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Abstract: The dynamical response of a tethered semiflexible polymer with self-attractive interactions
and subjected to an external force field is numerically investigated by varying stiffness and self-
interaction strength. The chain is confined in two spatial dimensions and placed in contact with a
heat bath described by the Brownian multi-particle collision method. For strong self-attraction the
equilibrium conformations range from compact structures to double-stranded chains, and to rods
when increasing the stiffness. Under the external field at small rigidities, the initial close-packed
chain is continuously unwound by the force before being completely elongated. For double-stranded
conformations the transition from the folded state to the open one is sharp being steeper for larger
stiffnesses. The discontinuity in the transition appears in the force-extension relation, as well as in
the probability distribution function of the gyration radius. The relative deformation with respect to
the equilibrium case along the direction normal to the force is found to decay as the inverse of the
applied force.

Keywords: mesoscale simulations; nonequilibrium simulations; polymer dynamics

1. Introduction

The study of single polymers, such as, for example, DNA, filamentous actin, and
microtubules under various flow conditions, has helped in understanding their dynamical
and conformational properties [1]. The first investigations of the flow behavior of single
DNA filaments [2] opened the way to a large variety of flow experiments which provided
insight into the mechanisms regulating the dynamics. Several computational models have
been studied which reveal to be very useful in understanding such systems. Single polymer
studies give the chance of directly observing the microscopic conformations of individual
chains close to equilibrium or under flow conditions, thus accessing non-equilibrium
conformations.

In the case of biological filaments, their stiffness is closely related to their functions.
For example, the rigidity of actin filaments is responsible for the mechanical properties of
the cytoskeleton, and DNA is able to pack in the genome or inside a virus capsid thanks to
its persistence length. Several works have investigated the equilibrium properties of semi-
flexible polymers [3–10]. The development of spectroscopic techniques and fluorescence
microscopy provided insight into their non-equilibrium properties (for reviews see, e.g.,
Refs. [11,12]). Theoretical [13–17] and computational [18–29] studies helped in revealing
and understanding novel dynamical, conformational, and rheological properties.

Among others, the worm-like chain model [30] proved to be accurate to describe
the mechanical response of semiflexible polymers under specific conditions. Indeed, the
main limitations of this model come from neglecting excluded volume effects and self-
interactions between different polymer parts. The former are relevant, especially in two
dimensions leading, for example, to the segregation of polymers [31]. The latter interactions,
that are not relevant for strong applied fields or far from the folding temperature, are
crucial for semiflexible chains with monomer–monomer interactions, such as poly(ethylene
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oxide) (PEO), DNA [32], or RNA [33] in poor-solvent condition [34]. Short-range attractive
interactions lead to a large variety of conformations due to the competition of polymer
stretching and collapse [35]. Previous experimental [36,37], theoretical, and numerical [38–46]
studies have found that the mechanical response of self-interacting semiflexible polymers to
an external stretching is very complicated. These investigations considered either chains
with one of its ends grafted and the other one pulled by a force, or chains with both ends
pulled away in opposite directions.

A large majority of studies has been performed in three dimensions but addressing the
comprehension of stretched self-interacting polymers in two dimensions is also interesting
for two main reasons: excluded-volume effects are relevant and hydrodynamic interactions
can be neglected in the case of polymers strongly adsorbed on surfaces since the overall
dynamics is dominated by the polymer–substrate interaction [47]. Two-dimensional re-
alizations of these systems can, for example, be provided by DNA strongly adsorbed on
a surface with one grafted end. Under these conditions the stretching of biopolymers is
observed in systems with separation of biomolecules via nanochannels [48,49]. The effects
of a uniform force field on two-dimensional semiflexible polymers have been considered
both in experimental [47] and numerical [50,51] studies but neglecting self-attractions
among monomers.

So far, a systematic study of polymers under poor-solvent condition in an external
field is lacking. In the present work, the dynamical and conformational properties of
a semiflexible filament, tethered by one of its ends and subjected to an external force
field in two spatial dimensions, are numerically investigated. The polymer is modeled
as a self-avoiding worm-like chain with self-attraction among beads. Hydrodynamics is
neglected since it is assumed that local polymer friction is uniquely fixed by its interaction
with the adsorbing surface. For this reason the polymer is taken to be in contact with a
Brownian heat bath. This is implemented by adopting the Brownian version [52] of the
multi-particle collision dynamics [53,54]. By varying stiffness and self-interaction strength,
different equilibrium conformations are found. For strong mutual attraction and relative
low stiffness, the structure is compact. Increasing the chain rigidity promotes the formations
of folded strands. The mechanical response of the polymer to the applied force depends on
the equilibrium structure. At small rigidities the initial close-packed chain is continuously
unwound by the external force field. The polymer shows bistable conformations before
being completely elongated. When double-stranded chains form, a “first-order”-like phase
transition to the open conformation is observed in the force-extension curve. Polymer
configurations are characterized by considering the gyration tensor: it is found that the
relative deformation with respect to the equilibrium case along the direction normal to the
force, decays as the inverse of the applied force.

The numerical model for the polymer and the Brownian heat bath are illustrated in
Section 2. The results for the equilibrium conformations and the dynamic behavior are
reported in Section 3. Finally, in Section 4 the main findings of this study are discussed
drawing some conclusions.

2. Model and Method

A linear chain of length L, made of N + 1 beads of mass M, is considered in two
spatial dimensions. Internal forces acting on beads are due to a potential which accounts
for different contributions. Connected beads interact via the harmonic potential

Ubond =
κh
2

N

∑
i=1

(|ri+1 − ri| − r0)
2, (1)

where ri = (xi, yi) denotes the position vector of the ith bead (i = 1, . . . , N + 1), r0 is the
average bond length, and the elasticity is controlled by κh. The parameter κh is chosen in
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order to preserve on the average the total contour length L = Nr0 . Chain stiffness of the
polymer is introduced via the bending potential

Ubend = κ
N−1

∑
i=1

(1− cos ϕi) (2)

where κ is the bending rigidity and ϕi is the angle between two consecutive bond vectors.
Non-bonded pair interactions are modeled by the Lennard–Jones potential

ULJ = 4ε
N−1

∑
i=1

N+1

∑
j=i+2

[( σ

ri,j

)12
−
( σ

ri,j

)6]
, (3)

where ri,j is the distance between two non-consecutive beads. A strongly attractive regime
corresponds to energies ε > kBT, which determine compact structures. In the opposite limit
ε < kBT of weak self-attraction, swollen chain configurations can be observed. Here kBT is
the thermal energy, T is the temperature, and kB is Boltzmann’s constant. The parameters
κ and ε are varied in the present study, keeping fixed the temperature, to obtain different
equilibrium conformations as later shown. In the following, for the sake of clarity, chain
stiffness is characterized in terms of the length Lp = 2κr0/kBT. In the worm-like chain
limit, when the Lennard–Jones potential ULJ is negligible, this length corresponds to the
polymer persistence length [55]. However, in the present model this is not strictly true due
to the coexistence of different length and energy scales [56]. Finally, in order to consider
external stretching of the chain, a constant force F acts on every bead of the polymer. This
force is directed along the x-direction of the Cartesian reference frame and corresponds to
an external potential given by

Uext = −F
N+1

∑
i=1

xi. (4)

The external field could be a gravitational or uniform flow field. Newton’s equations of
motion of beads are integrated by the velocity-Verlet algorithm with time step ∆tp [57,58].

The chain is coupled to a Brownian heat bath which is implemented by using the
Brownian multi-particle collision (B-MPC) method [52,54,59] without taking into account
hydrodynamic interactions. Here, we adopt the computationally efficient version proposed
in Ref. [52]. In this algorithm, every bead undergoes stochastic collisions with a virtual
particle of mass M to simulate the interaction with a fluid volume surrounding the bead.
The momenta of such phantom particles are Maxwell–Boltzmann distributed with variance
MkBT and zero mean. The collision process is implemented via the stochastic rotation
dynamics of the MPC method [54,60,61]. This corresponds to randomly rotate the relative
velocity of a polymer bead, with respect to the center-of-mass velocity of the bead and its
related phantom particle, by angles±α. Collisions occur at time intervals ∆t being ∆t > ∆tp.

Simulations are performed with the choices α = 130o, ∆t = 0.1tu, with time unit

tu =
√

mr2
0/(kBT), M = 5m, κhr2

0/(kBT) = 104, σ = r0, N = 50, and ∆tp = 10−2∆t. The
value of κh ensures that the polymer length L is constant within 1% for all systems.

3. Numerical Results

Polymers are initialized with beads randomly aligned along the x-direction and al-
lowed to equilibrate. The position r1 of the first bead is fixed at the origin (0, 0) of the
Cartesian reference frame while no orientation is enforced for the first bond. When taking
into account the action of the uniform force field, simulations are started from the equilib-
rium configurations of chains and run until reaching steady states during which average
quantities are computed. We consider semiflexible polymers with values of the bending
rigidity κ, such that 0.1 ≤ Lp/L ≤ 2, and interaction energies ε/kBT = 0.25, 2.
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3.1. Equilibrium Polymer Conformations

In this Section, the equilibrium properties of polymers are obtained and characterized
by varying the bending rigidity and the interaction energy. When considering the value
ε/kBT = 0.25, non-bonded interactions are negligibly small and the model corresponds
to the worm-like chain model [30], as shown in the following. In this case, the filament
assumes a swollen configuration with spatial correlations, in the direction of the chain
tangent, on a length scale given by the persistence length. A different scenario occurs when
non-bonded interactions become relevant. Equilibrium configurations for ε/kBT = 2 and
different values of the length Lp are shown in Figure 1.

(a) (b)

(c) (d)

Figure 1. Equilibrium polymer conformations for Lp/L = 0.1 (a), 0.2 (b), 0.4 (c), 0.8 (d) with
ε/(kBT) = 2. Blue and yellow beads denote the first and last ones, respectively. Polymer beads and
bonds are not in scale to allow a better visualization.

For the smallest value Lp/L = 0.1 (Figure 1a) the chain has a globule structure which
is very compact. Increasing the stiffness promotes the formation of folded bundles. A
configuration with five rod-like strands is shown in Figure 1b for Lp/L = 0.2. The energy
penalty, which is proportional to (1− cos ϕ) and increases with the bending angle ϕ at
turning points, is compensated by the energy gain from bead–bead attractions. The number
of strands diminishes when increasing κ. A structure formed by two facing strands is
observed at Lp/L = 0.4 (Figure 1c). For this value of Lp, the average bending energy
diminishes since the number of turning points reduces, and the average Lennard–Jones
energy increases. A further increase in chain stiffness induces the formation of hairpin
conformations (Figure 1d for Lp/L = 0.8). This causes a second rise in the bending
energy whose energetic penalty can still be compensated by the mutual attraction between
monomers. Finally, at Lp ' L the polymer cannot sustain any closed configuration and a
rod-like structure is observed for values Lp & L. In this latter range, the average value of
ULJ exhibits a sharp increase while the average bending energy decreases.

In order to characterize the conformations of chains, it is useful to consider the root-
mean-square values of the end-to-end distance 〈R2

e 〉1/2, where Re = |rN+1 − r1|, and of the
gyration radius 〈R2

g〉1/2. By computing the gyration tensor

Gαβ =
1

N + 1

N+1

∑
i=1

∆ri,α∆ri,β, (5)

where ∆ri,α is the position of the i-th monomer in the center-of-mass reference frame of the
chain and the Greek index denotes the Cartesian component, the gyration radius can be
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obtained as R2
g = ∑α Gαα. The computed values of 〈R2

e 〉1/2 and 〈R2
g〉1/2 for the two values

of ε as functions of the dimensionless length Lp/L are presented in Figure 2.
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Figure 2. Root -mean-square end-to-end distance Re of a polymer in absence of an external force
for ε/(kBT) = 0.25 (purple open triangles), 2 (blue filled triangles), and gyration radius Rg for
ε/(kBT) = 0.25 (green open circles), 2 (red filled circles). The full and dashed black lines correspond to
the analytical predictions (6) and (7), respectively, in the case of continuous semiflexible polymers [55].

For the smallest value ε/kBT = 0.25 the numerical results show a quantitative agree-
ment with the theoretical predictions for a continuous semiflexible chain [55]

〈R2
e 〉 = 2LpL

[
1−

Lp

L

(
1− e−L/Lp

)]
, (6)

〈R2
g〉 = LpL

[1
3
−

Lp

L
+ 2
( Lp

L

)2
− 2
( Lp

L

)3(
1− e−L/Lp

)]
. (7)

This confirms that the self-interaction energy is negligible for this choice of ε and the
polymer behaves as a worm-like chain. The behavior is different for the highest value of
the energy ε. The end-to-end distance is smaller than in the previous case and decreases
to reach its minimum value when the chain consists of two strands folded on each other
(0.4 . Lp/L . 0.8). Then, 〈R2

e 〉1/2 jumps to values comparable to those of semiflexible
polymers at Lp/L ' 1. The average gyration radius 〈R2

g〉1/2 is at a minimum when compact
conformations are observed (Lp/L . 0.2), then increases to a value which remains constant
as long as the chain consists of two strands, and finally reaches the equilibrium values of
worm-like chains when the polymer assumes a rod-like structure.

Normalized probability distribution functions (PDFs) of the polymer gyration radius
Rg are depicted in Figure 3 under equilibrium conditions.

For the highest value of the interaction energy ε, when the polymer is compact, curves
are very narrow corresponding to the fact that the chain global conformation does not
change significantly in time. The two curves with Lp/L = 0.1, 0.2 almost overlap with
peaks located at Rg/L ' 0.07. When considering double-stranded chains, the curve at
Lp/L = 0.4 is broader since the chain fluctuates along its length. The peak is at Rg/L ' 0.14
as in the case with Lp/L = 0.8 where the PDF is narrower since the structure is quite rigid.
Finally, when the polymer assumes a rod-like conformation (Lp/L = 2), the position of
the PDF peak moves to Rg/L ' 0.28. For a comparison two PDFs in the case of weak
self-attraction (ε/kBT = 0.25) are also presented in the figure. Curves are broader than in
the previous case due to the fact that chains are more prone to fluctuate since the mutual
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attraction is negligible. The peaks are located at larger values of Rg with respect to the case
with ε/kBT = 2, for the same stiffness, corresponding to more elongated structures.
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Figure 3. Normalized probability distribution function of the gyration radius Rg in absence of the
external force for Lp/L = 0.1 (black open circles), 0.2 (red filled circles), 0.4 (green filled stars), 0.8
(blue open squares), 2 (yellow open triangles) with ε/(kBT) = 2, and for Lp/L = 0.1 (cyan line), 0.4
(purple line) with ε/(kBT) = 0.25.

3.2. Polymer Stretching in Uniform Force Field

When the polymer is subject to the external force, it is stretched along the direction of
the force. In order to characterize the elongation of the chain, the average deficit length-ratio
δ = 1− 〈xN+1〉/L as a function of the applied force is considered. 〈xN+1〉 is the average
extension of the chain along the force direction computed as the average value of the
x-component of the end-to-end vector Re = rN+1 − r1. When self-attraction is negligible,
in the limit |xN+1| → L it results [47,62]

δ ∼
(

1
F2

)1/2
(8)

with F2 = NFLp/(kBT). For quite strong force fields or very small bending rigidities the
behavior does not depend on the stiffness and is given by [38,50,63]

δ ∼ 1
F1

(9)

where F1 = NFr0/(kBT), as for flexible chains [64].
Different behaviors can be expected for self-interacting semiflexible polymers. When

the filament is pulled at one end by a constant force, a sharp transition appears in the
force vs. elongation curves [38] whose sharpness is enhanced by bending rigidity [42].
Simulations results of the present model are illustrated in Figure 4 as functions of applied
force for different values of the ratio Lp/L.

In case of Lp/L ≤ 0.2, corresponding to compact initial states (see Figure 1), data
collapse is obtained when plotting values of δ as functions of the dimensionless force
F1 = NFr0/(kBT) (left panel of Figure 4). The initial structure is tilted in the direction of
the force and only slightly deformed as long as F1 . 1. This can also be appreciated when
considering the normalized PDFs of the gyration radius: in the case with Lp/L = 0.2 and
F1 = 1, the PDF exhibits a narrow peak (see Figure 5 (left panel)).
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Figure 4. (Left panel) Mean deficit length-ratio along the direction of the external force as a function
of the dimensionless force F1 = NFr0/(kBT) for Lp/L = 0.1 (blue filled triangles), 0.2 (black filled
squares) with ε/(kBT) = 2, and for Lp/L = 0.1 (red filled triangles) with ε/(kBT) = 0.25. The
dashed and full lines have slopes −1/2 and −1, respectively. (Right panel) Mean deficit length-ratio
along the direction of the external force as a function of the dimensionless force F2 = NFLp/(kBT)
for Lp/L = 0.4 (black open circles), 0.6 (red open triangles), 0.8 (blue open squares), 2 (green filled
stars) with ε/(kBT) = 2. The dashed line has slope −1/2.
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Figure 5. (Left panel) Normalized probability distribution function of the gyration radius Rg for
F1 = NFr0/(kBT) = 1 (black open circles), 4 (red filled circles), 7 (green filled stars), 20 (blue open
squares) with Lp/L = 0.2 and ε/(kBT) = 2. (Right panel) Normalized probability distribution
function of the gyration radius Rg for F2 = NFLp/(kBT) = 100 (black filled squares), 120 (red filled
triangles), 150 (green open triangles), 200 (blue filled stars) with Lp/L = 0.8 and ε/(kBT) = 2.

By increasing the force, the extension increases smoothly since the globule is partially
unwound, similarly to what holds for single-stranded DNA and RNA [38,39]. A chain-
and-blob [65] configuration can be observed where the blob at the end fluctuates in shape
and size due to thermal fluctuations (see the Supplementary Video S1 for Lp/L = 0.2 and
F1 = 4). The corresponding PDF broadens while still displaying a single peak which moves
toward larger values of Rg. At F1 ' 7, the chain is stretched although, from time to time,
the final part can be still folded due to self-attraction (see the Supplementary Video S2
for Lp/L = 0.2 and F1 = 7). The PDF of Rg exhibits two peaks corresponding to fully
elongated and partially bent conformational states which are stable for relatively long
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times to be clearly observed. This multi-peak feature is similar to that observed for pulled
semiflexible polymers under poor-solvent condition [42,66,67] and proteins subject to a
uniform flow [68]. By further increasing the force, the polymer is completely elongated
with a narrow PDF of Rg whose position shifts continuously to larger values of Rg. The
relation (9), observed once F1 & 10, indicates that the chain behaves as a semiflexible
polymer under strong force. As a matter of comparison, we report also the results in
the case when self-attraction is negligible for a similar bending rigidity (see the data for
Lp/L = 0.1 and ε/(kBT) = 0.25 in the left panel of Figure 4). The behavior at small
force values is different with the deficit length-ratio decaying as F−1/2, which is typical of
semiflexible polymers without self-interaction. By increasing the force, the dependence (9)
is recovered with the values of δ collapsing onto the ones for ε/(kBT) = 2.

When the stiffness of the chain is such that a polymer exhibits a double-stranded
conformation, the mechanical response to the external force is different as it can be seen in
the right panel of Figure 4 where the average deficit length-ratio δ is plotted as a function of
the dimensionless force F2 = NFLp/(kBT). Three regimes can be distinguished. For values
F2 . 10 the two strands are aligned along the force direction but there is no relative motion
of the last bead with respect to the first one, kept fixed in the origin, so that 〈xN+1〉 ' 0. In
this case, the PDF of the gyration radius is narrow (see the curve corresponding to the case
with Lp/L = 0.8 and F2 = 100 in the right panel of Figure 5). When the force is increased,
the strand, which is not constrained to the origin, moves over the other part. This causes a
broadening of the PDF (see the curve with F2 = 120). A stronger force facilitates a larger
sliding. Due to the overall fluctuations of the polymer, the final bead does not attain a
fixed position relative to the first bead but can move back and forth along the chain (see
the Supplementary Video S3 for Lp/L = 0.8 and F2 = 150). The PDF is characterized by
more peaks corresponding to different stable configurations assumed by the polymer in the
same ensemble. However, the final part of the chain cannot slide continuously due to the
finite rigidity so that larger forces are required to unfold the polymer. The time behavior of
the energy terms (Ubend − |ULJ |) and (|Uext| − |ULJ |) is shown in Figure 6 in the case with
Lp/L = 0.8 for F2 = 200.

The last bead can slide when it occurs that |Uext| > |ULJ |, as witnessed by the increase
of the end-to-end distance Re also reported in the figure. As Re becomes continuously larger,
Ubend approaches |ULJ | and, when Ubend exceeds |ULJ |, the polymer swells abruptly signal-
ing a “first-order”-like phase transition. (see the Supplementary Video S4 for Lp/L = 0.8
and F2 = 200). Once the polymer is completely elongated, the PDF has again a single
peak whose position jumps discontinuously to a larger value. The force required to unzip
completely the polymer increases with the bending rigidity and the transition from the
folded state to the elongated one becomes sharper, as in the case of the unzipping of double-
stranded DNA [39,45,69]. When the polymer is completely unfolded, the values of δ for
different bending rigidities lay on the same curve following the decay (8) of semiflexible
filaments, as it happens in the case of the stiffer chain with Lp/L = 2.

Polymer deformation can be characterized in terms of the gyration tensor (5). The
ratios 〈Gαα〉/(〈R2

g0〉/2) (α ∈ {x, y}) are presented in Figures 7 and 8, where 〈R2
g0〉 is the

mean-square value of the gyration radius calculated at equilibrium. For values of the
bending rigidity Lp/L ≤ 0.2 (see the left panel of Figure 7), the behavior is similar and
the polymer is smoothly deformed in the force direction as long as the blob is unwound
(1 . F1 . 10).

Once the chain has been disentangled (F1 > 10), the deformation reaches a value
which does not change significantly with the force. Due to the initial compact structure,
the ratio of deformation is considerably larger with respect to the case with negligible
self-interaction which is also shown in the left panel of Figure 7 for Lp/L = 0.1. In the
right panel of the same figure, the deformation is shown as a function of the dimensionless
force F2 when the polymer has a double-stranded initial configuration. Initially, in case of
〈xN+1〉 ' 0, the force slightly elongates the chain with respect to the equilibrium case. As
soon as the last bead starts to slide over the filament, the deformation increases rapidly
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with steepness depending on the bending rigidity. Finally, it reaches a constant value when
the polymer is fully elongated along the force direction. The smaller relative deformation
corresponds to the more stiff polymer whose initial configuration is a stiff hairpin (see
Figure 1d). When the bending rigidity is such that no closed structure can form (Lp/L = 2),
the chain is smoothly elongated over the whole range of explored forces with a final value
sensibly smaller than the one corresponding to initially double-stranded chains.
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Figure 6. Potential energy differences Ubend − |ULJ | (blue line) and |Uext| − |ULJ | (red line)
as functions of time in the case of the polymer with Lp/L = 0.8 and ε/(kBT) = 2 for
F2 = NFLp/(kBT) = 200. The time behavior of the end-to-end distance Re is also shown (black line).
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Figure 7. (Left panel) Radius of gyration tensor component along the force direction with respect to
the equilibrium value as a function of the dimensionless force F1 = NFr0/(kBT) for Lp/L = 0.1 (blue
filled triangles), 0.2 (black filled squares) with ε/(kBT) = 2, and for Lp/L = 0.1 (red filled triangles)
with ε/(kBT) = 0.25. (Right panel) Radius of gyration tensor component along the force direction
with respect to the equilibrium value as a function of the dimensionless force F2 = NFLp/(kBT) for
Lp/L = 0.4 (black open circles), 0.6 (red open triangles), 0.8 (blue open squares), and 2 (green filled
stars) with ε/(kBT) = 2.

Along the y-direction, normal to the force, the relative deformation diminishes as a
function of the dimensionless force F1 when Lp/L ≤ 0.2 (left panel of Figure 8).

As long as the chain maintains a compact structure, the decrease is weak while it
becomes steeper when the polymer is open under the action of the external driving. At
values F1 > 10, data collapse and a power-law with dependence F−1

1 can be observed.
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When self-interaction is negligible, the behavior is similar but the deformation is much
smaller due to the lack of a compact-like initial structure. More interesting appears to be
what happens for the range of stiffness corresponding to double-stranded conformations.
The initial values of 〈Gyy〉/(〈R2

g0〉/2) decrease, due to the stretching of the two strands,
with a similar trend. When the folded strands open, an overshoot can be observed that
is due to the larger fluctuations of the chain. The deformation then follows a power-law
decay with dependence F−1

2 . The data for the initially stretched polymer (Lp/L = 2) show
a similar behavior without the aforementioned overshoot.
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Figure 8. (Left panel) Radius of gyration tensor component along the y-direction with respect to the
equilibrium value as a function of the dimensionless force F1 = NFr0/(kBT) for Lp/L = 0.1 (blue
filled triangles), 0.2 (black filled squares) with ε/(kBT) = 2, and for Lp/L = 0.1 (red filled triangles)
with ε/(kBT) = 0.25. The full line has slope −1. (Right panel) Radius of gyration tensor component
along the y-direction with respect to the equilibrium value as a function of the dimensionless force
F2 = NFLp/(kBT) for Lp/L = 0.4 (black open circles), 0.6 (red open triangles), 0.8 (blue open
squares), and 2 (green filled stars) with ε/(kBT) = 2. The dashed line has slope −1.

4. Discussion and Conclusions

The dynamical and conformational properties of semiflexible polymers under poor-
solvent condition in a uniform force field have been numerically studied. The chain has been
anchored at one end, confined in two dimensions and placed in contact with a Brownian
heat bath implemented by the stochastic version of the multi-particle collision dynamics.

The equilibrium conformation depends both on the stiffness and on the self-interaction
strength. When the self-attraction energy is smaller compared to the thermal energy, the
chain behaves as a semiflexible filament. In the opposite limit of strong mutual attraction,
different configurations are obtained. At low bending rigidity the polymer assumes a
compact structure. By increasing the stiffness, patterns of folded bundles emerge where the
number of strands reduces as the chain becomes more rigid. A larger number of polymer
beads, with respect to the value here considered, would promote folded conformations
with more strands as observed for three-dimensional semiflexible polymers [70]. Finally,
rod-like conformations are recovered for high values of the rigidity.

The mechanical response to the action of the external force depends on the initial
equilibrium structure. For small bending rigidity the compact structure is continuously
unwound and stretched by the force. On the other hand, when the polymer consists of two
facing strands, a “first-order”-like phase transition is observed from the folded to the stiff
conformation. These behaviors are highlighted in the force-extension relations, as well as at
the probability distribution functions of the gyration radius. The deformation of the radius
of gyration with respect to the equilibrium value along the direction normal to the force is
found to decay as the inverse of the applied force.



Polymers 2022, 14, 4762 11 of 13

Although hydrodynamics interactions have been neglected in this investigation, it is
known that such interactions are not essential in the case of semiflexible polymers since
only logarithmic corrections are expected [5]. Therefore, the present results also describe
the behavior of a self-attractive semiflexible polymer placed in a uniform flow field as long
as the chain follows the fluid flow. We hope that this study will stimulate theoretical studies
and experimental investigations to confirm the outlined phenomenology.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym14214762/s1, Video S1: Animation of polymer stretching
for Lp/L = 0.2 and ε/(kBT) = 2 with F1 = 4; Video S2: Animation of polymer stretching for
Lp/L = 0.2 and ε/(kBT) = 2 with F1 = 7; Video S3: Animation of polymer stretching for Lp/L = 0.8
and ε/(kBT) = 2 with F2 = 150; Video S4: Animation of polymer stretching for Lp/L = 0.28 and
ε/(kBT) = 2 with F2 = 200.
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