the trinucleotide context of each mutation, genomic
region, gene expression, phyloP positional conservation scores,
and replication timing (position-specific and sample-specific
model; see “Methods” section). The positional conservation scores
capture the effects of both selection and site-specific mutation
rate through species evolution. None of the models predicted any
SNV hotspots with more than four mutations across patients
with a false discovery rate (see “Methods” section) below 0.001%
(g <0.00001; Fig. 1b; Supplementary Table 1). This contrasts our
observation of 2162 SNV hotspots with at least five mutations and
a general excess of hotspots.

For insertion and deletion hotspots, we similarly evaluate the
genome-wide expectancies using binomial models. We predict no
insertion hotspots involving more than two patients, and no
deletion hotspots with more than three patients with a false
discovery rate below 0.001% (g < 0.00001; Fig. 1c, d).

For the final analysis, we focus on hotspots that are unexpected.
For SNVs we use the position-specific and sample-specific model,
and for insertions and deletions, we simply assume uniformity
using the binomial model. In both cases, we only include hotspots
with a false discovery rate of less than 10%. This led to the
inclusion of SNV hotspots with four or more mutations
(Supplementary Data 1; SNV hotspots with 2-3 mutations can
be found in Supplementary Data 2), and insertion and deletion
hotspots with two or more mutations (Supplementary Data 3). For
the remaining analysis, we group insertion and deletion hotspots
together as indel hotspots.

Hotspots are unevenly distributed in different functional
regions of the genome

We divided the hotspots based on their overlap with functional
regions (protein-coding, splice-sites, 5' and 3’ UTRs, promoters,
enhancers, and intronic/intergenic regions). We then assessed the
distribution of the hotspots across these regions and evaluated
their enrichment relative to the intronic/intergenic region, which
spans the majority of the genome (96.39%; Fig. 1e).

Of the 7042 highly mutated SNV hotspots (n > 4), small fractions
overlap protein-coding (1.93%) and gene regulatory regions
(1.08%). Only protein-coding regions were slightly enriched for
hotspots (1.53x; g=1.82x10""), while the gene regulatory
regions had varying degrees of hotspot depletion (0.29-0.87x;
Fig. 1e). When restricting to hotspots recurrently mutated in at
least five patients (n=2162), we observe further enrichment
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Fig. 1

Overview of detected site-specific hotspots. a. Schematic definition of SNV-, insertion-, and deletion hotspots. b-d Bar-charts showing

the number of hotspots with a specific number of mutations for SNVs (b), insertions (c), and deletions (d) with expectations under null
hypotheses; exact g-values are reported when null models predict at least one hotspot; remaining g-values are reported in Supplementary
Table 1. e. Heatmap of hotspot enrichment/depletion across various genomic regions; bars show the genomic extent of each region; for the
protein-coding and gene regulatory regions g =1 when not stated explicitly.

among protein-coding regions (3.25x; ¢ =6.15x 10"'9), and non-

significant enrichments among promoters (1.75x; g =0.287),
5" UTRs (1.51x; g =0.667), and splice-sites (1.27x; g =1; Supple-
mentary Fig. 1). To evaluate whether background mutational
processes could have created these patterns, we also checked the
regional distribution and relative enrichments of singleton muta-
tions. These were generally depleted in both protein-coding and
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gene regulatory regions (range: 0.64-0.77x). We, therefore,
conclude that the relative enrichment of hotspots in some regions
is unlikely to be explained solely by the mutational processes that
govern the distribution of singleton mutations. Our set of highly
mutated SNV hotspots include 80 known driver positions. We use
the patterns and range of values in these hotspots as an indication
of selection.
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We saw large depletions of indel hotspots (n>2) across all
our functional regions (0.23-0.84x) except splice-sites (1.63x;
g=1.02x107%% Supplementary Fig. 1). This hotspot depletion
in functional regions was partly explained by an enrichment of
intronic and intergenic hotspots in homopolymer runs, likely
caused by polymerase slippage during replication of repetitive
regions®3, both as part of the naturally occurring mutational
process and during sequencing. A recent study investigated the
mutational landscape of microsatellites, including homopolymer
runs, using the PCAWG dataset®®. They found an elevated
mutation rate for long repetitive regions (>9 bp) and found that
the majority of mutated microsatellites were homopolymer runs
of A/T nucleotides. We found that 18% of indel singletons and as
much as 75% of indel hotspots are located in homopolymer runs,
and together with the findings of Fujimoto et al.3, this highlights
the need for filtering indel hotspots (see “Methods” section). In
subsequent indel analysis, we eliminated homopolymer runs and
overlapping indels as they dominate and dilute signals, reducing
the total number of indel hotspots to 39,614.

After removal of indel hotspots at homopolymer runs, indel
hotspots were still depleted across all regions (0.45-0.73x) except
splice-sites (1.56x; g = 3.45 x 10~>; Fig. 1e). This pattern mimics the
relative depletion of indel singletons, which similarly show
enrichment in splice-sites (1.36x; g = 1.88 x 10~%%) and depletion
in all other regions (0.71-0.93x). This suggests that the majority of
regulatory indel hotspots may be explained by the background
mutational processes, though the enrichment in splice-sites is
likely driven by selection®.

We evaluated whether patients with mutations in gene
regulatory hotspots had missense mutations affecting the same
gene. We expect to see such missense mutations in tumor
suppressors, where double hits are required to cause inactivation,
as well as in oncogenes, where amino acid altering mutations can
lead to activation. Therefore such missense mutations may
indicate a functional impact of the hotspot. Of the 735 gene
regulatory hotspots (76 SNV hotspots, n = 4; 659 indel hotspots,
n = 2), 89 hotspots had additional missense mutations in at least
one of the involved patients. Seven of these hotspots had
missense mutations in multiple patients. However, three of the
hotspots are caused by POLE deficient hyper-mutators and
another hotspot is affected by a focal amplification; the remaining
three lack clear causes (Supplementary Note). Interestingly, the
gene regulatory hotspots are enriched (81x) for these missense
mutations compared to the fraction of gene regulatory singletons
with potential same-patient second-hit missense mutations (702
out of 483,195; p<22x 107 ')

Known cancer genes harbor high-frequency hotspots

The most frequently mutated SNV hotspot had 165 mutations
across the 2179 patients (7.6%; Fig. 1b). Another ten hotspots had
mutations in 20 or more patients, and all of these frequently
mutated hotspots are known cancer driver mutations. A single of
these, a hotspot with 81 mutations, is located in one of the known
TERT promoter hotspot positions, while the others are in protein-
coding regions. Six of these hotspots were in the tumor
suppressor TP53, which is highly mutated across cancer types
(Fig. 2a)*°. The remaining three high-frequency hotspots were in
oncogenes.

Compared to the SNVs, protein-coding indel hotspots did not
reach the same extreme frequencies. The hotspot with the highest
frequency was located in the intronic/intergenic region and had
27 deletions (Fig. 1¢; d). The protein-coding indel hotspot with the
highest frequency was in TP53 and consisted of 12 deletions (Fig.
2b). Not surprisingly, TP53 was the most frequently mutated
cancer gene overall. We observed 103 SNV and 26 indel hotspots
across its coding region, making it the gene with far the most
hotspots as well. Furthermore, regulatory regions for TP53 were
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also heavily affected by hotspot mutations, as we saw 12 SNV
splice-site hotspots, a single indel splice-site hotspot, and a single
indel 5" UTR hotspot'>.

We systematically went through all hotspots of high frequency
(>10 mutations; n = 72), with all but six being SNV hotspots. Of the
31 hotspots associated with cancer genes, most are in the protein-
coding (n=26) or gene regulatory regions (n=3; described
above), with two found in more distal intergenic regions
associated with BCL11A and KIAA1598 (Fig. 2a; b; Supplementary
Figs. 2; 3). None of the 41 hotspots associated with non-cancer
genes are in the protein-coding region and only a few are in gene
regulatory regions (n=4). Both the remaining two hotspots
associated with cancer genes and the hotspots associated with
non-cancer genes either had no clear explanation, were caused by
specific mutational mechanisms, or were likely artifactual (Sup-
plementary Note).

Limited hotspot enrichment in regulatory regions of known
cancer genes

We sought to evaluate whether the positive selection and the
presence of driver mutations could explain some of the uneven
hotspot distribution among functional regions. Protein-coding
driver mutations are enriched among already known cancer
genes, as expected”’. If non-coding driver mutations in regulatory
regions are present, we similarly expect they would affect cancer
genes more often than other genes, as exemplified by the
presence of non-coding driver hotspots in the TERT promoter. As
an initial proxy for the presence of drivers, we, therefore,
evaluated whether a surprising fraction of hotspots are associated
with known cancer genes for individual functional regions.

We first evaluated the enrichment of hotspots affecting protein-
coding or gene regulatory regions of cancer genes under the
assumption that a random mutation is equally likely to hit a
base in a cancer gene as in any other gene. For our list of cancer
genes, we use a set of 699 curated Cancer Gene Census genes
maintained by COSMIC?2, The 7042 highly mutated SNV hotspots
were enriched in the protein-coding regions of cancer genes
(24.5%; g =1.40 x 10~ "8) and in their promoters (4.5x; g = 0.056),
splice-sites (18.6x; g =5.28 x 10~%), and enhancers (5.0x; g = 0.10;
Fig. 2c). Indel hotspots were strongly enriched in the protein-
coding region of cancer genes (10.5x; q:2.76><10’69; Fig. 2¢),
with limited non-significant levels of enrichment in regulatory
regions (1.1-2.2x). To ensure that size and mutation rate
differences among genes did not explain this, we also evaluated
the relative enrichment of hotspots to singleton mutations in
cancer genes (see “Methods” section). As drivers may also elevate
the fraction of cancer genes among singletons, thereby lowering
the relative enrichment for hotspots, this measure is expected to
be more conservative. We saw an enrichment of SNV hotspots in
the same genomic regions, though not as pronounced, and for
some regions non-significant (13.7x; g =1.06 x 107""% 3.1x; g =
0.21; 104x; g =1.52x 10% 2.9x; g = 0.35; Supplementary Fig. 4).
The limited enrichment for indel hotspots in regulatory regions of
cancer genes was lost when we compared to singleton indels in
cancer genes (0.8-1.2x; Supplementary Fig. 4).

For protein-coding SNV hotspots with more than just a few
mutations, cancer genes dominate (Fig. 2a). All SNV hotspots
with six or more mutations (n = 59), were found in cancer genes.
Besides many hotspots in TP53 (n = 27), various oncogenes are
among these. As expected, the vast majority of protein-coding
indel hotspots in cancer genes affect tumor suppressors (83 of
97). Again with TP53 being the most frequently affected (26 of
83) (Fig. 2b).

Hotspots that may affect transcription factor binding sites

We investigated if SNVs or indels at hotspots could cause either
gain or loss of TFBSs. We focus this analysis on protein-coding and
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gene regulatory hotspots where we know that binding is possible
by selecting the hotspots that overlap ENCODE transcription factor
binding peaks (TFP; see “Methods” section). This includes 212 SNV
hotspots and 936 indel hotspots.
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For SNVs, 36 of the 212 highly mutated hotspots overlapped
TFPs. Of these, seven overlapped individual transcription factor
motifs and five of these were found to potentially cause gain or
loss (see “Methods” section). Only one of these is previously
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reported, namely one of the known TERT promoter hotspots,
where the mutations result in the formation of an ETS TFBS'®'%
The other four include: A hotspot in a POU2AF1 enhancer could
create a TFBS for three NF-E2-like transcription factors. This
hotspot is also identified in other types of analyses and is
discussed further below. A hotspot in the 3" UTR of PI15 is located
in a conserved element and potentially causes disruption of a
TFBS for CTCF-like factors. The other two hotspots are found in a
promoter of NRD1 and in the 5" UTR of Clorf159, and they are
likely caused by mutational mechanisms, as they have high
contributions of esophagus-related signatures and APOBEC
signatures, respectively. Furthermore, the Clorf159 hotspot is
located in an optimal APOBEC3A binding site, providing further
support for it being caused by a mutational mechanism.
Additional details on individual cases, as well as a description of
our signature analysis based on hotspot sets, can be found in the
Supplementary Note.

For indels, 125 of the 936 hotspots overlapped TFPs. Twelve of
these overlapped individual transcription factor motifs and two of
these could potentially cause TFBS gain or loss. One is an insertion
hotspot in the protein-coding region of VHL, which potentially
interrupts a binding motif for ZBTB6, a BTB-ZF-like transcription
factor. The other is a deletion hotspot in the protein-coding region
of RASAL2, which potentially creates a binding motif for the STAT6
transcription factor (Supplementary Note).

Some gene regulatory hotspots may be mutated early in
cancer development

Mutations that happen early in the cancer development will have
high CAF values as most clones would harbor the mutation®®. CAF is
a normalized measure of the variant allele fraction that estimates
the tumor read fraction carrying the variant (see “Methods” section).
For each mutation in each patient, we calculated the CAF and a
more robust measure called ACAF that evaluates the relative
change in CAF compared to CAF of surrounding mutations, which
accounts for high CAFs caused by copy number decrease of larger
regions. We use z-score normalization on all ACAF values. A high z-
score suggests that the mutation was an early event in the
development of cancer.

We tested if the median z-score was high compared to a null
distribution for known driver hotspots, as well as other protein-
coding hotspots in both cancer and other genes, and protein-
coding singletons in both cancer and other genes (overall median
z-score = 0.004; see “Methods” section). Known driver hotspots
generally seem to be early events in cancer development (median
z-score = 0.38; g=0.0). Other protein-coding hotspots in cancer
genes also seem to be early events, though not as early as the
known drivers (median z-score = 0.13; g = 0.0001). The remaining
regions did not show significant ACAF z-scores (Fig. 3). To
annotate individual hotspots as potentially early, we define a
threshold for high ACAF z-scores as the 90th percentile of the z-
score distribution for protein-coding hotspots in cancer genes
(threshold of 2.05). To select hotspots from small sets, we use the
above-median z-score (>0.13) as a cutoff.

Across the highly mutated SNV hotspots (n = 7042), two-fifths
had above-median z-scores (~40%), while only five had high z-
scores (0.07%). These hotspots were either in the protein-coding
region (2 of 5) or the intronic/intergenic region (3 of 5). Ten of the
highly mutated gene regulatory SNV hotspots (n=76) were
associated with cancer genes, whereof eight had above-median z-
scores (Fig. 4). These include five TP53 splice-site hotspots, three
promoter hotspots, including the two TERT promoter hotspots and
an FGFR2 promoter hotspot, and two enhancer hotspots in
enhancers for NBEA and POU2AF]T.

Across the indel hotspots, one-third (~36%) had above-median
z-scores, whereas only a small fraction had high z-scores (0.11%).
Among the gene regulatory indel hotspots (n =659), 34 were
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Fig.3 Boxplot of ACAF z-score distributions. One boxplot for each
group of SNV hotspots with four or more mutations and singletons
in the protein-coding region; the first boxplot is known driver
hotspots; the second is hotspots in cancer genes excluding driver
positions; the third is hotspots in other genes; the fourth is all
singletons in cancer genes excluding driver positions; the last is
all singletons in other genes; dots are 200 randomly sampled
hotspots/singletons for each boxplot; the centerline of each box is
the median of the distribution; the lower bound of the box is the
first quartile (Q1); the upper bound of the box is the third quartile
(Q3); the lower whisker shows the minimum value greater than
Q1 — 1.5x IQR; the upper whisker shows the maximum value smaller
than Q3 + 1.5x IQR. IQR: interquartile range (Q3-Q1); CAF: cancer
allele fraction; TSGs: tumor suppressor genes.

associated with cancer genes (Fig. 4). These include 15 hotspots
with above-median z-scores, hereof a single TP53 splice-site
hotspot with a high z-score, and among others, two hotspots in
the 5 UTRs of TP53 and NUP214, a hotspot in an enhancer for
EGFR, and a hotspot in the 3’ UTR for CTNNA2. We describe the few
gene regulatory SNV and indel hotspots associated with cancer
genes with an above-median z-score (marked with * in Fig. 4) later
or in the Supplementary Note.

Elevated expression levels among tumor suppressors with
missense mutations
Next, we evaluated whether hotspots associate with aberrant
expression levels compared to wild-types. Cancer gene hotspots
were further divided into oncogenes, tumor suppressors, and
unclassified genes, as our expectations are different for oncogenes
and tumor suppressors. For hotspots in protein-coding regions, we
stratified mutations further into missense and nonsense muta-
tions, and frameshift and in-frame indels, based on the variant
classification. We have gene expression data for a large subset of
patients (~45%) in our dataset. To enable comparison across
cancer types, we normalize the expression values per gene and
per cancer type, and represent them as z-scores (see “Methods”
section).

Due to nonsense-mediated decay, we expect decreased
expression levels for nonsense mutations and frameshift indels.
On the contrary, missense mutations and in-frame indels are not
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Fig. 4 Description of gene-regulatory hotspots related to cancer genes. Annotation of position, gene, number of mutations at a hotspot,
expression z-score, ACAF z-score and three (indels)/six (SNVs) genomic features; for SNVs the annotations further include the top-2 signatures;
includes all gene-regulatory indels with two or more mutations and SNVs with four or more mutations associated with cancer genes; positions
are given according to the hg19 reference genome. MMR: mismatch repair.

affected by this mechanism, so they do not necessarily affect the
MRNA level. We expect mainly missense mutations in oncogenes,
as specific amino acid changes are typically needed to activate
these genes®®. Even though the missense mutations in onco-
genes may not directly lead to increased expression levels, we
expect increased expression levels in oncogenes potentially
caused by epigenetics or the selection of regulatory mutations.
Across highly mutated protein-coding SNV hotspots, we
observed expression aberrations for hotspots with missense
mutations in oncogenes (shift=0.25; g=1.77x10"°) and hot-
spots with nonsense mutations in tumor suppressors (shift=
—0.51; g =3.59 x 10 when compared to wild-type expression in
the same genes, as expected. Interestingly, we also observed
expression aberrations for hotspots with missense mutations in
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tumor suppressors (shift =0.28; g=1.77x 105, Fig. 5; Supple-
mentary Table 2; “Methods” section). These expression aberrations
could potentially be caused by selection, by some tumor
suppressors being bivalent with oncogenic properties, or by
feedback mechanisms, where the aberrant protein function leads
to increased gene expression levels. If the latter is the case, we
would expect a similar rise in expression levels among patients
with singleton missense mutations. We do see a similar pattern for
the missense singletons both for tumor suppressors in general
and for the subset of tumor suppressors harboring hotspots
(shifts = 0.21; Fig. 5). Neither missense (shift=0.10; g = 0.300)
nor nonsense mutations in non-cancer genes (shift=—0.014;
g =0.626) were associated with significant aberrations. For the
protein-coding indel hotspots, only frameshift indels in tumor
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Fig. 5 Distribution of expression z-scores for patients with hotspot mutations. Expression distributions for SNV hotspots with four or more
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wild-type expression for genes included in hotspot sets are shown directly below each set; singleton expression is shown for subsets of genes
below each set; a subset of all TP53 hotspot mutations are shown below the tumor suppressors.

suppressors (shift = —0.36; g = 1.89 x 10~%) and non-cancer genes
(shift=—0.17; g=4.17x10"% had significant aberrations (Sup-
plementary Fig. 5).

Few individual hotspots show association with expression
aberrations

Individual hotspots may have extreme expression levels and be
associated with expression aberrations, even when the larger
group of hotspots show no overall effect on expression. Therefore,
we evaluate individual hotspots or smaller groups of hotspots
associated with the same gene. The individual hotspots with the
largest expression aberrations are already known to be associated
with cancer (Supplementary Fig. 6), including the two promoter
SNV driver hotspots in TERT*>, multiple splice-site SNV hotspots in
TP53%, and a 5' UTR indel hotspot in TP53'3.

Overall, the mutations in the TERT hotspots are associated with
a small rise in median expression compared to wild-type. These
hotspots are mutated across multiple cancer types, and it is well-
known that mutations at these positions alter gene expression in
thyroid cancer'?. When stratified by cancer type, we see large
expression aberrations in both thyroid cancer and two brain
cancers (oligodendroglioma and glioblastoma; Supplementary Fig.
6). Patients with deletions in the 5’ UTR indel hotspot in TP53 had
much lower expression than wild-types, and, in contrast, the
general expression level of tumor suppressors with 5" UTR indels
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was elevated (Supplementary Fig. 6). Besides these known
hotspots, we identified two other indel hotspots associated with
cancer genes with large expression aberrations. These are in an
enhancer of EGFR and in the 3’ UTR of CCNDT and are likely
artifacts (Fig. 4; Supplementary Fig. 6; Supplementary Note).

Candidate driver hotspot in POU2AF1 enhancer

In multiple of our individual analyses, the findings suggest that an
enhancer hotspot associated with the oncogene POU2AFT may be
under positive selection: the hotspot come up as a top result in
the TFBS analysis; it contributes to the enrichment of cancer genes
among enhancer hotspots; it has an above-median ACAF z-score;
and based on contributions of mutational signatures, we do not
believe that background processes caused these mutations. The
hotspot has four mutations across patients, three in liver
hepatocellular carcinoma and one in head and neck squamous
cell carcinoma. It is located in an intronic enhancer 44 kilobases
downstream of the transcription start site of POU2AF1 (Fig. 6a).
The three liver cancer patients had G > C mutations, whereas the
head and neck cancer patients had a G > A mutation. The G> A
mutation creates transcription factor binding motifs for the three
NF-E2-like transcription factors, BACH1, BACH2, and NFE2 (Fig. 6b).
Two of the ACAF z-scores were around the 65th percentile (0.59;
0.54) and the other two were around the 45th and 35th percentile,
respectively (0.05; —0.18). Among its top-3 signatures we find
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signatures 5 (40.0%), 1 (17.6%), and 39 (17.0%), none of which
indicates that this hotspot should be caused by background
mutational processes. We could not perform expression analysis
due to a lack of data. In conclusion, the potential gain of TFBS and
the few higher ACAF z-scores suggest that the POU2AFT enhancer
hotspot may be under positive selection, but further evidence is
needed to establish this. To validate this hotspot, we searched for
mutations in the COSMIC database (v. 92)*', where we found two
confirmed-somatic G > C mutations in liver cancer patients, where
the FATHMM-MKL Score predicted the mutation to be not
functionally significant.
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(made with the UCSC GenomeBrowser). Genomic coordinates are given
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Furthermore, we evaluated specific SNV and indel hotspots that
came up as potential candidates in at least one of our analyses.
For all these hotspots the evidence is sparse or suggests that they
were caused by either other rearrangements in the genome, a
specific mutational mechanism, or technical artifacts. These
hotspots are described in detail in the Supplementary Note.

Even though we find an enrichment of highly mutated hotspots
in multiple genomic regions and an enrichment of hotspots
affecting known cancer genes, we have limited power to establish
that individual hotspots are under positive selection. We provide a
full list of hotspots in the PCAWG dataset (Supplementary Data 1-3),
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which includes multiple genomic features, measures for both CAF
and expression, and prioritization of hotspots based on a
combination of CAF and expression z-score evaluations.

DISCUSSION

Here we identified more than 700,000 site-specific hotspots, which
is more than expected by chance under the given models for the
background mutation rate. Nevertheless, various mutational
processes not fully incorporated in existing models likely create
most of these hotspots. Overall, the protein-coding genes were
enriched for hotspots compared to the other regions, and the
majority of protein-coding SNV hotspots were known cancer
driver hotspots. Most protein-coding indel hotspots were asso-
ciated with tumor suppressors, consistent with their ability to
introduce frameshift and disrupt the protein product. We found
that gene regulatory hotspots had an excess of potential same-
patient second-hit missense mutations compared to singletons,
but most of these were likely caused by mutational processes or
artifacts. Based on our general characterization, we catalog
hotspots and statistically evaluate their driver evidence.

The few known non-coding cancer drivers are related to genes
that were already described as cancer genes. Both the two well-
known TERT promoter hotspots*> and the newly identified
hotspot in the 5° UTR of TP53'3, are in this catalog of hotspots.
It is plausible that cancer genes may be affected through non-
coding deregulation. Therefore, we hypothesize that non-coding
hotspots associated with cancer genes a priori had a higher
chance of being cancer drivers than non-coding hotspots
associated with other genes. We observed enrichment in the
proportion of cancer genes relative to non-cancer genes among
protein-coding SNV and indel hotspots, and SNV hotspots in
splice-sites, promoters, and enhancers. The enrichments among
hotspots in the protein-coding genes as well as in the splice-sites
and promoters can be explained by known driver hotspots**3642,
whereas the enrichment among enhancer hotspots partly was
caused by an SNV hotspot in an enhancer for POU2AF1 that may
be a non-coding cancer driver. The sparsity of non-coding driver
candidates is however not surprising as recent studies exploring
the non-coding genome find that non-coding drivers are present
but less frequent than protein-coding drivers'>.

In the protein-coding region of oncogenes, we only observe
missense hotspot mutations, and we see an overall upward shift in
expression compared to wild-types and singletons. This is as
expected as missense mutations potentially activate the onco-
genes at the protein level, and oncogene expression levels are
often upregulated in cancer*>**.

We observe both missense and nonsense mutations, and
frameshift and in-frame indels in the protein-coding region of
tumor suppressors. The overall expression aberrations vary
between mutation types. We see an overall lowered expression
level for tumor suppressors with nonsense mutations and
frameshift indels. In contrast, tumor suppressors with missense
mutations have an elevated expression level compared to wild-
types. The lowered expression level for nonsense mutations and
frameshift indels is expected as these types of mutations lead to
nonsense-mediated decay of transcripts. There are multiple
plausible explanations for the elevated expression level of tumor
suppressors with missense mutations. There might be a selective
advantage of these missense mutations, which will suggest a
functional impact of the specific amino-acid changes. Another
explanation may be altered feedback mechanisms. Either the
missense mutation causes a loss-of-function of the resulting
protein and inhibits negative feedback, or transcripts with a
missense mutation cause a rise in the overall transcription of the
locus. Both mechanisms would lead to elevated expression.
Singleton mutations are more likely to be neutral than hotspots.
Therefore, if the presence of hotspots and elevated expression
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was caused by selection, we would expect the expression level of
tumor suppressors with missense singletons to resemble wild-
types. Opposite, feedback mechanisms would affect hotspots as
well as singletons. If the tumor suppressor hotspot leads to a
partial loss of tumor suppressor function and cancer progression
triggers a natural upregulation of the tumor suppressor, the
mutation would mitigate the negative impact. This scenario also
explains why particular hotspots are under positive selection, as
they only impact tumor suppressor functions that hinder tumor
expansion, while other functions of the same gene that are
beneficial for the cancer cells may be maintained. We do see an
elevated expression level among tumor suppressors with mis-
sense singletons, which indicates that feedback mechanisms are
the most likely cause of these expression aberrations.

To draw final conclusions on whether selection affects
individual hotspots, we would need larger datasets and ultimately
perturbation experiments focusing on one mutational hotspot at a
time. Larger datasets of individual cancer types would provide
power for the identification of cancer type-specific hotspots that
potentially could be of clinical relevance and help guide
personalized treatment. The overall evidence that many of the
gene regulatory hotspots are cancer drivers was limited, but for a
few hotspots, individual analyses suggest that they could be
under positive selection. For several region types, we saw an
excess of SNV hotspots associated with cancer genes that were
caused by already known driver hotspots. For indel hotspots, we
only saw an excess of cancer genes in protein-coding regions.
Interestingly we also saw an enrichment of cancer genes among
SNV enhancer hotspots, which was partly caused by a potential
driver hotspot in an enhancer for POU2AF1. Amplification of
POU2AFT has previously been shown to promote cancer devel-
opment in multiple myeloma®, and a germline variant in the 3’
UTR of POU2AF1 has recently been associated with susceptibility
to lymphoma®®. Furthermore, Chapuy et al.*’ identify a super-
enhancer for POU2AF1 covering the potential enhancer hotspot
identified in this current study. Multiple lines of evidence
supported that this hotspot may be under positive selection,
including its potential to create a TFBS for NF-E2-like transcription
factors.

METHODS
Dataset

For this study, 2279 whole cancer genomes from the Pan-Cancer Analysis
of Whole Genomes (PCAWG) project under the International Cancer
Genome Consortium'* were used. These genomes are a subset of the 2583
whitelisted PCAWG samples', excluding melanomas and lymphoid
malignancies. Furthermore, the sex chromosomes were excluded from
this analysis. An initial analysis of our identified single nucleotide variant
(SNV) hotspots on the full PCAWG dataset gave a reason for these
exclusions.

In brief, both the melanomas and lymphoid malignancies had many
cancer-specific hotspots caused by the heterogeneous mutational
processes that are unique for these cancer types: UV induced mutations
and activation-induced cytidine deaminase (AID) mutations, respectively.
These hotspots would dominate the overall set and could possibly dilute
potential driver signals. The sex chromosomes were excluded for technical
reasons because they harbored more artifactual mutation calls than the
autosomes.

Detection of site-specific hotspots

We defined site-specific hotspots as genomic positions (for SNVs and
insertions) or regions (for deletions) where two or more samples had a
mutation of the given type. For the SNV and insertion hotspots, the
mutation had to be in the exact same location across the patients. For
SNVs the nucleotide change was allowed to vary between the patients,
and for insertions the insert and insert size were allowed to vary. For the
deletion hotspots, deletions could contribute to hotspots, if they were
either fully or partially overlapping, or if the deleted nucleotides were right
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next to each other. Hotspot detection was done in R using the basic R
package.

Filtering of hotspots

We use different filters on our SNV and indel hotspots. The filters on indels
also apply to singleton mutations. The filters used were the removal of
duplicated indels, removal of indels in homopolymer runs, and a site-
specific noise filter.

We found few duplicated insertions or deletions where different
mutational callers had minor differences for the indel. This was either a
shift in the start or end position for deletion, a difference in insert for
insertion, or a disagreement on the number of reads covering the
reference and alternative alleles. Both copies of the duplicates were
removed. This affected 5499 out of 156,164 indel hotspots.

We here define that a hotspot is located on the border of a
homopolymer run if it overlaps a stretch of identical nucleotides that are
at least nine bp long. Indels located at the border of homopolymer runs
are likely caused by replication slippage®3, and therefore we remove these
hotspots. This is not the case for SNVs so we annotated the SNV hotspots
with whether or not they were located on the border of homopolymer
runs given that they potentially can be miscalled indels when reads are not
fully anchored on both sides of the homopolymer run.

We applied a site-specific noise filter to the 1000 SNV hotspots with
most mutations across patients. This filter uses all normal control samples
from the dataset to assess the position-specific noise level. For each non-
reference nucleotide, a and each cohort ¢ € C, the relative frequency of
normal samples with at least two reads supporting a was calculated as
p(a,c) € [0;100]. The noise-score was calculated using Eq. (1).

noise — score = Z logio(p(a, c) + 1) )
ceC
We removed the hotspots with a noise score above 20, which was
regarded as the hotspots with a high level of noise across the normal
controls.

Null models

We used two models to estimate the number of positions with a given
number of mutations across patients: a simple binomial null model and a
position-specific and sample-specific null model that accounts for various
genomic features.

The binomial null model assumes a uniform distribution of mutations
along the genome in every patient. Thus, the assumption is that the mutation
rate is the same across patients and genomic regions. Using this model, we
calculated the expected number of positions without mutations, with only
one mutation across patients and with multiple mutations across patients
(two to ten). This model was used to predict expectancies for SNVs,
insertions, and deletions.

For SNVs and insertions, we used the basic R package to calculate the
genome-wide expectations, by sampling from a binomial distribution. For
deletions, we used the R package IRanges to calculate the genome-wide
expected hotspot counts, by randomly shuffling the observed number and
size of deletions within the chromosomes. We used median counts of
10,000 random shufflings. We use a basic binomial test to calculate
p-values for the SNV and insertion null-models, and for the deletions, we
calculate the p-values as the proportion of expected hotspots as extreme
or more extreme as the observed. Correction for multiple testing was
performed (see below).

The position-specific and sample-specific null model calculates the
mutation probability for each position in the genome individually
while taking cancer-specific and sample-specific elements into account.
The details of the null model are described by Bertl et al'. These
probabilities were combined with scores for each mutation to predict the
number of site-specific SNV hotspots with a given number of patients
using a convolution-based approach as described by Juul et al.3%. We used
ncdDetect® to calculate the expectations and p-values. Correction for
multiple testing was performed (see below).

Overlap with functional elements and internal hierarchy

The hotspots were overlapped with different genomic functional elements
and were only allowed to overlap one element type. The functional
elements included were protein-coding genes, protein-coding splice-sites,
5" UTRs, 3' UTRs, protein-coding promoters, non-coding splice-sites
(located in UTRs or promoters), and enhancers. Their overlap was
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prioritized in the given order. Protein-coding splice-sites and non-coding
splice-sites were then grouped. Hotspots located in the functional
elements for protein-coding genes or in the coding region were assigned
to that specific gene. The hotspots that overlapped neither of these
regions were included as intronic/intergenic hotspots.

The hotspots in enhancers and intronic/intergenic regions were
assigned to the nearest gene, based on the distance to the transcription
start site (TSS). For some hotspots located in introns of genes with long
intronic regions, this means that the hotspot may be assigned to another
gene because the TSS of this other gene is closer to the mutated position.

Overlaps were determined using the overlapSelect function from Kent
Source Tree Utilities using bed-files containing region information.
Annotation of the nearest gene / TSS for enhancers and intronic/intergenic
regions was done using the closest function from Bedtools. We looked for
the nearest TSS in both directions using the parameters -s and -S in each
run, and the distance was extracted using option-D.

Stratification of hotspots

We used a set of 699 cancer gene census genes (v83)*% to stratify the
groups of hotspots further into whether they were expected to affect
cancer genes or non-cancer genes. The cancer genes were further divided
into sets of oncogenes, tumor suppressor genes, and other cancer genes.
We used a set of protein-coding hotspots in known driver positions as a
proxy for positive selection. For this, we used a list of known somatic
cancer driver positions from the Cancer Genome Interpreter repository
(https://www.cancergenomeinterpreter.org/mutations). This list was made
as a combination of data from DoCM, ClinVar, and OncoKB as well as
mutations found in the literature, which was manually validated“®.

Grouping of hotspots
SNV hotspots and indel hotspots were grouped individually but using the
same grouping criteria.

The hotspots were grouped based on the functional element they
overlapped. Then they were divided into groups based on the number of
mutations in a hotspot. For some analyses the hotspot groups were
merged into groups with four or more mutations for SNV hotspots and two
or more mutations for indel hotspots, which can be regarded as
cumulative hotspot groups.

Within all these groups, the hotspots were further divided based on the
associated gene being either oncogene, tumor suppressor, other cancer
genes, or non-cancer gene. For some analyses, all cancer genes were
grouped as one group. We use a set of 699 curated Cancer Gene Census
genes (CGC; v83) maintained by COSMIC?® to define oncogenes, tumor
suppressors, and other cancer genes.

Region-wise hotspot enrichments

For SNV hotspots with four or more mutations, SNV singletons, indel
hotspots with two or more mutations, and indel singletons we calculated
the enrichment or depletion of hotspots/singletons in a given region
relative to hotspots/singletons in the intronic/intergenic region, where we
would expect limited positive selection. We use a one-sided binomial test
to calculate p-values using the mutation rate in the intronic/intergenic
region as probability and “greater” as an alternative hypothesis in the
binom.test function from basic R. Correction for multiple testing was
performed (see below).

Gene regulatory hotspots with corresponding missense
mutations

To evaluate if an excess of the gene regulatory hotspots had missense
mutations in the coding region of the same gene in the same patients
we did a two-sided Fisher's exact test. We compared the proportion of
gene regulatory SNV (n > 4) and indel (n>2) hotspots that had missense
mutations in the same gene in at least one of the patients with the SNV
and indel singletons that had missense mutations in the same gene in the
same patient.

Cancer gene enrichment analysis

To compare group hotspots in different functional classes, we calculated (i)
the proportion of CGC genes in each cumulative group, (ii) the proportion
of CGC genes among singleton mutations for each functional class, and (iii)
the overall proportion of CGC genes among all protein-coding genes. We
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used these measures to calculate the fold-change (FC) enrichment of CGC
genes in each cumulative group using Egs. (2) and (3).

Proportion of CGC genes in cumulative group
Proportion of CGC genes among all genes

@

FCoverall =

Proportion of CGC genes in cumulative group

3
Proportion of CGC genes among singleton mutations ®)

FCsingIetons =

As the proportion of cancer genes in each cumulative group is a
binomial distribution, we use Clopper-Pearson intervals as an approxima-
tion for the 95% confidence interval for the proportion of cancer genes in
these groups. As the FCis a ratio of ratios, the confidence interval needs to
be on the same scale. For the comparison with CGC genes among all
genes, the upper and lower confidence interval boundaries are divided by
the proportion of CGC genes among all genes or the proportion of CGC
genes which is a constant (699/20,805). The proportion of CGC genes
among singletons is not constant and varies between regions and
mutation types, so they should be treated as binomially distributed ratios.
As the amount of data for singletons is much higher than for hotspots
(1700-8700x for SNVs; 25-41x for indels) we assume that the variance
among singletons is so much lower than the variance among hotspots,
and as these confidence intervals are approximations only used for
visualization, we simply divide the confidence interval boundaries by the
proportion of CGC genes among singletons. We use the binom.test
function from basic R to calculate confidence intervals. We use a binomial
test to calculate p-values with either the overall proportion of CGC genes
among all genes or the proportion of CGC genes among singletons as a
probability in the binom.test function in R. Correction for multiple testing
was performed (see below).

Evaluation of transcription factor binding peaks

For each protein-coding or gene regulatory hotspot with an ENCODE
transcription factor binding peak score above 20, we evaluated the
potential effect on transcription factor binding. Using the TomTom* tool
(v.5.1.1) from the MEME-Suite we searched the HOCOMOCO database (v.11
CORE) for transcription factor binding motifs using +/—5 bp around an
SNV or indel, including the sequence with and without the mutation. For
the search we used the following parameters: comparison function:
Pearson correlation coefficient; significance threshold: g-value < 0.05;
complete scoring activated; scoring of reverse complements activated.
The tool uses a uniform background distribution of nucleotides, which is
not entirely true, as A/T nucleotides take up around 60% of the human
genome. The matches were manually checked using the logo-plots in the
HTML output from TomTom to ensure that the hotspot position was
important in the motif.

Cancer allele fractions

The advantageous driver mutations are expected to be early events in
cancer development, and therefore we expect them to have a high cancer
allele fraction (CAF). The CAF is a variation of the variant allele fraction
(VAF) corrected for tumor purity and copy number in the exact position.
We calculate CAF using Eq. (4).

CN-TP+2-(1—TP)

4
CN-TP ' @

CAF = VAF -
where CN is the copy number in the position and TP is the tumor purity of
the patient sample.

High CAFs could also be caused by loss of heterozygosity, which will
affect a larger region of the DNA. Therefore, we use the change in CAF
between the mutation in the hotspot in the nearest mutation in the same
patient, which should be at least 2 kilobases away from the hotspot and
should be located outside protein-coding genes. This should give a robust
measure that does not give high values if large regions of DNA are lost. We
call this measure ACAF and calculate it using Eq. (5).

ACAF = CAFhotspotmutation - CAFnearestmuta'tion (5)
The ACAF values were z-score normalized using Eq. (6).

ACAF — mean(ACAF)

CAFz — score =
Z —score std(ACAF)

(6)
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Permutation tests of cancer allele fractions for protein-coding
mutations

We used permutations to test the significance of the median ACAF z-score
for the protein-coding hotspots and singletons. We performed 100,000
permutations. We shuffled labels of the ACAF z-scores, so each value was
randomly assigned to either (i) known driver hotspots, (ii) hotspots in
protein-coding regions of CGC genes excluding the known driver hotspots,
(iii) hotspots in protein-coding regions of non-CGC genes, (iv) singletons in
protein-coding regions of CGC genes excluding known driver positions,
and (v) singletons in protein-coding regions of non-CGC genes. We
downsampled singletons to include 10% of the singletons (n = 25,422) to
speed up the permutations. All protein-coding hotspots were included
(n=9988). The median z-score was calculated for each group for each
round in the permutation and was used as a null distribution within each
group. As an approximation of the p-value we used the proportion of
values above the true median z-score. Correction for multiple testing was
performed (see below).

Expression correlations

We had expression data for 979 of the 2179 patients included in this study.
As the hotspots were identified pan-cancer, we used z-score normalized
expression values to allow for comparison of values within hotspots with
mutations across cohorts. The normalization was calculated using Eq. (7).

expression value — mean(cohort)

std(cohort) @)

expressionz — score =

Wild-type expression

To evaluate the expression levels, we used wild-type expressions in the
same gene(s). For each specific gene, all patients that neither had copy
number changes (copy number less than or greater than two) in the gene
nor had SNVs or indels in the protein-coding region or regulatory regions
(including splice-sites, promoters, and UTRs) of the gene, were included in
the wild-type set for that gene.

Wilcoxon rank-sum test of expression among groups of
hotspots

We performed Wilcoxon rank-sum tests for hotspots stratified into 12
groups by region (protein-coding, splice-site, 5" UTR, 3'UTR, promoter, and
enhancer) and mutation type (SNV or indel). Within each group, hotspots
were further divided into oncogenes, tumor suppressors, unclassified
cancer genes, and non-cancer genes, as the expected effect on expression
differed between these groups.

Calculations were done using the wilcox.test method from basic R, with
hotspot expression z-scores as one group and corresponding wild-type
expression z-scores as the other group. We performed a one-sided test for
oncogenes (alternative hypothesis is greater) and tumor suppressors
(alternative hypothesis is less), and a two-sided test for unclassified cancer
genes and non-cancer genes. Correction for multiple testing was
performed (see below).

Ranking of hotspots using p-values

For each hotspot, we calculated a p-value for the ACAF z-score and the
expression z-scores. These p-values were then combined using Fisher’s
method®®. The combined p-values are not used for evaluation of
significance, rather we use the —log,(p —value) as a way to rank
hotspots.

The p-values for the ACAF z-score are calculated using a Wilcoxon rank-
sum test where the ACAF z-scores for the hotspot is compared to ACAF
z-score for singleton mutations in the same region for the same gene (e.g.,
singletons in the promoter of TERT are used for the TERT promoter
hotspots). Here we use a one-sided test, where the null hypothesis is that
the hotspot ACAF z-scores are greater than the singleton ACAF z-scores.

The p-values for the expression z-score are also calculated using a
Wilcoxon rank-sum test where the expression z-scores for the hotspot is
compared to the expression z-scores for the patients with wild-type
expression in the same gene. Here we use a one-sided or two-sided test,
depending on cancer gene type (see above).

For hotspots where we had insufficient data (i.e., missing expression
data; no singleton mutations in same region/gene combination; missing
ACAF values) to calculate either the ACAF or expression p-value, the other
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p-value was used for ranking. Hotspots missing both ACAF and expression
p-values are ranked below the other hotspots and only based on the
number of mutations in a hotspot.

Wilcoxon rank-sum tests were done using wilcox.test from basic R, while
the combination of p-values was done with sumlogs from the metap R
package.

Multiple testing corrections

We performed multiple testing corrections for the p-values from the
enrichment analyses, the permutation test of CAF for protein-coding
mutations, and the p-values from the wilcoxon rank-sum test of expression
among groups of hotspots. All corrections were done using the approach
described by Benjamini and Hochberg®'. The corrections result in g-values,
where we consider findings significant if the g-value is below a chosen
threshold for the false discovery rate. We used a threshold for the false
discovery rate of 10% (g-values below 0.1) for the enrichment analyses,
and 1% (g-values below 0.01) for both the CAF and expression analyses.

As the p-values for the individual hotspots (from Fisher's method) only
are used for ranking, they are not corrected for multiple testing.

Mutational signature contributions

To evaluate the possibility that specific SNV hotspots were caused by
various mutational processes we used a set of mutational signatures
extracted using the full version of the dataset we use in this study. The
identification of these signatures is described in detail by Alexandrov
et al.>%. We used the set of COMPOSITE signatures extracted using the
SignatureAnalyzer method.

The probability of each signature was attributed to each mutation in a
given patient based on the trinucleotide context around the mutation and
the specific nucleotide exchange that happens in the given position in that
specific patient.

For visualization, some signatures were summarized if they had the
same proposed etiology in the paper by Alexandrov et al.>2. This led to the
following groupings:

APOBEC signatures: COMPOSITE signatures 2, 13, and 69.

Mismatch repair signatures: COMPOSITE signatures 6, 14, 15, 21, 26, 44,

73,76, and 79.

UV signatures: COMPOSITE signatures 7a, 7b, 7c, 38, 55, 65, and 67.

POLE signatures: COMPOSITE signatures 9, 10a, 61, 62, 63, 66, and 78.

Treatment signatures: COMPOSITE signatures 11, 22, and 35.

Signature 17: COMPOSITE signatures 17a and 17b.

Prostate-specific signatures: COMPOSITE signatures 37 and 80.

Indel driven signatures: COMPOSITE signatures 64, 71, 77, 81, and 82.

Unknown signatures: COMPOSITE signatures 8, 12, 19, 28, 30, 33, 39, 68,

70, and 83.

Even though COMPOSITE signature 39 has unknown etiology it was not
included in the unknown signatures as we go into detail with this
signature.

For the hotspots, we calculated one value for each signature by taking
the mean across the patients with mutations at the hotspot while taking
differences in nucleotide exchange into account. When grouping hotspots,
we also calculated one value for each signature by taking the mean across
the hotspots.

Genomic annotations

Each hotspot was annotated with various genomic features, which were
used to evaluate their potential as cancer drivers. These annotations
include the before-mentioned overlap with functional elements or nearest
gene is located in an enhancer region, an intron or the intergenic region.
This overlap dictates what gene a specific hotspot is associated with, and
each hotspot was annotated with the CGC-status of the gene. As
mentioned, the indel hotspots located in homopolymer runs were
excluded, for the SNV hotspots, this feature was used as a genomic
annotation. Further annotations include location in repeat masked
elements, in genomic self-chains, in DNA level palindromes, in optimal
APOBEC3A binding sites, if the position is known from dbSNP, various
ENCODE chip-seq scores, and phast element conservation scores.

The list of repeat masked elements include short and long interspersed
nuclear elements (SINEs; LINEs), long terminal repeats (LTRs), DNA and RNA
repeats, low complexity repeat, satellite repeats, and simple repeats, which
include micro-satellites. The list also includes repeats categorized as
“other” and “unknown”. We downloaded this list of repeat masked
elements from the Table Browser on the UCSC Genome Browser webpage
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(https://genome.ucsc.edu/). The table rmsk was downloaded for the whole
genome and the columns genoName, genoStart and genoEnd described
the location of the elements while the column repClass was used to classify
the kind of repeat.

Human duplicated regions (self-chains) are regions where the human
genome aligns with other regions in the human genome (excluding
regions where a location maps to itself). The alignment algorithm allows
for long gaps in both sequences. The outcome locates areas where the
human genome has been duplicated. Mutations located in self-chain
regions may be artificial since reads potentially map to multiple locations
in the genome. The list of self-chain regions was also downloaded from the
Table Browser on the UCSC Genome Browser webpage. The table chainSelf
was chosen and the columns tName, Start, and tEnd described the location
of the regions. Since these regions also include unaligned regions between
stretches of aligned base pairs, candidate positions that were annotated as
being located in self-chains were visually investigated in the UCSC
Genome Browser.

DNA level palindromes are defined as in Rheinbay et al.'>. We only
annotate SNV hotspots located in the loop region of DNA level
palindromes. This annotation is used to further support hotspots with
high posterior probability for the APOBEC mutational process. Loop
regions of palindromes sometimes overlap with homopolymer runs. In
these cases, the palindrome loop annotation is considered an artifact
caused by the homopolymer run, rather than support for the APOBEC
mechanism.

We downloaded a list of the 706,999 most optimal binding sites for the
APOBEC3A enzyme from Buisson et al.>* and overlapped all SNV hotspots
with these sites. Together with the DNA level palindromes, this annotation
was used as support for hotspots being caused by the APOBEC mechanism
rather than selection.

We downloaded a list of common variants from dbSNP (build 151) using
the Table Browser on the UCSC Genome Browser webpage. The common
SNPs are SNPs with a minor allele frequency above or equal to 1% and they
are restricted to the only map at one location in the genome. We used the
table snp151Common, where the columns chrom, chromStart, chromEnd
identified the positions of the common SNPs, and the rs-numbering was
found in the column “name”. The type of mutation was found in the column
“class”, where we used “single” (SNPs), insertion, deletion, and in-del.

We annotated each hotspot with various chip-seq scores for ENCODE-
defined functional elements including transcription factor binding peaks,
enhancer elements, DNase hypersensitive elements, and a variety of RNA
elements.

We downloaded the phast element conservation scores using the Table
Browser on the UCSC Genome Browser webpage. We used the table
phastConsElements100way, where the column “score” holds the scores.
We used the columns chrom, chromStart, and chromEnd to define regions
with specific scores. Hotspots located in a given region get the
corresponding score. Phast element conservation scores are described in
detail by Siepel et al.>*.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY

The dataset used for this study can be downloaded from the ICGC Data Portal under
the PCAWG release: https://dcc.icgc.org/releases/PCAWG. Additional information on
accessing the data can be found at https://docs.icgc.org/pcawg/data/. Most of the
data is publicly available, but all the TCGA data and the potentially identifiable data
from ICGC are protected and need permission to download. To access the protected
data, researchers will need to apply to the TCGA Data Access Committee (DAC) via
dbGaP (https://dbgap.ncbi.nim.nih.gov/aa/wga.cgi?page=login), and the ICGC Data
Access Compliance Office (DACO; http://icgc.org/daco), respectively.

CODE AVAILABILITY
All analyses in this study were performed using R version 3.5.1, bedtools version
2.29.2 or ucsc-overlapselect version 366. Besides using basic R, we used the R
packages IRanges, dplyr, and metap. Custom R scripts used for the individual analyses
are available upon request.
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