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Plant natural products are important secondary metabolites with several special
properties and pharmacological activities, which are widely used in pharmaceutical,
food, perfume, cosmetic, and other fields. However, the production of these compounds
mainly relies on phytoextraction from natural plants. Because of the low contents
in plants, phytoextraction has disadvantages of low production efficiency and severe
environmental and ecological problems, restricting its wide applications. Therefore,
microbial cell factory, especially yeast cell factory, has become an alternative technology
platform for heterologous synthesis of plant natural products. Many approaches and
strategies have been developed to construct and engineer the yeast cells for efficient
production of plant natural products. Meanwhile, metabolic mass transfer has been
proven an important factor to improve the heterologous production. Mass transfer
across plasma membrane (trans-plasma membrane mass transfer) and mass transfer
within the cell (intracellular mass transfer) are two major forms of metabolic mass transfer
in yeast, which can be modified and optimized to improve the production efficiency,
reduce the consumption of intermediate, and eliminate the feedback inhibition. This
review summarized different strategies of refining metabolic mass transfer process to
enhance the production efficiency of yeast cell factory (Figure 1), providing approaches
for further study on the synthesis of plant natural products in microbial cell factory.

Keywords: plant natural products, intracellular mass transfer, trans-plasma membrane mass transfer, metabolic
engineering, yeast

INTRODUCTION

Plant natural products are secondary metabolites with complex molecular structures and inherent
bioactivities (Williams et al., 1989), including a variety of organic compounds, such as flavonoids,
terpenes, saponins, alkaloids, and sterols, which are widely used in medicine, food, perfume, and
cosmetic (Mizutani et al., 1994; Enserink, 2005; Peraltayahya et al., 2011; Xu et al., 2017). Although
these plant natural compounds and their derivatives display a broad range of applications in many
areas, the current production mode mainly relies on extraction from plants, which is costly and
complex because of the low concentration and plentiful structural analogs in their native producers
(Nour et al., 2009). The low concentration and complex purification process limit the scale-up
production of plant natural compounds via phytoextraction or chemical synthesis, failing to meet
the market demand.

Fortunately, synthetic biology and system biology provide alternative approaches to solve
such problems, which has facilitated the heterologous synthesis of plant natural products by
microbial cell factory in the passing two decades (Shan et al., 2005; Moses et al., 2014;
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King et al., 2016). Compared with traditional extraction and
chemical synthesis, the usage of fast-growing microorganisms
dramatically shortens the production cycle, reduces
environmental pollution, and simplifies the separation process
for the synthesis of single structural compound in microbial
cell factory (Sun et al., 2020). Many metabolic engineering
strategies including overexpression of key enzymes, knocking
out of competition pathway, and enzyme engineering have been
employed to produce different kinds of plant natural products,
such as amorphadiene (Reddingjohanson et al., 2011), farnesene
(Su et al., 2015; Meadows et al., 2016; Yang et al., 2016), bisabolene
(Kirby et al., 2014), miltiradiene (Hu et al., 2020), naringin (Park
et al., 2009; Lv et al., 2019), kaempferol (Trantas et al., 2009),
and coumarin (Ro and Douglas, 2004). Among these strategies,
efforts to refining metabolic mass transfer of microorganisms
(Noorman, 2001) by forming substrate channel or metabolic
compartmentalization have been proven to play important roles
on improving the production of plant natural products. For
instance, the heterologous synthesis of tropane alkaloids was
enhanced by refining metabolic mass transfer (Srinivasan and
Smolke, 2020). Nowadays, many microorganisms have been used
as chassis to produce plant natural products. Yeast, especially
Saccharomyces cerevisiae, is one of the most favorite hosts for
its inherent characteristics such as abundant precursors and
complete endomembrane system (Li et al., 2018). As a GRAS
(generally recognized as safe) strain with good robustness, yeast
has been widely used in food and pharmaceutical production
(Paddon et al., 2013; Khan et al., 2015). According to the space
where transfer happens, the metabolism mass transfer in yeast
can be divided into two types, which are the intracellular mass
transfer (Lodish, 1988) and the trans-plasma membrane mass
transfer (Whittam and Wheeler, 1970). In this article, recent
advances about metabolic engineering strategies of plant natural
compounds, especially optimization of metabolic mass transfer
in yeast cell factory, were reviewed. Insights of engineering yeast
as an efficient platform for product synthesis are also provided.
Moreover, we illustrated the great potential for the synthesis of
plant natural compound in yeast.

INTRACELLULAR MASS TRANSFER IN
YEAST CELL FACTORY

Intracellular metabolic mass transfer is an essential part of cell
metabolism, which mainly refers to the substance’s delivery
between enzymes and organelles. It is also one of the key factors
to develop efficient microbial cell factory containing biosynthetic
pathways with multienzyme reactions. The regulation of
metabolic flux of the biosynthetic pathway and the spaces of
different enzymes have been proven efficient ways for the refining
of intracellular mass transfer. The production of plant natural
products can be thus improved (Figure 1). In recent years,
to boost the production of plant natural products in yeast
cell factory, several strategies including protein fusion (Zhou
et al., 2012) and artificial scaffolds (Wang and Yu, 2012) have
been developed to strengthen the efficiency of mass transfer
especially improve the catalytic efficiency of multi-enzyme

reactions. In some cases, plant natural products and their
intermediates are toxic to yeast cells (Valachovic et al., 2016),
and some intermediates have feedback inhibitions to enzymes.
To solve these issues, regulation strategies such as enzyme
compartmentalization (Avalos et al., 2013) and suborganelles
(Smith et al., 2000) were used to restrict intermediate distribution
and redirect them toward the catalytic enzymes. As a result,
the cytotoxicity was reduced, and the production was promoted.
Here, several strategies such as optimizing the space location of
enzymes and substances and enhancing the intracellular mass
transfer in yeast cell factory have been summarized.

Fusion Expression of Enzymes Shortens
the Distance of Metabolite Diffusion
The biosynthetic pathway of plant natural compounds usually
contains multienzyme reactions and locates in different
organelles, which leads to some challenges in mass transfer
efficiency and the toxicity of intermediates in microorganisms.
Fusion expression is an effective way to shorten the distance
between two proteins. Linking different genes together to obtain
fusion protein is the most common strategy to colocalize enzymes
of long pathway. In this way, the spatial location of enzymes can
be adjusted to reduce cytotoxicity of intermediates and then to
increase the intermediates transfer efficiency between different
enzymes. For example, the 4-coumarate CoA-ligase (4CL),
stilbene synthase (STS), and tyrosine ammonia lyase (TAL) were
necessary enzymes in the polyketide resveratrol biosynthetic
pathway in yeast. When the 4CL and STS were expressed in a
fusion protein, the yield of resveratrol was increased by 15-fold
(Zhang et al., 2006). The titer of patchoulol was increased by two
times when the fusion expression of patchoulol synthase and FPP
synthase was employed in S. cerevisiae (Albertsen et al., 2011).
By fusion expression of SmCPS and SmKSL, as well as fusing the
GGPP synthase and farnesyl diphosphate synthase, the metabolic
flux of miltiradiene synthetic pathway was enhanced, and the
titer of miltiradiene reached 488 mg/L in a 15-L bioreactor (Zhou
et al., 2012). To improve geraniol production, the synthesis
of geranyl diphosphate (GPP), the precursor of geraniol, was
regulated by controlling the expression of endogenous ERG20,
coupled with up-regulation of the mevalonate pathway by
co-overexpressing IDI1, tHMG1, and UPC2-1 (Zhao et al.,
2016). Moreover, the fusion expression of the key enzymes
was improved by optimizing the amino acid linker and the
order of the proteins, resulting in a production of 293 mg/L
geraniol in fed-batch cultivation (Zhao et al., 2016). The fusion
expression of enzymes can adjust the intracellular metabolic mass
transfer of synthetic pathways, which suggests that adjusting
physical localization of key enzymes can shorten the distance of
metabolite diffusion and thus facilitate the yield of production.

Utilization of Artificial Scaffolds Forms
the Substrate Channeling
The utilization of fusion protein is a relatively simple and efficient
way to regulate intracellular mass transfer. However, there are
still some problems. For instance, in some cases, the fusion
protein will form inclusion body without enzyme activities.
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FIGURE 1 | Transfer process of engineered S. cerevisiae in the synthesis of plant natural products. The brown circle with black arrow indicates substrate transferred
into the cells. The green square with black arrow indicates the product transferred out of the cell. The blue arrow indicates intermediates transferred in cell. The
circles around the cell represent different strategies to refine the metabolic mass transfer in S. cerevisiae. Blue circles represent strategies to enhance intracellular
mass transfer process. Pink circles represent strategies to enhance trans-plasma membrane mass transfer process.

More frequently, fusion expression may reduce the enzyme
activity and destroy the structure of enzymes (Wheeldon et al.,
2016; Poshyvailo et al., 2017). To solve these problems, some
artificial scaffolds (including nucleic acid scaffolds and protein
scaffolds) have been developed to form substrate channeling
for the cascade enzymatic reactions, which can enhance the
membrane free mass transfer process and improve the mass
transfer efficiency. Han employed the retrotransposon element
Ty1 as a scaffold to spatially organize enzymes involved in

biosynthesis of farnesene and farnesol, forming the substrate
channel and resulting in threefold and fourfold increased titers,
respectively (Han et al., 2018). The key enzymes in resveratrol
synthesis pathway including 4CL1 and STS were recruited to
the protein scaffold to relocated in S. cerevisiae, and the yield
of resveratrol was increased by five times (Wang and Yu, 2012).
Through construction and optimization of RNA scaffolds, the
two key enzymes in the pentadecane synthetic pathway were
spatially colocated to form substrate channel, and the yield of
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pentadecane was increased by 140% (Gairik et al., 2014). The
DNA scaffold can also be used in the production of plant
natural products. For example, Conrado constructed a stable
and configurable scaffold based on plasmid DNA. Two enzymes
4-coumarate-CoA ligase and STS involved in the resveratrol
biosynthesis were arranged and coexpressed via the Zif268 and
PBSII ZF domains in the constructed DNA scaffold. As a result,
the titer of resveratrol was increased by fivefold. This scaffold can
also be used in improving 1,2-propanediol and mevalonate acid
production (Conrado et al., 2012). In addition to nucleic acid
scaffolds, protein scaffold is also a useful tool to reduce spatial
distance by forming substrate channel of multienzyme reactions.
The SH3 and PDZ are common ligands in constructing protein
scaffold, which are often used in biosynthetic pathway of plant
natural products to optimize the intracellular metabolic mass
transfer process (Horn and Heinrich, 2015).

Construction of Metabolic
Compartmentalization Enriches the
Concentration of Precursors
Heterologous synthesis of plant natural products often brings
enormous stress to host cells, such as the accumulation of
cytotoxic intermediates and the competition of precursors
coupled with the low mass transfer efficiency (Qiu et al., 2019).
At the same time, the synthesis of plant natural products
usually involves multiple enzymes, and the catalyzed reactions
may occur in different locations within the cell, which are
affected by the mass transfer efficiency. To avoid these problems
and refine the mass transfer, many efficient strategies have
been adopted. Among them, spatialized metabolic engineering,
especially the metabolic compartmentalization engineering, has
been considered as an efficient way. By this method, the whole
pathway could be compartmentalized into several modules
to enrich the concentration of precursors, and thus the
production of plant natural products can be improved. Many
organelles are used as metabolon in yeast cell factory, such as
mitochondria, peroxisomes, endoplasmic reticulum, and vacuole,
which can enhance the mass transfer and provide enough
precursors and suitable environment for the synthesis of plant
natural products. For example, the sesquiterpene synthetase
was relocated in mitochondrial so that the precursors could
be catalyzed directly in the same metabolon. Therefore, the
production of sesquiterpenoids was increased significantly (Farhi
et al., 2011). In a study on squalene production, peroxisomes
were harnessed as subcellular compartments to produce the
target product, leading to the production of squalene reaching
1,312.8 mg/L, which increased by 138-fold compared with
the control strain (Liu et al., 2020). Amorpha-4,11-diene is
one of the most important precursors in the artemisinin
biosynthesis, starting from acetyl CoA. By colocalizing the FPP
biosynthetic pathway (including eight genes) and the amorpha-
4,11-diene synthase into mitochondria, the yield of amorpha-
4,11-diene was increased significantly as more precursors such
as acetyl CoA were provided and mass transfer was enhanced
(Yuan and Ching, 2016). To produce isoprene efficiently, its
biosynthetic pathway was assembled into mitochondria of yeast

cells, and a dual regulation system based on GAL promoter
was constructed to control the synthesis. The final isoprene
production was 2,527 mg/L in fed-batch fermentation (Lv et al.,
2016). Peroxisome is another organelle successfully used in
the production of plant natural products. After introducing
the farnesyl diphosphate synthetic pathway and α-humulene
synthase into the peroxisome, the production of α-humulene
was increased by 2.5-fold with a titer of 1,726.78 mg/L in fed-
batch fermentation (Zhang et al., 2020). By adopting the modular
pathway rewiring strategy, which involved relocalization of the
engineered pathway and improving the precursor supply, the titer
of L-ornithine reached 1,041 mg/L (Qin et al., 2015).

TRANS-PLASMA MEMBRANE MASS
TRANSFER IN YEAST CELL FACTORY

In addition to the intracellular mass transfer, trans-plasma
membrane mass transfer also plays a key role in cell metabolism.
The intake of nutrients and export of toxic metabolic wastes,
as well as secondary metabolites, are the most common
transport processes across cell membrane. Moreover, trans-
plasma membrane mass transfer is also necessary to synthesize
plant natural products. Therefore, enhancing the process of
transport is more beneficial for relieving feedback inhibition and
toxicity of some products (Agapakis et al., 2012).

Enhancing Trans-Plasma Membrane
Mass Transfer by Transporters
Enhancing the intake of nutrients can provide enough cofactors
and precursors to the target pathways. Many uptake transporters
have been used to the heterosynthesis of plant natural products.
For example, the ATP-binding cassette (ABC) transporter of
maltose can enhance the trans-plasma membrane of glucose
and maltose. When it was expressed in engineered yeast, the
production of ivermectin was improved by obtaining more
precursors (Li et al., 2010). Transporter engineering and secretion
strengthening of products are among the most effective strategies
for improving the production of plant natural products, which
not only release the feedback inhibition but also reduce the
cytotoxicity. With the development of genome sequencing and
metabonomic, the enzymes with new functions (Zhu et al., 2018)
together with specific transporters can be mined for the plant
natural products. For example, artemisinic acid is the most
famous drug to treat malaria, which has been synthesized in
S. cerevisiae successfully. But in the early development stage, the
titer was very low, and many strategies were tried. The pleiotropic
drug resistance proteins, which belong to the ABC transporter
family, were induced by artemisinic acid. According to the results,
it could be speculated that the use of ABC transporters may
improve the production of natural products in the engineered
yeast (Ro et al., 2008). In addition, the titer of avermectin was also
increased two times by overexpression of the ABC transporter
AvtAB to enhance the secretory capacity of products (Qiu et al.,
2011). However, the research of transporters for plant natural
product is still lacking, and the study on secretion of plant natural
products in yeast cell factory remains to be further explored.
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Enhancement of Non-specific
Trans-Plasma Membrane Mass Transfer
Because of the lack of studies on transporters of plant natural
products, some non-specific transport methods have been
proposed, including the usage of vesicular, endocytosis, and
exocytosis. Vesicle could be used to store tetraterpenes and
involves their trans-plasma membrane transport in prokaryote.
Regarding the biosynthesis of plant natural products in yeast,
vesicle has been proven to be useful as a functional compartment
and storage pool. For example, to identify the functional enzyme
and improve the titer of tropane alkaloids, more than 20 proteins
were integrated into yeast. Among them, the acyltransferase was
located to the vacuole to improve the production of products
in yeast (Srinivasan and Smolke, 2020). These researches make
it possible to enhance trans-plasma membrane transport of
plant natural products via vesicles from yeast. Furthermore,
the high production of some plant natural products with long
synthetic pathway is challenging in a single strain, because of
the transmembrane of some intermediate metabolites and the
heavy metabolic burden to the yeast cell (Zhang and Wang, 2016;
Wang et al., 2020). To reduce the metabolic burden and provide
stable environment, the biosynthetic pathway can be divided into
several stages and segregated into different strains. Depending on
the mass transfer between different cells, it is suitable to produce
plant natural products especially terpenoids by constructing
Escherichia coli–S. cerevisiae coculture system. The precursors
can be synthesized in E. coli and secreted to the medium
efficiently. Meanwhile, the secreted precursors are ingested by
S. cerevisiae, which can provide membrane system and suitable
environment for expressing cytochrome P450s (Zhou et al.,
2015). For example, paclitaxel is a blockbuster anticancer drug
with long and complex biosynthetic pathway. Its de novo
synthesis in yeast is challenging as some steps of the pathway are
not elucidated. Oxygenated taxane is an important intermediate
of paclitaxel, whose heterologous biosynthesis has been achieved.
In previous study, the E. coli–S. cerevisiae coculture system
was used to increase the titer of oxygenated taxane. In
this system, the multistep pathway was divided into several
modules to reduce the metabolic burden and facilitate metabolic
mass transfer. The engineered E. coli provided the important
precursor taxadiene, which was then consumed by yeast with
inherent membrane system expressing the heterologous P450
monooxygenases (taxadiene 5a-hydroxylase) to produce the
oxygenated taxane (Zhou et al., 2015). The opiate is a famous
alkaloid compound, whose biosynthetic pathway can be divided
into four modules. Galanie constructed a coculture system using
four engineered yeasts. The precursors can be synthesized in the
first yeast host and transferred into the medium, which could
be provided to the next host. Hence, mass transfer optimization
by avoiding the degradation of intermediates was achieved, and
the production of opiates increased by 300 folds (Galanie et al.,
2015). Compared with single strain culturing, coculture of two
engineered yeasts achieved higher production of polyketide drug
monacolin J and lovastatin with the titer increased by 70% (Liu
et al., 2018). Basically, the synthetic pathway of natural products
could be divided into several modules. Different modules could
be designed and functionalized in different hosts, and the final

products can be obtained in the coculture system, which not only
reduces the metabolic inhibition of some intermediates but also
benefits the yield increase.

CONCLUSION AND PERSPECTIVE

Over the past 20 years, the rapid development of synthetic
biology and system biology has provided a versatile technical
platform for heterologous synthesis of plant natural products.
Yeast is turned out to be an attractive host strain. Although
various feasible metabolic engineering tools and useful strategies
have been developed in yeast to improve the production
of plant natural products, there are still many obstacles
in the large-scale production. One notable obstacle is the
unbalance of metabolic mass transfer process. In this regard,
the regulation of metabolic mass transfer has attracted many
interests in metabolic engineering applications. For example,
regulation and optimization of intracellular and trans-plasma
membrane mass transfer can enhance the transfer efficiency,
eliminate the feedback inhibition, and reduce the cytotoxicity of
products. However, most studies on the optimization of mass
transfer process were under specific conditions and lacked of
systematization and universality. More importantly, there are
seldom successful studies on the mining of direct transporters
for plant natural products, which is the main bottleneck for the
export of plant natural products in yeast. Thanks to the repaid
progress in synthetic biotechnology and sequencing technology,
the candidate transporters of plant natural products can be mined
by the omics data, bioinformatics analysis and machine learning.
Another limitation in the exploring of mass transfer strategies
is the lack of high-throughput screening method. As a result,
the mining of transporter as well as the integrated platform for
high-throughput screening would be future research directions.

In summary, the study of mass transfer has achieved initial
success. With the comprehensive progress of the metabolic
engineering as well as the genome editing method, the challenges
in this field for the synthesis of plant natural products will
be solved in the near future. Meanwhile, the mechanisms of
metabolic mass transfer process will be revealed and may have
a far-reaching significance for constructing a comprehensive and
efficient yeast cell factory.
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