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ABSTRACT

A detailed annotation of non-protein coding RNAs
is typically missing in initial releases of newly
sequenced genomes. Here we report on a compre-
hensive ncRNA annotation of the genome of
Trichoplax adhaerens, the presumably most basal
metazoan whose genome has been published
to-date. Since blast identified only a small fraction
of the best-conserved ncRNAs—in particular rRNAs,
tRNAs and some snRNAs—we developed a semi-
global dynamic programming tool, GotohScan, to
increase the sensitivity of the homology search.
It successfully identified the full complement of
major and minor spliceosomal snRNAs, the genes
for RNase P and MRP RNAs, the SRP RNA, as well
as several small nucleolar RNAs. We did not find any
microRNA candidates homologous to known eume-
tazoan sequences. Interestingly, most ncRNAs,
including the pol-III transcripts, appear as single-
copy genes or with very small copy numbers in the
Trichoplax genome.

INTRODUCTION

The phylum Placozoa consists of only one recognized
species—the marine dweller Trichoplax adhaerens.
Extensive genetic variation between individual placozoan
lineages, however, suggests the existence of different spe-
cies (1). The phylogenetic position of the phylum Placozoa
has been the subject of contention dating from the 19th
century. Originally, Placozoa were regarded to represent
the base of Metazoa, later they were seen as derived (sec-
ondarily reduced) with sponges being considered to be the

most basal metazoans [see e.g. (2,3,4) for overview and
discussion]. Most recently, a basal position among all
diploblastic animals has been suggested (5).

Trichoplax lacks tissues, organs and any type of sym-
metry. It is composed of only a few hundred to a few thou-
sand cells. This organizm has a simple upper and lower
epithelium, which surround a network of fiber cells, and
as such has an irregular, three-layered, sandwich-type
organization. Only five different cell-types have so far
been described; upper and lower epithelial cells, glands
cells, fibre cells and recently discovered type of small cells
that are arranged a relatively evenly spaced pattern within
the marginal zone, where upper and lower epithelia meet
(6). It is therefore among the simplest multi-cellular orga-
nizm. With 106Mb, the nuclear genome of T. adhaerens,
which has recently been completely sequenced (7), is
among the smallest animal genomes.

So far, the non-coding RNA complement of Placozoa
has not been studied. The genome-wide annotation of non-
coding RNAs has turned out to be a more complex and
demanding problem than one might think. While a few
exceptional classes of RNA genes, first and foremost
rRNAs and tRNAs are readily found and annotated
by blast and the widely used tRNA detector
tRNAscanSE (8), most other ncRNAs are comparably
poorly conserved and hard to find within complete gen-
omes. This is in particular true whenever the sensitivity
of comparative approaches are limited by large evolution-
ary distances to the closest well-annotated genomes.
The placozoan T. adhaerens is a prime example for this
situation: in the concatenated set of 104 slowly evolving
single-copy nuclear protein-coding genes used for phyloge-
netic analysis in (7), for instance, the distances from
Trichoplax to Amphimedon, Nematostella and Human are
0.44, 0.34 and 0.32 substitutions per site, respectively.
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As a consequence, only highly conserved DNA is alignable
at all, and homology-based gene finding becomes a non-
trivial task.

In this contribution, we primarily report on a careful
annotation of those Trichoplax ncRNA genes that have
well-described homologs in other animals. In addition, we
describe computational surveys for novel ncRNA candi-
dates. For a subset of the annotated ncRNAs we verify
expression to demonstrate that the predicted homologs are
functional genes.

MATERIALS AND METHODS

Sequence data and databases

The Triad1 assembly of the genome of T. adhaerens (7)
was downloaded from the website of the Joint Genome
Institute (http://genome.jgi-psf.org/Triad1/). For compar-
ison, we used the the Nemve1 (http://genome.jgi-psf.org/
Nemve1/) assembly of Nematostella vectensis (9), as well
as the available shotgun traces of Hydra magnapapillata,
Amphimedon queenslandica, Porites lobata, Acropora
millepora and Acropora palmata (downloaded from the
NCBI trace archive).

Known ncRNA sequences were extracted from the
Rfam (10) and NonCode (11) databases. In addition we
used the collection of metazoan snRNAs from (12). [The
snRNAs found in the current study were made available
to (12)].

Software

Homology searches were performed using NCBI
blastall 2.2.6 (13), infernal (14), fragrep (15)
and the novel GotohScan method described below in
detail. Alignments were edited in the emacs editor using
ralee mode (16). RNA secondary structures were com-
puted using the Vienna RNA Package (17), in particular
the programs RNAfold for individual structures,
RNAalifold (18,19) for consensus structures of aligned
RNA sequences and RNAcofold (20) for interaction
structures. We used RNAmicro (21) in the updated
version (1.3) (http://www.bioinf.uni-leipzig.de/�jana/
software/RNAmicro.html) to identify microRNA candi-
dates from multiple alignments. The analysis of putative
snoRNAs was performed using snoReport (22), targets
for box H/ACA snoRNAs were performed using a pre-
liminary version of snoplex (H.Tafer et al., in prepara-
tion). The genome-wide screens for conserved secondary
structure elements were performed using RNAz (23) as
described below.

RNAz screens

We used multiz (24) to produce a three-way alignment
of Trichoplax, Nematostella and Hydra. Only the blocks
that contained Trichoplax and at least one of the two
cnidarian species were used for further analysis. In addi-
tion, we prepared a six-way alignment using NcDNAlign
(25) that include the genomic data of the six basal metazoa
listed in the previous paragraph. The Trichoplax sequence
was used as reference and only alignment blocks contain-
ing at least three species were processed further.

These two sets of input alignments were passed to the
RNAz pipeline and processed in the same way: alignments
longer than 120 nt are cut into 120 slices in 40 nt steps.
In a series of filtering steps sequences were removed from
the individual alignments or alignment slices if they are
(i) shorter than 50 nt or (ii) contain more than 25% gap
characters or (iii) have a base composition outside the
definition range of RNAz. All pre-processing steps were
performed using the script rnazWindows.pl of the cur-
rent release of the RNAz package. Overlapping slices with
a positive ncRNA classification probability of P >0:5
were combined using rnazCluster.pl to a single
annotation element, which we refer to as locus. In order
to estimate the false discovery rate (FDR) of the screen we
repeated the entire procedure with shuffled input align-
ments using rnazRandomizeAln.pl.

GotohScan

Blast failed to identify many of the ncRNAs that are
reasonably expected to be present in the Trichoplax
genome, for example homologs of the U4atac snRNA,
the U3 snoRNA, or RNA component of RNase MRP.
These could not be detected by means of blast, even
with relaxed parameter settings. We therefore decided to
use a computationally more costly but more sensitive full
dynamic programming approach. Instead of using a local
(Smith-Waterman) implementation such as ssearch (26)
or its partition function version (27), we suggest that
a ‘semi-global’ alignment approach is more natural for
the homology search problems at hand. In a semi-global
alignment, the best match of the ‘complete’ query sequence
to the genomic DNA is sought. Due to the relatively long
insertion and deletions, the use of an affine gap cost model
becomes necessary. This problem is solved by the follow-
ing straightforward modification of Gotoh’s dynamics
programming algorithm (28).
Denote the query sequence by Q ¼ q1; q2, . . . ; qm and

the genomic ‘subject’ sequence by P ¼ p1; p2, . . . ; pn.
Note that the problem is not symmetric since deletions
of the ends of P do not incur costs, while deletions of
the ends of Q are fully penalized. As usual, denote by Sij

the optimal alignment of the prefixes Q½1 . . . i � and
P½1 . . . j �, respectively. The values of Dij and Fij are the
optimal scores of alignments of Q½1 . . . i � and P½1 . . . j �
with the constraint that the alignment is an insertion or
a deletion, respectively. The recursions read

Dij ¼ max Si�1;j þ �o;Di�1;j þ �e
� �

Fij ¼ max Si;j�1 þ �o;Fi;j�1 þ �e
� �

Sij ¼ max Dij;Fij;Si�1;j�1 þ �ðpi; qjÞ
� � 1

with the initializations

S00 ¼ 0;

D0j ¼ �1; S0j ¼ F0;j ¼ �o þ ð j� 1Þ�e;

Fi0 ¼ �1; Si0 ¼ Di;0 ¼ �o þ ði� 1Þ�e:

In this full version, the algorithm requires Oðn�mÞ time
and memory, where n is the length of the genome and
m is the length of the query sequence. While the time
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requirement is uncritical on off-the-shelf PCs even for
large genomes, it is necessary to reduce the memory con-
sumption. It is sufficient to compute, for every position k
in the genome the score of the best alignment of the query
that has its last match in k. For this purpose, we only need
to store the values of the current column Sij and Di�1;j and
of the previous column Si�1;j and Di�1;j, i.e. these two
quadratic arrays can be replaced by linear arrays of
length m. From the F array only the current value Fij

and the previous value Fi;j�1 need to be stored. The align-
ments themselves need to be computed only for a very
small subset of endpoints k of the forward recursion,
namely those with nearly optimal score. For each end-
point, the alignment can be obtained by standard back-
tracing in Oðm2Þ time and space.
GotohScan is not the only implementation of a semi-

global alignments. Alternative approaches use a scoring
based on block alignments (29) or employ Hidden
Markov Models (30). We constructed our own version
since this allowed us to optimize the performance for
large genomes on the available off-the-shelf PC hardware
and to estimate E-values directly from the observed score
distribution. To this end, the current C implementation of
GotohScan stores a histogram of all the scores for each
query sequence over all database sequences. The locally
maximal scores for each query are computed via a simple
divide and conquer implementation that starts with the
global maximum and continues with the next maxima to
the left and right that are at least m (length of the query
sequence) nucleotides away from the global maximum.
A priority queue is utilized to hold a fixed number of
these top-scoring positions. It is initialized only after the
first database sequence (typically the longest chromosome
or scaffold) while the following high-scoring positions are
inserted according to the alignment score. This minimizes
the effort for backtracing candidate alignments. Figure 1a
gives some example of score histograms.
Empirically, we found that the score histogram,

with respect to one query sequence against all database
sequences, closely follows a Gamma distribution

f ðs; k; �Þ ¼
1

��ðkÞ

s

�

� �k�1
e�s=�; 2

see Figure 1b. Thus, we fitted a Gamma distribution to the
histogram of alignment scores and used it to calculate
E-values for each of the elements in the priority queue.
The GotohScan program uses only the high-density

portion of the score histogram to estimate the character-
istic quantities ln hsi and hln si:

lnhsi ¼ ln
Xb
i¼a

1

N
Sdistr½i �

 !
and

hln si ¼
1

N

Xb
i¼a

ln Sdistr ½i �ð Þ

 ! 3

with a and b as limits of the high-density portion of the
score distribution and N the number of alignments in this
range. Sdistr½i� is the number of alignments with score i.
From these we estimated the scale and shape parameters �
and k by least-square fitting of log fðs; k; �Þ against the

logarithm of the score histogram, restricting the fitting
interval to ½a : b� of the score distribution. The calculation
of E-values then proceeds by using the asymptotic expan-
sion (31) of the incomplete Gamma function:

logE¼ ðk� 1Þðlog s� log �Þ � log�ðkÞ þUkðs=�Þ �
x

�
; 4

where UkðzÞ ¼ log½1þ ðk� 1Þ=zþ ðk� 1Þðk� 2Þ=z2 þ . . .�
! 0 for large arguments.

In the last step, the E-values for all high-scoring posi-
tions, stored in the priority queue, are calculated and only
those with an E-value lower than a given threshold are
returned.

Target prediction

The targets of the novel box H/ACA snoRNA candidate
are computed using the novel run-time efficient snoplex
program (H.Tafer, et al. in preparation). This tool imple-
ments a dynamic programming algorithm to compute
the binding energy of the snoRNA sequence to its target
together with the energy of the snoRNA structure itself.
In order to assess putative binding sites, snoplex fur-
thermore considers the initial energy of the snoRNA
structure, the energy that is necessary to open the target
site and the duplex energy which is also depended on
the surrounding snoRNA structure. Given a snoRNA
sequence, snoplex scans the target RNA sequence and
returns the set of thermodynamically most stable interac-
tion structures.

Experimental verification of expression

Our experimental approach is based on (32).
Approximately 400 cultured Trichoplax animals were
collected (Grell strain; Haplotype 1) and small RNAs
purified with the mirPremier microRNA Isolation Kit
(Sigma), following the protocol for mammalian cell cul-
tures. In the unlikely event that genomic DNA contami-
nation was present in the purified small RNA samples,
digestion with DNaseI (Fermentas) was performed fol-
lowing the manufacturer’s protocol. A poly-(A) tail of
approximately 20 nl was added to the small RNAs using
the Poly(A) Tailing Kit (Ambion). Following this,
reverse transcription was performed using SuperScript II
Reverse Transcriptase (Invitrogen) and a modified
poly-d(T) primer (50-AAGCAGTGGTATCAACGCAGAGT
(T)3VN). Amplification of small RNAs was accomplished
with the use of a universal reverse primer (50-AAGCAGTGG
TATCAACGCAGAGT) and forward primers specific to the
predicted small RNA of interest. Putative products were
cloned into pGEM-T vector (Promega) and positive
clones sequenced using the services of Macrogen
(Korea). A full list of primers and protocols can be sup-
plied upon request.

RESULTS

tRNAs

The Trichoplax genome contains 49 canonical tRNA
genes, a single selenocysteine-tRNA gene and one tRNA
pseudogene recognizable by tRNAscan-SE, Table 1.
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Interestingly, the Trichoplax genome is essentially
devoid of tRNA-like sequences. In addition, a blast
search revealed a small cluster of four sequences derived
from tRNA-Ser(AGA) located just downstream of the
functional tRNA on scaffold 3, and a single degraded
pseudogene probably derived from tRNA-Leu(TAG)
on scaffold 13. These are indicated in parentheses in
Table 1.

Ribosomal RNAs

In eukaryotes, rRNAs (except 5S) are processed from a
polycistronic ‘rRNA operon’ which consists of SSU (18S),
5.8S, and LSU (28S) RNAs, two ‘internal spacers’ ITS-1
and ITS-2, and two ‘external spacers’, reviewed in (33).
Trichoplax is no exception, see Figure 2. The rRNA
sequences have already received considerable attention in
a phylogenetic context, see (1,34–36). The pre-rRNA

sequence appears in several copies throughout the
genome. Somewhat disappointingly, the Triad1 assem-
bly contains none of them in complete and uninterrupted
form. The consensus sequence of the pre-rRNA can be
easily constructed starting from the previously published
sequences and the five fairly complete genomic loci [on
scaffolds 22, 40 (two), 50 and 734] together with a partial
copy on scaffold 34. Only the exact ends of the external
transcribed spacers (ETSs) remain uncertain. Figure 2
summarizes the blastn matches of the pre-rRNA to
the Trichoplax genome.
The 5S rRNA sequence of Trichoplax has long been

known (37). The current genome assembly contains nine
5S RNA genes, one of which is a degraded pseudogene.
Interestingly, there are three anti-parallel pairs (two
head-to-head and one tail-to-tail which contains the
pseudogene).
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Figure 1. (a) Histogram of score distribution for U4atac, U17 and RNase MRP. (b) Fitting the GotohScan score distribution of U4atac to known
density functions.
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Spliceosomal snRNAs

Splicing on mRNAs is a common feature to almost all
eukaryotic organizms. The spliceosome consists of more
than a hundred protein components and five small RNAs
that perform crucial catalytic functions, see (38,39) for
reviews. The major spliceosome, containing U1, U2, U4,
U5 and U6 snRNAs, splices more than 98% of protein
coding genes in metazoans, plants and fungi. A small
number of protein-coding mRNAs are processed by the
minor spliceosome, which contains U11, U12, U4atac, U5
and U6atac snRNAs (40). Previously, nothing was known
about placozoan snRNAs. With the exception of the
U4atac, the snRNAs were easily found by blastn.
The U4atac was found by GotohScan only with an
E-value of 9e�19. The expression of the U4atac was
also verified experimentally. With the exception of two
U6 genes, each snRNA is encoded by a single gene in
the Trichoplax genome.

Their secondary structures, Figure 3, closely conform to
the metazoan consensus (12), with slightly shorter stems II
of U11 snRNA and IV of U12 snRNA. The U12 contains
an 5 nt insert indicated in red in Figure 3.

In contrast to many other invertebrates, Trichoplax
snRNAs feature a clearly recognizable proximal sequence
element (PSE) see (12,41), which is easily detected by
MEME (42,43), see Table 2. In line with other species, the
PSE element is shared between the pol-II and pol-III tran-
scribed snRNAs. On average the PSE elements differ by
3 nt from the consensus.

RNase P, RNaseMRP, SRPRNA

The ribonucleoprotein complexes RNase P and RNase
MRP are involved in tRNA and rRNA processing, respec-
tively. Their RNA subunits, which play an essential role
in their enzymatic activities, are structurally and evolutio-
narily related, see e.g. (44,45,46).

RNase P RNA is typically easy to find in genomic
DNA, at least within metazoa. The RNase MRP RNA,
which is also expected to be present throughout metazoa,
is typically much less conserved. Despite substantial
efforts (44), RNase MRP RNA homologs have escaped
discovery in many bilaterian clades. Not surprisingly,
therefore, the Trichoplax RNase P RNA was easily iden-
tified by blastn using the Rfam sequences as query. The
RNase P sequence is easily verified using infernal and
the corresponding Rfam model.

With standard parameters, blastn does not find an
MRP RNA homologue. A dedicated, much less stringent,
blastn search returns two nearly identical candidates.
GotohScan, on the other hand, easily detects the same
two loci. The E-value for these two candidates was 3e�5

and 3e�4, respectively. The infernal-based automatic
test for homology to an MRP RNA covariance model
provided through the Rfam website remained unsuccess-
ful. A manually created alignment containing both meta-
zoan and fungal RNase MRP sequences shows, however,
that the Trichoplax MRP candidates share the crucial
features with both of them, leaving little doubt that we
have indeed identified the true MRP sequence. Figure 4
shows the homology-based secondary structure model.

The signal recognition particle (SRP) binds to the signal
peptide emerging from the exit tunnel of the ribosome
and targets the signal peptide-bearing proteins to the

18S RNA
5.8S RNA

28S RNA

ITS-1

ITS-2

Figure 2. Trichoplax pre-rRNA cluster reconstructed from previously published sequences L10828, Z22783, AY652578 (SSU), AY303975, AY652583
(LSU), U65478 (internal spacers and 5.8S) and Triad1 genomic sequence. Blast hits of the pre-rRNA to the Triad1 genome assembly are shown
below as in the JGI genome browser.

Table 1. Summary of tRNA genes arranged by anti-codon

First base

Second base Third base A C G T

A A Leua  Leu
C Val Val Val
G Leu+( ) Leu Leu
T Met2 Ile Ilea

C A Trp Cys2 SeC

C Gly Gly Gly2

G Arg Arg2 Arga

T Arg Ser Arga

G A Ser+(3 ) Ser Ser
C Ala Ala Ala
G Pro Pro Pro
T Thr Thr Thr

T A Thya

C Glu Asp Glu2

G Gln His Gln
T Lys Asn Lys

aindicates tRNAs with introns. The multiplicity of genes with more
than one copy is indicated by a superscript. SeC indicated the seleno-
cysteine tRNA.
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prokaryotic plasma membrane or the eukaryotic endo-
plasmic reticulum membrane (47). Its RNA component,
called 7SL or SRP RNA, is well conserved and hence easy
to identify by blast comparison starting from the SRP
RNA sequences compiled in the SRPDB (48). The
Trichoplax SRP RNA is shown in Figure 5.

Small nucleolar RNAs

The two classes of snoRNAs, box H/ACA snoRNAs and
box C/D snoRNAs, are mutually unrelated in both their
function (directing two different chemical modifications of
single residues in their target RNA) and their structure,
reviewed e.g. in (49).
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The U3 snoRNA belongs to the box C/D snoRNA class
by virtue of its structural characteristics. It is, however,
exceptional in several respects. It contains additional well-
conserved sequence motifs which appear to be exclusive to
U3 snoRNAs. Instead of directing a modification of single
rRNA residues, it is required in the early steps of rRNA
maturation, in particular for the cleavage of the 50ETS
and 18S rRNA maturation, see e.g. (50,51,52). Taken
together, these features may explain that the U3
snoRNA sequence is much better conserved than all
other snoRNAs; in fact, it is the only one that can be
found directly by a blast search. The candidate sequence
was easily verified by infernal-alignment to the corre-
sponding Rfam model, Figure 5. Its expression was
verified experimentally.

The box H/ACA U17 is also involved in the nucleolytic
processing of pre-rRNA. Although it has been reported to
be the best-conserved box H/ACA snoRNA and ubiqui-
tous among eukaryotes (53), no Trichoplax homologue
was found using blast. Not surprisingly, no other
snoRNA homologs were detected by means of blast.
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Figure 4. Secondary structure of T. adhaerens RNase MRP RNA inferred from the multiple alignment of metazoan RNase MRP RNAs provided in
the Electronic Supplement.

Table 2. PSE and location of snRNAs in T. adhaerens [The sequence

logo was generated using aln2pattern (15)]

snRNA Location Sequence

U1 �58 .........G...GG.
U2 �55 A......G.G...A..
U4 �57 .........A......
U5 �57 A........G...GC.
U6.1 �62 ..T.....AG......
U6.2 �62 ..T.....AG......
U4atac �59 .........AG...C.
U6atac �63 ........AA......
U11 �59 A.......CA...C.G
U12 �60 .......G.G.T.C..

Sequence logo
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The U17 gene was readily identified by GotohScan
with an E-value of 1e�16, however. We therefore con-
ducted a survey of the Trichoplax genome for homologues
of all 244 known human box C/D snoRNAs (belonging to
107 distinct snoRNA families) and all 94 known human
box H/ACA snoRNAs (82 families) extracted from the
snoRNA-LBME-de (http://www-snorna.biotoul.fr) (54).

The initial search, for which we used very non-stringent
score cut-offs, produced a candidate set of 22 H/ACA
and 18 C/D snoRNA. Upon manual inspection, most of
these sequences neither fold into secondary structures
characteristic for snoRNAs nor match a query sequence
unambiguously. Thus we used SnoReport (22) to
check both secondary structures and sequence motifs.
Candidates not recognized by SnoReport were removed.

In the next step, we manually added the remaining
candidate sequences to multiple sequence alignments of
individual snoRNA families. These were retrieved from
the Rfam, constructed from the sequences provided
through the snoRNA-LBME-db and (in the case of the
U71 snoRNA) compiled from sequences deposited in
Genbank. This stringent filtering step left 3 H/ACA and
4 C/D snoRNA (not including U3) (Table 3). The multiple
sequence alignments, see also Figure 6, are provided in the
Electronic Supplement.

The U71 candidate shows enough sequence identity
with the vertebrates sequences to make its homology
with the vertebrate U71 snoRNA very likely; its putative
target site, however, is not conserved between human and
Trichoplax, we thus list it as an uncertain candidate.
Two of the H/ACA candidates were found using

ACA1 as query but their homology to the human ACA1
snoRNAs cannot be established. Nevertheless, upon

SRP RNA     Bitscore 136.00 [1,295]

GCCGgGcgcaGuagCGugcgCcUGUAACCCa...aG.uGGGGGCaaaAaagugGuggAuugcuuggguaagu.caccgggccc.......ggccgugcgacguccuagauu
GC:GGG:G::G  GCG::C:CCUGUAA:C:A   A  U:G::GC     A+: : :GA+:: :    U:::+ ::::G : C:       :G :++:C:A:GUC :+

ccggcccGuCCuuuCcAggucgggaGcgggccgggGgggccCaggcGaAGgccuGggcccCcccggccccu.AAAGgggggggaAccgcGccAGGCcgGaaUCAcgGAGCA
:G::CG:CC+::C:A:G:C: +:G: :::: :GG::: ::AG::G+AG::CU:: :::CC: :::: C  AA G:GG:::GAA C:::CCAGG::GGAA  AC::AGCA

A

gCgcaaaccccccgCucccgaccgUgGaaGGAUaaCgggccgguggacgucgcacggccaaucagggcccggugcuuacccaagcaaAccaCcacu 305
G:::AAA:::CC::C:+ :G:C:GU:G::GGAUA:CG::C:   :GA :U:G:+ : C: AU +:G : C:::::::A ++A: ::+AC: : :+U

RNase P RNA Bitscore 109.94 [16,343]

ggag..ggAAGcuCacuguagagGuuACAaAcgGAGugcuuaugcaCUCaaauaaaa....................CcucuGGGAAGGUCUGAGAaA.cggCCaauauu.
:::G  :GAAGCUC CUGUA+:GG+UACA+ C  AGU CU++UG ACU A+++A +A                    CC:+UGGGAAGGUCUGAGA    GG:C  U U

_
.ugCCCuuGaAGGGcaucccgcGgAAgcgggacgguGccAcCAGAAAUucaccccucuuugauuuuauauugggaagaaagaagagauggacugaggggguaauucauguc
::::C +GA G:::::C:C:  +A  :G:G:::G G:CACCAGAAAUU+ C: +    +G+UU UAU +    AAGA A  A+A  +G++ U+  +  +UA U+ A G C
gUCUUCCAGACGAAGGCCGCUGUAACAGGCGGGUGGGUCACCAGAAAUUGGCUUGAUGGAGUUUAUAUCGGUCCAAGACACUACAAGGGAUUUAUCUCUUUAGUGGAGGCC

uau...........gggaUGGaAA.uggCaccgGGccuuuaucuUuaaAGUGCAAUagaaGagcuggug.uuaa.caccagAACCCAAUUCAGACUAC..Uccgacucc
++             :G+UG AAA +G:C C::G:CC+++  + U+  AGU+CAAU   +GAG:  +:: UUA+ ::+  :AAC CAAUUCAGACUAC  UC:GAC:::

U3 snoRNA Bitscore 123.10 [6,218]

AaGACcaUACUUUGAAcAGGAUCauUUCUAUAGgaUauuaCuauuaaauUuuaucuaaAAguAGacAagaaccuAAACCcgGAuGAuGAgauauggCcuugucgcCcGAGC
AAGAC+ UACUUU    AGGAUCAUUUCUAUAG+A A   C+ +U ++U UU UC  AAAG AGACAA   C U AACC: GA GA GA  +AU+:C:UU: ::CC:GAGC

C

GUGAaguagccgccgggcgcugCuUuuuGcagcugcccuucggcaUaGAUGAuCGUuCccg.cccccUu...uugggga.cggGagGgcgacaagGcugUCUGAcgGG
G GAAG  G C + :::: :U:C  U UG:A:  ::::U  G CAU+GAUGA CGUUC:CG + ::CU+     G:: + CG:GA:GG:: :AA:G:++UCUGA :GG

Figure 5. Structural alignments of the Trichoplax RNase P RNA, SRP RNA and U3 snoRNA sequences with the corresponding Rfam alignments as
computed by infernal. The first line contains the structure annotation of the two sequences that are aligned in the second and fourth line. Line
three in-between describes the sequence conservation and the type of substitution.

Table 3. Small nucleolar RNAs in Trichoplax

Name Class Target Conservation Note

U3 C/D 18S 5-22b Eukaryotes Verified
18S 1129-1140b

U18 C/D 28S A740b Eukaryotes –
U36 C/D 18S A615b Eukaryotes –
U76 C/D 28S A1549b Vertebrates –
U106 C/D 28S A2227 Vertebrates –
U17 H/ACA a Eukaryotes
U71? H/ACA – Vertebrates Uncertain
sc.3857:103-213(-) H/ACA 28S U1370

U1884
Novel

aThe U17 snoRNA probably targets the 50ETS, the exact target is still
unknown, however (55,53).
bTarget sites homologous to the ones in human rRNAs.

Nucleic Acids Research, 2009, Vol. 37, No. 5 1609



inspection, both show all hallmarks of box H/ACA
snoRNAs. However, the corresponding primers for the
candidate located on scaffold 4365 amplified a sequence
fragment located immediately upstream of the predicted
snoRNA (see Electronic Supplement for the correspond-
ing alignment). Furthermore, no plausible target site could
be identified for this candidate. We therefore did not
include it in the list of snoRNAs. The second candidate,
‘sc.3857:103-213(-)’, on the other hand, exhibits two plau-
sible rRNA targets on 28S rRNA (U1370 and U1884) and
most likely constitutes a novel snoRNA. In addition,
snoplex identifies two additional possible targets in the
18S rRNA (see Electronic Supplement).
This leaves the exceptional U17 snoRNA as the only

box H/ACA snoRNA in the Trichoplax genome that can
be identified unambiguously by computational means.
For the three of the four box C/D snoRNA candidates
(U18, U36, U76) we find nearly absolute conservation
of the target-binding motifs, which are homologous to
the corresponding target sites in human. For the U106
snoRNA candidate we can also identify a plausible
target site in the 28S rRNA, which, however, is not
homologous to that of the human U106 snoRNA.
The putative host genes of the Trichoplax snoRNAs

are not conserved in human. It is known, however, that

snoRNAs can change their genomic location on evolu-
tionary time-scales. For instance, several host gene
switches are observed for U17 already within vertebrates
(56), see also (57). Furthermore, several human snoRNA
host genes are non-coding (e.g. the GAS5 transcript for
U76 and the unnamed host gene of U71) or are poorly
described ORFs (such as C20orf199 for snoRNA U106),
making it virtually impossible to determine whether they
are homologous between human and Trichoplax.

NomicroRNAs

Homology based searches for microRNAs remained
unsuccessful employing both blast and GotohScan
using the complete set of pre-microRNA hairpins listed
in miRBase (release 12.0) as query. Both short blast
hits and weak GotohScan signals were analysed.
Removing all sequences for which sequence conservation
was very poor on the putative mature microRNA
sequence and/or the putative precursor did not fold into
the characteristic hairpin structure left a single candidate
possibly homologous to mir-789. The best-conserved
region is located opposite to the annotated mature
sequence from Caenorhabditis species. Hence, this candi-
date also remains inconclusive.
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SS (((( UGAUGA CUGA CUGA ))))
****** * * ********* *** * * ****

Cel-U18 UGGCAGUGAUGA--U---CA---CA--AAUCCGUGUUUCUGA---CAAGCG-AUUGACGAUAGAA-AACCGGCUGA------GCCA
Dme-U18 UUGU--UGAUGAAAUU-------AAUUGGUCCGUGUUUAUGAAUUUCCAUUGAUUAUAAAUUCUCCAA-UUACUGA------CCAA
Xtr-U18 UGUUAAUGAUGAGCU--CCACUUCA-UGGUCCGUGUUUCUGA------CCUUA-UGAUCUGAGUGGAA-GUUCUGA------UAUA
Xla_U18 G-GAUAUGAUGAGCU--CCACUUCA-UGGUCCGUGUUUCUGA-----ACCGAAGUGAUAUCAAUGGAA-GUUCUGA------UUAC
Hsa-18B UCAAAAUGAUGAGAUU-CCACUUAAUUGGUCCGUGUUUCUGA-----AACACA-UGAUAUUUGUGGAA-AUUCUGA-----CUUGG
Hsa-18C UGUU-AUGAUGAGAUU-CCACUUAA--GGUCCGUGUUUCUGA-----AACAAA-UGAU-UUUGUGGAA-GUUCUGA-UUUAUGGCU
Hsa-U18A AGUA-GUGAUGAAAUU-CCACUUCAUUGGUCCGUGUUUCUGA-----ACCACA-UGAUUUUCUCGGAU-GUUCUGA------UGCU
Tad-U18 AGUAUGUGAUGAAAUUGUAACUUCA-UGGUCCGUGUUUCUGA-UUCAACCG---UGAUAAUAGCUGAA-GUUCUGA-UCUA-UCUU

Figure 6. Top: secondary structure model of a novel H/ACA snoRNA (l.h.s.) and the best snoplex prediction of its targets sites in the rRNA
operon (r.h.s.). Below: alignment of U18 snoRNA sequences from several Metazoa. Boxes and the conserved target binding site are indicated.
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Ab initio ncRNA prediction

An alternative to direct homology-based annotation is the
ab initio prediction of ncRNAs. In particular RNAz (23)
has been proved to yield results in wide variety of species,
from screens of the human genome compared against
(mostly) mammalia (58,59), teleost fishes (60), urochor-
dates (61), nematodes (62), flies (63), yeasts (64) and plas-
modium (65). In brief, RNAz is a machine learning tool
that determines for a slice of aligned genomic DNA
whether it encodes a structured RNA depending on mea-
sures of thermodynamics stability and evolutionary con-
servation (23).

In the case of Trichoplax, the use of comparative geno-
mics is limited by the comparably large distance to other
sequenced genomes, because most of the genome thus
cannot be unambiguously aligned with better understood
genomes. We therefore investigated two different genome-
wide alignments. In the first screen, we used three species
MultiZ-alignments (24) of T. adhaerens, and the Cnidaria
Hydra magnipapillata and N. vectensis. We used all

alignment blocks containing Trichoplax and at least one
of the two cnidarians.
A second screen was performed using NcDNAlign

alignments (25) constructed from T. adhaerens, P. lobata
and shotgun traces from A. queenslandica, A. millepora,
A. palmata and H. papilata. This screen was limited to
alignment blocks containing Trichoplax and at least two
other species. As expected, the large evolutionary dis-
tances in both screen limit the sensitivity of the com-
parative approach and preclude the detection of
Placozoan-specific ncRNAs.
Both of the differently created alignment sets are

screened with RNAz, the corresponding results are com-
piled in Table 4. The restrictive NcDNalign alignments
revealed no novel ncRNAs. Of only 101 loci, 11 were
identified as false positives mapping to four different
protein-coding gene families, while the remaining hits
coincide with ncRNAs that have already been identified
by homology-based annotation. With the much more lib-
eral multiz alignments we obtained 3027 RNAz hits com-
prising 1416 distinct genomic loci that show ‘some’ sign of
evolutionary conserved secondary structure. Of these, 382
loci correspond to annotated ncRNAs, while 1088 (77%)
overlap known protein-coding regions or known repetitive
elements. Twelve of the remaining loci are supported by
ESTs and may constitute novel ncRNAs. The remaining
193 hits contain the U3 and U17 snoRNA genes, which
were found by blast and/or GotohScan.
Figure 7 summarizes the distribution of the RNAz

classification scores of the MultiZ-based screen. Many
of the known ncRNAs appear with moderate classification
probability, with a significant enrichment observed only
for scores close to one. This reflects the high expected
FDR of these data, which are largely based on pairwise
alignments. This implies that the initial candidates of this
screen need to be post-processed with respect to gene
annotation and/or other filtering methods. Indeed, the
majority of predictions—even somewhat more than the
estimated FDR—are located in the protein-coding regions
(Table 4). The data nevertheless provide at least statistical
evidence for a set of about 100–200 novel structured RNA
elements.
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Figure 7. Distribution of RNAz classification score for known (true positive) (black) all predictions (grey), and only those that are identified as coding
or repetitive (maroon). Note the logarithmic scale: there are more than 100 non-annotated predictions with a classification confidence above 99%.

Table 4. RNAz screens of T. adhaerens genome

multiz NcDNalign Known

Aligned DNA (nt) 4 837 148 1 35 140 –
alignments 35 039 744 –

RNAz P> 0.5 1416 101 –
FDR random 56% (797) 43% (43) –

RNAz P> 0.9 751 79 –
FDR 27% (386) 15% (15) –

tRNAs 39 35 50+1
5S rRNA 6 8 9
rRNA operon 33+3 43 –a

snRNAs 6 4 10
MRP, P, 7SL 1 0 3
Protein coding 1022 11 96 963
Repeat elements 66 1 –
Total annotated 1211 101 –
Unannotated with EST 12 0 –
Without annotation 205 0 –

aThe rDNA operons appear as series of multiple RNAz hits. Known
refers to all ncRNAs that have been reported previously and those
that have been identified by homology search in this study.
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The 744 NcDNalign were searched with RNAmicro
for possible microRNAs. After removing known
ncRNAs, in particular the U5 snRNA and several hits
to hairpins in the rRNA operon, exons of annotated pro-
tein coding genes and repetitive elements recognized by
repeatmasker, we retained 82 candidates. Since
RNAmicro evaluates alignment and the corresponding
consensus fold, we also checked whether the Trichoplax
candidate sequences alone fold into a microRNA-like
hairpin structure. Sixty-four sequences passed this filter.
Most of these sequences appear to be repetitive, mapping
to more than three distinct loci in the Trichoplax genome,
leaving 13 microRNA-like hairpins that are conserved
between Trichoplax and Nematostella. However, none
of these candidates resembles any of the 40 in N. vectensis
or the eight A. queenslandica microRNAs described in
(66). We thus suggest that these conserved hairpins are
not microRNAs. Instead they might belong to a pre-
viously undescribed class of hairpin structures.

DISCUSSION

We have reported here on a comprehensive computational
study of non-protein-coding RNA genes in the genome of
the placozoan T. adhaerens. We observed that only a lim-
ited set of the best-conserved ncRNAs, in particular
tRNAs, rRNAs and a few additional ‘housekeeping’
RNAs are readily found by means of blastn. We have
therefore developed a more sensitive tool, GotohScan,
which implements a full semi-global dynamic program-
ming algorithm. Using this method, we were able to
detect homologs of several fast-evolving ncRNAs, includ-
ing a few box C/D and box H/ACA snoRNAs, the RNase
MRP RNA, and the full complement of spliceosomal
snRNAs.
In addition to the homology-based annotation, we con-

ducted surveys evolutionary conserved RNA secondary
structures using RNAz and RNAmicro. Reasoned by the
large evolutionary distance between Trichoplax and other
sequenced genomes, the sensitivity of these screens was
rather low, however. Nevertheless a handful of novel
ncRNA candidates was found.
Due to the small size and slow growth of T. adhaerens,

it is hard—if not impossible—to obtain sufficient amounts
of RNAs to verify the expression of ncRNA candidates
directly by Northern blots. Instead, we used here a PCR-
based approach introduced by (32), which requires much
smaller quantities of RNA. We did not attempt to validate
the entire set of predictions but rather selected a small
subset, consisting of a few of the homologs detected by
GotohScan and a small collection of novel predictions.
Due to the small amount of RNA, the sensitivity is
still limited. Nevertheless, we unambiguously identified
a few previously undescribed Trichoplax ncRNAs,
namely: U4atac, as a representative of the minor spliceo-
some; the U3 snoRNA and a putative novel ncRNA on
scaffold 3857.
Our computational annotation of the Trichoplax

genome reveals much of the expected complement of the
ncRNA repertoire. Most ncRNAs are single-copy genes

or appear in very small copy numbers. This contrasts
the situation in many of the higher metazoa, for which
more detailed ncRNA annotations are available [e.g.
Caenorhabditis elegans (67), Drosophila (63,68) and the
Rfam-based annotation in mammalian genomes]. In par-
ticular, the small copy number of tRNAs and other pol-III
transcripts is surprising, since these genes appear in dozens
or hundreds of copies in many bilaterian genomes.

The lack of microRNAs is surprising at a first glance.
While a few orthologous microRNAs—in particular the
mir-100 family—are shared between Cnidaria and
Bilateria (69,70), we found no trace of these genes in
Trichoplax. Neither did we find a homolog of one of the
eight sponge microRNAs (66). Our analysis is thus con-
sistent with the recent report based on short RNA sequen-
cing (66) that Trichoplax does not have microRNAs. The
continuing expansion of the repertoire of microRNA and
their targets has been associated with both major body-
plan innovations as well as the emergence of phenotypic
variation in closely related species (71,69–73). The
microRNA precursors of Cnidaria and Bilateria are
imperfectly paired hairpin structures about 80 nt in
length. In contrast, the precursors of the recently discov-
ered miRNAs of the sponge A. queenslandica (66) are
not orthologous to any of the Cnidarian/Bilaterian
microRNA families and resemble the structurally more
diverse and more complex RNAs described in slime-
molds (74), algae (75,76) and plants (77–79). Under the
hypothesis of monophyletic diploplasts, which has
recently gained substantial support (5,80), Placozoa have
secondarily lost their ability to produce microRNAs, while
sponges have secondarily relaxed the constraints on pre-
cursor structures. The complete loss of microRNAs in
Placozoa is consistent with the morphological simplicity
of Trichoplax. Although, argonaute, Dicer and Drosha
proteins could be found in Trichoplax, no Pasha homolog,
which partners with Drosha during miRNA biogenesis,
was found. Since, all these core RNAi proteins, except
Pasha, are also involved in non-miRNA related processes,
it is likely that Pasha has been discarded together with the
miRNAs in Trichoplax (66).

De novo predictions of evolutionarily conserved RNAs
suggest that the Trichoplax genome may have preserved
some ncRNAs characteristic to basal metazoans, such as
the handful of hairpin structures that are conserved
between Trichoplax and Nematostella. We do not know
at this point, however, whether these purely computa-
tional signals are expressed in vivo, and what their function
might be.

Our survey also misses several ncRNA classes that we
should expect to be present in Trichoplax, in particular
telomerase RNA, U7 snRNA [which are involved in his-
tone 30-end processing (81)], the Ro-associated Y-RNAs,
the RNA components of the vault complex (the
Trichoplax genome contains the Major Vault Protein)
and possibly also a 7SK RNA. In contrast to
microRNAs, however, recent studies have highlighted
how difficult it is to identify these particular classes of
RNA from genomic DNA: telomerase RNA evolves so
rapidly that—despite its size of over 300 nt—it has not
been identified so far in any invertebrate species (82).
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A similarly fast evolution is observed for the 7SK RNA
(83,84). Due to their small size and weak sequence con-
straints, U7 snRNA (85,86), Y RNAs (87,88) and vault
RNAs [P. F. Stadlex et al. (submitted for publication)] are
also largely unknown beyond deuterostomes (in some
cases Drosophilids or C. elegans, where homologs were
discovered independently). Our failure to find these
genes thus most likely points at the limitations of the cur-
rently available homology search methodology rather
than at the absence of these RNA classes in the
Trichoplax genome.
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