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Multivariate radiation injury estimation algorithms were formulated for estimating severe hematopoietic acute radiation syndrome
(H-ARS) injury (i.e., response category three or RC3) in a rhesus monkey total-body irradiation (TBI) model. Classical CBC
and serum chemistry blood parameters were examined prior to irradiation (d 0) and on d 7, 10, 14, 21, and 25 after irradiation
involving 24 nonhuman primates (NHP) (Macaca mulatta) given 6.5-Gy 60Co Υ-rays (0.4Gymin−1) TBI. A correlation matrix
was formulated with the RC3 severity level designated as the “dependent variable” and independent variables down selected
based on their radioresponsiveness and relatively low multicollinearity using stepwise-linear regression analyses. Final candidate
independent variables included CBC counts (absolute number of neutrophils, lymphocytes, and platelets) in formulating the
“CBC” RC3 estimation algorithm. Additionally, the formulation of a diagnostic CBC and serum chemistry “CBC-SCHEM” RC3
algorithm expanded upon the CBC algorithm model with the addition of hematocrit and the serum enzyme levels of aspartate
aminotransferase, creatine kinase, and lactate dehydrogenase. Both algorithms estimated RC3 with over 90% predictive power.
Only the CBC-SCHEM RC3 algorithm, however, met the critical three assumptions of linear least squares demonstrating slightly
greater precision for radiation injury estimation, but with significantly decreased prediction error indicating increased statistical
robustness.

1. Introduction

The increasing risks of nuclear and radiological attacks
by terrorists as well as the dangers from future industrial
and medical radiological accidents emphasize the need for
innovative biodosimetry approaches. Large-scale radiation
emergencies present a myriad of problems. In mass-casualty
scenarios involving radiological-nuclear incidences, it is
believed that a significant confounder will be in the taxing of
themedical infrastructure due to the sheer number of victims
that will likely result. Adding significantly to this burden will
be “concerned” individuals but without significant radiation
exposure [1]. The identification of radiation biomarkers
offers unequivocal potential for performing biodosimetry
and formulating medical treatment strategies for specific
radiation injuries in both the early hours (h) to days (d) and
intermediate 1–4 weeks after the exposure incident [2–5].

Currently, the most practical protocols for estimating
hematopoietic acute radiation syndrome (H-ARS) severity
from accident victims are those that rely on clinical findings
and/or peripheral blood cell counts, such as METREPOL
(medical treatment protocols for radiation accident vic-
tims) [6]. The METREPOL approach is generally considered
the most practical means of assessing radiation injury to
guide medical management and categorizes H-ARS into
four “response categories” ranging from RC1 (mild) to RC4
(severe) [6–8]. The RITN acute radiation syndrome treat-
ment guidelines [7] incorporate the use of the METREPOL
assessment with additional biodosimetry estimators that rely
on time-to-vomiting and/or lymphocyte depletion kinetics
for estimating ARS [9].

Dose-prediction algorithms have been developed using
various biomarkers. For example, an early phase algorithm
developed by Goans et al., based on lymphocyte depletion
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kinetics, was designed for estimating an unknown radiation
dose within the first 8 h after receiving an acute whole-body
exposure [10]. The algorithm was intended to serve as a first
approximation to guide initial medical management. Data
used for formulation of the algorithm was obtained from
the REAC/TS radiation accident registry, which included 43
gamma exposure cases.

The technique of “multivariate analysis” can be applied
to reasonably large datasets [11–14]. State-of-the-art radiation
biology and biodosimetry reports have described univariate
and bivariate analyses in attempts to correlate the biological
effects of radiation doses as prognostic indicators of survival
[15, 16]. Ossetrova et al. [15, 16] reported on the application of
a “discriminant analysis” technique using blood plasma from
a nonhuman primate (NHP) radiation model measured at 1-
2 d after radiation exposure. Studies by Blakely and colleagues
[17, 18] applied a multivariate “repeated measures” analysis
approach, also using data from an NHP radiation model,
examining the changes in serum amylase, C-reactive protein
(CRP), and hematological blood cell counts measured at 1–
4 d after radiation exposure. A recent study by Moroni et al.
[19] compared a Gottingen minipig radiation model with
radiation data from humans, canines, and baboons for time
points ranging between 3 h and 60 d. Changes in C-reactive
protein levels and blood recovery profiles were examined.
Studies by Meadows et al. [20, 21] demonstrated the utility of
using genome-wide expression analysis of peripheral blood
(PB) taken at 6 h, 24 h, and 7 d, for generating gene expression
profiles in C57BL/6mice. Meadows et al. showed the poten-
tial of PB gene expression profiles for predicting radiation
exposure anddistinguishing specific doses followingTBI.The
group also characterized PB signatures of partial-body irra-
diation exposure using blood drawn at 6 h after irradiation
[22] but was unable to predict radiation status based upon
the site of the radiation exposure. Baranov and colleagues [23]
attempted to improve radiation dose estimation accuracy by
developing dose estimation formulas derived from hemato-
logical indices from Chernobyl accident patients measured
from 4 to 8 d after irradiation exposure. Blood neutrophil,
lymphocyte, and platelet kinetics were examined between 0
and 60 d for formulating dose estimation curves based on
their nadirs in response to various radiation doses.

Aneed exists for assessing individuals receiving unknown
radiation doses during the intermediate phase (7–21 d). In
scenarios in which victims are known to have initially
received an unknown radiation dose, early biomarker dis-
crimination is by far the preferred means of assessment
[17]. Unfortunately, not all scenarios have involved victims
knowledgeable about their initial exposure, such as was the
case with an industrial radiation accident in Dakar, Senegal,
in 2006 [24]. In these scenarios, the discovery of having been
given a radiation dose is sometimes not realized until well
after day 7, thus eliminating the opportunity for radiation
injury and dose assessment using the classic early phase
biomarker panel (CRP, neutrophils, lymphocytes, neutrophil
to lymphocyte ratio, and serum amyloid A (SAA)). Inter-
mediate (>1 week after exposure) and long term (months
after exposure) biomarkers for dose assessment are therefore
necessary.

While these dose assessment approaches have shown
utility [15–18, 22, 23], they could be enhanced by an assurance
of noncollinearity of the independent variables. Lacking, as
well, are weighting methods for the use of several parameters
to assess the severity of radiation injury for specific organ
or tissue damage. Because of these gaps, potentially effective
medical countermeasure techniques are difficult to imple-
ment or are not applied appropriately.

Identification of radiation-sensitive biomarkers that are
measurable using existing effective analytical techniques
would enable medical treatment to be incorporated in a
strategic and timely manner [25–28]. The aim of this pilot
study was to form a basis for meeting these challenges using
a multivariate analytical approach and selection of blood
variables that are currently available in themedical diagnostic
infrastructure. This paper reports on the proof-of-concept
development of algorithms using blood based biomarkers
from 7 to 25 d after radiation exposure for estimating a
METREPOL H-ARS RC3 condition in a rhesus TBI model.
The hypothesis tested was that the application of multivariate
analysis can be applied for identifying radiation sensitive
complete blood counts (CBCs) and serum blood chemistry
parameters in the development of diagnostic H-ARS RC3
algorithms for estimating a METREPOL H-ARS RC3 condi-
tion in the time frame between 7 and 25 days after irradiation.

2. Materials and Methods

2.1. Nonhuman Primates Radiation Model. The NHP radia-
tion model used in this study has previously been described
in detail [18, 29]. Research with animals was conducted
according to the principles enunciated in the Guide for
the Care and Use of Laboratory Animals prepared by the
Institute of Laboratory Animal Resources, National Research
Council. Male rhesus monkeys (Macaca mulatta) were
housed in individual stainless-steel cages in conventional
holding rooms at the Armed Forces Radiobiology Research
Institute’s (AFRRI) Veterinary Sciences Department in an
animal facility accredited by the Association for Assessment
and Accreditation of Laboratory Animal Care (AAALAC)
International. Ex vivo radiation exposures (controls or 0Gy:
𝑛 = 24; 6.5 Gy TBI 60Co 𝛾 ray at 0.4Gymin−1: 𝑛 = 8)
and dosimetry were performed as previously described [18,
29]. All irradiated NHPs received basic clinical supportive
care (i.e., oral electrolytes, moist food, etc.). The total body
6.5Gy radiation dose was considered the equivalent of a
METREPOL BM-ARS RC3 condition as outlined in the
Medical Management of Radiation Accidents-Manual on the
Acute Radiation Syndrome [6–9].

2.2. Blood Sampling Analyses. The screening and identifi-
cation procedures for radiation-responsive candidate blood
parameters are outlined in Figure 1.

2.3. Compilation of Initial Blood Variables. Blood biosam-
pling (∼1.5mL) for control data was performed twice for all
24 animals over a period of 2 months prior to irradiation.
Approximately 1.5mL of blood was collected from the NHPs
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Step 1: compilation of initial blood variables
CBC and clinical chemistry data collected from the NHPs were 

compiled into a data matrix for evaluation for potential candidate 
variables for multivariate modeling.

Step 2: identification of candidate blood variables
Blood samples from the data matrix that did not meet statistical 

analysis and/or radioresponsiveness were eliminated.

Step 3: analysis of candidate blood variables
Thirty-two candidate blood variables, a “time” variable, and “RC3

(radiation dose)” as the “dependent variable” were correlated.
Minor collinearities between the variables were not relevant;

Durban-Watson test was performed for detecting autocorrelation;
Shapiro-Wilks normality test was performed for determining normal 

distribution of the residuals.

Step 4: formulation of two “RC3” models/algorithms
Two models/algorithms “CBC” and “CBC-SCHEM” were
formulated from the result of the multivariate statistical

analysis for estimating a METREPOL RC3 condition
from identified CBC and serum chemistry parameters.

Figure 1: Schematic for formulating a response category 3 (RC3)
estimation algorithm. Formulations of the two multivariate mod-
els/algorithms were performed in a four-step process: compilation
of initial blood variables, identification of candidate blood variables,
analysis of candidate blood variables, and the formulation of two
“RC3” models/algorithms.

that received a 6.5Gy total body irradiated dose (𝑛 = 8),
on d 7, 10, 14, 17, 21, and 25 after irradiation. The total
blood volume draw was less than 10% of the estimated total
blood volume based on the animal body weight during the
30-day postirradiation study window. Blood volume draw
representing less than 10% over a 1-month period was shown
to have negligible influence in NHP ARS studies [30].

A total of 106 permutations of blood parameters consist-
ing of CBCs, serum blood chemistry, and related ratio values
were recorded (Table 1). Blood sample parameter values were
recorded for the 24 controls NHPs (twice) and 8 of the 24
NHPs irradiatedwith 6.5Gy at the 6 postirradiation sampling
time points. Sample values were measured and compiled into
a data matrix totaling 3,228 data entries. Reference (baseline)
concentrations were evaluated for postirradiation sampling
time points. Sample values were measured and compiled
into a data matrix totaling 3,228 data entries. Reference
(baseline) concentrations were evaluated for normality of
distribution using MedCalc statistical software (MedCalc
Software, Ostend, Belgium). In selected cases, the data were
log transformed in order to determine geometric means and
95% confidence limits.

2.4. Identification of Candidate Blood Variables. From the
datamatrix, variables were evaluated for theirmean, standard
error of the mean (SEM), and standard deviation (SDEV).
Variables with SEM values ≤10% of the statistical mean
were selected as candidate variables. This procedure was
performed in order to imply that the least-squares assump-
tion was met in the fact that random disturbances of each
fixed variable of the candidate variables were distributed
independently with a mean of zero and common variance
(data not shown).

The selected candidate variable datasets were evaluated
for their radioresponsiveness determined by a comparison
of the irradiated values with the controls using percent
differences. Parameters downselected for furthermultivariate
modeling analyses were restricted to only those with differ-
ences of ≥10% compared to controls and with SEM of the
percent differences of ≤10% (data not shown). Candidate
variables that satisfied these criteria were included in the
dataset for analysis in a correlation matrix. Conversely, all
blood variables that did not meet this criterion were not
included in the multivariate analyses. Independent variables
that are downselected consisted of 31 blood variables and are
presented with an asterisk in Table 1.

2.5. Formulation of the “Correlation Matrix” and Analysis of
Candidate Blood Variables. A correlation matrix of the 32
prior selected blood parameters alongwith time and dosewas
constructed. These 32 variables were then downselected to
9 variables that included the dependent variable (dose) and
independent variables of time and 7 of the 32 prior selected
blood parameters. The blood parameters were chosen due to
their relatively high collinearity with radiation dose as well
as their low collinearity with each other to create a more
manageable dataset [13]. This dataset was used for modeling
radiation injury. The blood candidate variables were tested
for correlations with the dependent variable. Pearson cor-
relations were considered between the ranges of 0.25–1.0.
Bivariate r-squared values were calculated using Statistix 9
analytical software (Statistical Software, Tallahassee, FL) for
indicating the predictive power of the independent variables
relative to the level of injury from an H-ARS RC3 condition.

2.6. Formulation of Two “METREPOL H-ARS RC3 Models”.
A multivariate model (with the widely used white blood cell
parameters: absolute number of lymphocytes, neutrophils,
and platelets as the explanatory variables) was used as
the complete blood count “CBC” RC3 model for compari-
son with a complete blood count serum chemistry “CBC-
SCHEM” RC3 model. The CBC-SCHEM model consisted
of the three well-established predictors used in the CBC
model and four serum chemistry variables.Themost efficient
combination of the CBC predictors with candidate serum
chemistry variables was used to formulate the linear CBC-
SCHEM RC3 model for increasing accuracy in estimating a
METREPOL RC3 condition.

A “Stepwise Linear Regression” technique (Statistix) was
used to determine the best variable combinations for building
the CBC-SCHEMmodel.
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Table 1:The 106CBC, blood chemistry parameters, and related ratios based from the 7 time points (0, 7, 10, 14, 17, 21, and 25 d after irradiation).
Variables marked with an asterisk indicate the 32 selected for entry in the correlation matrix.

CBC panel parameters Blood chemistry panel parameters Ratios of CBC and blood chemistry parameters
∗Hematocrit (relative volume of
erythrocytes) (HCT)

∗Alanine transaminase level (ALT) TRIGL/TP CK/ALB
∗Hemoglobin concentration (HGB) Albumin level (ALB) #BASO/WBC CK/ALB
∗Mean corpuscular (erythrocyte) volume
(MCV)

∗Alkaline phosphatase level (ALKP) #EOS/WBC CK/TP
∗Mean corpuscular hemoglobin (MCH) Amylase level (AMYL) #LUC/WBC CK/TP
∗Mean corpuscular hemoglobin
concentration (MCHC)

∗Aspartate aminotransferase level (AST) ALC/WBC CO2/PO4
∗Mean platelet (thrombocyte) volume
(MPV) Bilirubin level (BILI) #MONO/WBC GGT/ALB
∗Number of basophils (# BASO) ∗Blood urea nitrogen level (BUN) #RETIC/WBC, GGT/TP
∗Number of eosinophils (# EOS) Calcium level (Ca) %EOS/WBC GLU/ALB
∗Number of leucocytes (# LUC) ∗Carbon dioxide concentration (CO2) %LYMPH/WBC HCT/ALB
∗Number of lymphocytes (# ALC) Chloride level (Cl) %NEUT/WBC HGB/RBC
∗Number of mononuclear cells (#
MONO) Cholesterol Level (CHOL) %RETIC/WBC K/Na
∗Number of neutrophils (# ANC) ∗Creatine kinase level (CK) ALB/TP LDH/ALB
∗Number of reticulocytes (# RETIC) ∗Creatinine level (CR) ALKP/ALB LDH/TP
∗Percentage of basophils (% BASO) Gamma-glutamyl transferase level (GGT) ALKP/TP LPS/ALB
∗Percentage of eosinophils (% EOS) Glucose level (GLU) ALT/ALB MCH/RBC
∗Percentage of leukocytes (% LUC) ∗Lactate dehydrogenase level (LDH) ALT/TP MCHC/RBC
∗Percentage of lymphocytes (ALC) Lipase level (LPS) AMYL/ALB MCV/WBC
Percentage of mononuclear cells (%
MONO) Phosphate level (PO4) AST/ALB MPV/WBC
∗Percentage of neutrophils (% NEUT) ∗Potassium level (K) AST/TP Na/K
∗Percentage of reticulocytes (% RETIC) Sodium level (Na) BASO/%LUC ANC//WBC
∗Platelet count (# APC) Total protein level (TP) BILI/ALB APC/WBC
∗Red blood cell count (# RBC) Triglyceride level (TRIGL) BILI/TP PO4/CO2
∗White blood cell count (# WBC) ∗Uric acid level (URIC) BUN/ALB RBC/WBC

Ca/ALB TP/ALB
Ca/PO4 TRIG/ALB
Ca/TP TRIGL/CHOL
CHOL/ALB URIC/ALB
CHOL/TP URIC/BUN
CHOL/TRIG URIC/TP
Cl/Na WBC/RBC

2.7. Formulation of the CBC RC3 Model. Three commonly
employed radiation-sensitive blood variables (biomarkers)
were deduced from a literature search; variables with “time”
dependency used to formulate a hematology based CBC RC3
model [31–33] included day after radiation dose (TIME),
absolute neutrophil count (×103 cells 𝜇L−1) (ANC), abso-
lute lymphocyte count (×103 cells𝜇L−1) (ALC), and absolute
platelet count (×103 cells𝜇L−1) (APC) [31].

A standard multivariate equation [13, 14] was used as the
framework for formulating an RC3 model utilizing the CBC
blood variables:

𝑌 = 𝛼 + (𝛽
1
)(𝑋
1
) + (𝛽

2
)(𝑋
2
) + (𝛽

3
)(𝑋
3
) + (𝛽

4
)(𝑋
4
) +

Residual;

Y = RC3;

𝛼= (𝛼-coefficient), theY intercept (calculated by Stat-
istix);

𝛽 = (𝛽-coefficient), the 𝛽-coefficient is the amount of
change 1 unit of𝑋produced inY, which is represented
by the slope of the curve (the derived 𝛽-coefficient
was calculated by Statistix for each independent
variable used in the model);
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𝑋
1
= days after radiation dose-variable 1 (TIME);
𝑋
2
= CBC-variable 2, neutrophil count (ANC);
𝑋
3
= CBC-variable 3, lymphocyte count (ALC);
𝑋
4
= CBC-variable 4, platelet count (APC).

2.8. Formulation of the CBC-SCHEM RC3 Model. Using the
CBC RC3 model as a starting equation, a “CBC-SCHEM”
multivariate model was formulated by adding 4 additional
independent variables to the CBC RC3 model configuration.
The following blood variables were added: relative abundance
hematocrit (HCT) in units of percentage and the enzymes
aspartate aminotransferase (AST), creatine kinase (CK), and
lactate dehydrogenase (LDH) in units per liter.

2.9. Statistical Software Application in NHP Radiation Injury
Modeling. To construct two multivariate models, mathemat-
ical and statistical algorithms from Statistix and Gauss 10
and Gauss X (Aptech Systems, Inc., Black Diamond, WA)
software were used to compute the coefficients and SEMs of
two sets of CBC and blood chemistry variables correlated
with a preirradiation (0Gy) and 6.5Gy 60Co 𝛾-radiation
dose. Subsequently, the residuals of the two models were
compared and examined rigorously for serial errors and
autocorrelation (Durbin-Watson statistic (DW)) as well as
for constancy of error variance (Shapiro-Wilk (SW) and
Breusch-Pagan statistics (BP)). Results from these residual
analyses were crucial for determining whether the basic
assumptions of linear-least-squares modeling were satisfied
by both the CBC and the CBC-SCHEM models. Finally, to
determinewhether potential problems due to autocorrelation
among the independent variables existed, the eigenvalues
of the independent variables were computed and evaluated
according to criteria developed by Chatterjee and Price [12,
34].

From the multivariate models, R-squared values were
generated to characterize the independent-variable correla-
tions (relationships) for preirradiation controls (RC0) and the
6.5Gy radiation dose cohort (RC3). When interpreting an R-
squared value, it is important to realize that a large value of
the R-squared or a significant 𝑡-test statistic does not assure
that the data are well fitted [12, 13]. Asmentioned above, other
tests were performed such as theDW-test for autocorrelation,
the SW-test for normality to detect residual patterns, and
the BP-test for heteroscedasticity (inconstant error variance).
In combination, the results from these three tests provided
the rationale for trusting and accepting the calculated SEMs
of both the coefficients of the independent variables (the
predictor variables) derived parameters such as the predicted
values of the dependent variable (radiation dose). These
tests provided evidence of no major violations of least-
squares-analysis assumptions; hence, secondary evaluations
of a single model or any comparisons between models based,
for example, on the width of the 95% confidence intervals or
the chi square tests were performed.

2.10. Formulation of RC3 Algorithms. The CBC and CBC-
SCHEM RC3 models were adjusted for estimating the RC3

associated with a 6.5 Gy radiation injury. In this procedure,
the “𝑌” variable used in the two-model equations (RC3) was
substituted for the calculated “RC3 estimations.”

2.11. Deriving the RC3 Estimation Value. The RC3 model
served as a template for deriving an RC3 value for the cohort
of NHPs given a 6.5Gy dose. For the RC3 model, the 𝑌
variable is equal to RC3.The derived RC3 algorithm differs in
function from the RC3 estimation model such that 𝑌 is now
equal to an estimated METREPOL RC value.

2.12. Statistical Testing of the Residuals of the Two RC3Models.
Residuals of the two derived RC3 models (CBC and CBC-
SCHEM) were tested for autocorrelation using the DW
test for autocorrelation and for significant departure from
normality using the SW normality test. Residual profiles also
were examined for the two models (to determine systematic
residual patterns) using Statistix, as well as the BP-test
for heteroscedasticity using Gauss 𝑋. Statistix was used
for calculating eigenvalues for determining the individual
noncorrelation score of the independent (predictor) variables
used in the models.

Univariate and multivariate receiver operating character-
istic (ROC) curve analyses were performed using the ROC-
CET online tool [35]. The area under the curve (AUC) with
95% confidence limits (CL) was calculated for each blood
variable or combination of blood variables using the support
vector machine (SVM) approach to show the specificity and
sensitivity of biomarker combinations to reflect subgroup
differences.

3. Results

3.1. Selection of Variables for the RC3 Models. Using multi-
variate analysis, CBC and blood chemistry parameters were
evaluated as potential independent variables relative to the
effects of a 0 and 6.5Gy 60Co 𝛾-radiation TBI dose (RC3).
All variables that correlated with the dependent variable were
tested against each other for multicollinearity, as shown in
Table 2, according to correlation values. The downselection
for the variables was based on a high collinearity with
radiation and relative low collinearity with each other. The
relative order of high correlation (values close to −1 or +1)
with radiation was APC > ALC > HCT > ANC > AST >
LDH > CK and spanned correlation coefficient values of
−0.79 to 0.08. In the case of the selection parameter of low
collinearity with each other, the CBCmodel was limited such
that it involved only 3 possible blood count combinations
with their correlation coefficients between −0.34 and−0.79.
In the case of the CBC-SCHEMmodel, there are 21 combina-
tions. Each of these selected blood variables when compared
with another or all shows two to four combinations with
correlation coefficients between > −0.02 and ≤+0.67 with
each other.

3.2. Radioresponse Time Course for Blood Variables. The time
course changes for the 7 blood variables used in the models
are shown in Figure 2. The main findings shown in Table 3
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Table 2: Multivariate correlation values for the “CBC” (bold) and the “CBC-SCHEM” (italic) RC3 models.

Correlation coefficients
Parameters Rad dose Time ANC ALC APC AST CK HCT
Rad dose 0.87 −0.58 −0.77 −0.79
Time 0.87 −0.34 −0.58 −0.60
ANC −0.57 −0.33 0.60 0.66
ALC −0.77 −0.59 0.61 0.67
APC −0.79 0.04 0.66 0.67
AST 0.26 −0.13 −0.10 −0.26 −0.12
CK 0.08 −0.77 −0.04 0.16 −0.03 0.60
HCT −0.68 0.06 0.31 0.54 0.57 −0.02 0.07
LDH 0.14 0.06 0.12 −0.12 0.06 0.77 0.58 0.04

were that all seven blood variables demonstrated radiore-
sponsiveness at various time points after irradiation. The
four CBC variables ANC, APC, ALC, and HCT significantly
decreased compared to baseline from day 7 to day 25. The
three enzymes AST, CK, and LDH increased compared to
baseline on day 7 after irradiation, returning to baseline levels
between day 10 and day 25.

3.3. Multivariate RC3 Models. Table 4 shows the 𝛼-coef-
ficients for both the CBC and CBC-SCHEM RIE models
determined by stepwise linear regression analysis. The 𝛽-
coefficients were calculated for each independent variable
used in the model and are shown in Table 4.

In order to compare the two models’ (CBC and CBC-
SCHEM) predictive power for radiation injury, theR-squared
values were determined at 0.91 (91%) (𝑃 = 0.0001) and 0.93
(93%) (𝑃 = 0.0001), respectively. Both models explained
>90% of the effect a 6.5 Gy 60Co 𝛾-radiation dose has on
the blood variables or the combination of the blood variables
with blood chemistry variables.

3.4. Testing for Autocorrelation of Variables in the RC3Models.
The fitted sets of the noncollinear independent variables
were checked in the two models using the DW test for
autocorrelation. Statistical tables revealed thatDW test values
below 1.5 rejected the hypothesis of the absence of negative
autocorrelation. In the range between 1.5 and 1.8, the DW
test is considered inconclusive. Both models tested at an
inconclusive range between 1.6 and 1.7; that is, there was no
definitive evidence for autocorrelation in either model. The
SW statistic, however, was more definitive, which indicated
a 𝑃 value of 0.03 for the CBC model, clearly rejecting the
hypothesis of a normal distribution of the residuals which is a
violation of the assumptions of linear-least-squares analyses.
In contrast, a 𝑃 value of 0.84 was derived for the CBC-
SCHEMmodel that clearly accepts the hypothesis of normal
distribution of the residuals, consistent with the requirements
of linear-least-squares analyses.

3.5. Testing for Presence of Heteroscedasticity in the RC3
Models. Heteroscedasticity was detected in the CBC model

as indicated by the low𝑃 value of P(W) = 0.02. Heteroscedas-
ticity was not detected in the CBC-SCHEMmodel at P(W) =
0.81. This strengthened the findings from the SW normality
test statistic for the CBC-SCHEM model but weakened the
SW statistic for the CBC model.

3.6. Testing for Multicollinearity in the RC Models. Eigenval-
ues of the predictor variables were calculated for determining
the individual noncorrelation score (collinearity) of the
variables used in the models. The sum of the reciprocals of
the eigenvalues should not total more than five times the
number of predictor variables in the equation. If they do
exceed five times, then multicollinearity is of concern [12].
In applying this criterion, the eigenvalues did not suggest
significant collinearity in either of the models.

3.7. Correlation Analysis and Interpretation. Pearson corre-
lations were performed in order to determine the variables
that correlated strongly with the dependent variable yet were
noncollinear with each other. Pearson correlation values
between independent variables and the dependent variable
ranged from −0.34 to 0.67 and −0.58 to 0.87, respectively,
in the CBC model, and from −0.25 to 0.77 and −0.79 to
0.26, respectively, in the CBC-SCHEM model (Table 2). As
shown in Figure 3, the residuals of the independent var-
iables were closer to the regression in the CBC-SCHEM RC3
model (Figure 3(b)) in comparison with the CBC model
(Figure 3(a)) with W = 0.96 and P(W) = 0.02 (hypothesis
is rejected of normal distribution of residuals) for the CBC
model andW = 0.98 and P(W) = 0.81 (hypothesis is accepted
of normal distribution of residuals) for the CBC-SCHEM
model.

3.8. Interpretation of the ROC Analysis. Table 5 compiles the
results of ROC curve analyses for the seven blood variables
as potential diagnostic markers for radiation injury. AUC
values with 95% CL were calculated at each individual time
point for individual biomarkers aswell as some combinations,
including both the CBC and CBC-SCHEM RC3 models.
Between 7 and 17 d after irradiation, ALC, ANC, and APC
individually showed great separation of the twodoses (AUC≥
0.95). At 21 d and 25 d after irradiation of the three, only ALC
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Figure 2: Candidate NHP blood parameters considered in the formulation of the CBC and CBC-SCHEM RC3 models (a) ANC, (b) ALC,
(c) APC in (×103 cells 𝜇L−1), (d) abundance HCT in %, (e) CK, (f) AST, and (g) LDH in UL−1. The seven blood parameters were graphed with
their standard errors for detecting the radiosensitivity of NHPs to a 6.5Gy 60Co 𝛾-radiation dose on d 0 (nonirradiated, 𝑛 = 8) and 7, 10, 14,
17, 21, and 25 d after irradiation (𝑛 = 8) (shaded areas indicate range between upper and lower 95% confidence levels).
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Table 4: CBC and CBC-SCHEM RC3 model equations.

(a) “CBC” RC3 model

RC3 = 1.93 + (0.09) (TIME) + (−0.06) (ANC) + (−0.36) (ALC) + (−2.685 × 10−3) (APC)
R2 = 0.908, P = 0.00001, n = 92, F = 39.3, SE of the estimate = ±1.01

Predictor Value 𝑡 value 𝑃 value
𝛼 1.93 12.61 0.00
TIME 𝛽1 0.09 13.06 0.00
ANC 𝛽2 −0.06 −1.87 0.06
ALC 𝛽3 −0.36 −4.53 0.00
APC 𝛽4 −2.685 × 10

−3
−4.81 0.00

(b) “CBC-SCHEM” RC3 model
∗RC3 = 0.42 + (0.11) (TIME) + (−0.06) (ANC) + (−0.26) (ALC) + (−2.787 × 10−3) (APC)
+ (0.01) (AST) + (1.968 × 10−5) (CK) + (0.02) (HCT) + (−8.682 × 10−5) (LDH)

R2 = 0.933, P = 0.00001, n = 92, F =36, SE of the estimate = ±0.88
Predictor Value 𝑡 value 𝑃 value
𝛼 0.42 0.85 0.39
TIME 𝛽1 0.11 12.82 0.00
ANC 𝛽2 −0.06 −2.06 0.04
ALC 𝛽3 −0.26 −3.50 0.00
APC 𝛽4 −2.787 × 10

−3
−5.52 0.00

AST 𝛽5 0.01 2.71 0.00
CK 𝛽6 1.968 × 10

−5 1.81 0.07
HCT 𝛽7 0.02 1.79 0.07
LDH 𝛽8 −8.682 × 10

−5
−0.61 0.54

Note.The 𝑡 value represents the ratio of the 𝛽-coefficient over its SE. The 𝑃 value represents the significance of the 𝑡 value.
∗(Adding of CK and LDH enables the model to pass the requirements of linear-least-squares analysis.)
See text 2.7 for units values of the variables shown in both algorithms.
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Figure 3: The “CBC” W = 0.96 and P(W) = 0.02 (a) and “CBC-SCHEM” W = 0.98 and P(W) = 0.81 (b): multivariate RC3 models were
checked for normal probability and residual patterns. In comparing the residuals of the variables used in the independent variables between
the two models, a closer fit to the regression was observed at the tail ends of the CBC-SCHEM RC3 model indicating higher prediction
accuracy.
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Table 5: Receiving operator curve analysis of single and combination of blood variables at the six time points 7, 10, 14, 17, 21, and 25 d after
irradiation equations.

ROC AUC values at 95% CL, comparison of RC0 and RC3
Time after irradiation, d

Blood variable
combination 7 d 10 d 14 d 17 d 21 d 25 d Pooled

ALC AUC 1 1 1 1 0.85 1.0 0.98
95% CL 0.04–1.00 0.93–1.00 0.94–1.00

ANC AUC 0.96 1 1 1 0.43 0.56 0.88
95% CL 0.90–1.00 0.00–0.90 0.20–0.83 0.77–0.98

APC AUC 0.99 1 1 1 0.76 0.67 0.94
95% CL 0.97–1.00 0.00–1.00 0.00–1.00 0.85–1.00

HCT AUC 0.58 0.74 0.88 0.99 0.99 0.98 0.92
95% CL 0.05–1.00 0.02–0.98 0.08–0.99 0.98–1.00 0.98–1.00 0.94–1.00 0.84–0.99

LDH AUC 0.74 0.51 0.54 0.48 0.45 0.47 0.42
95% CL 0.04–0.97 0.25–0.78 0.24–0.84 0.17–0.85 0.16–0.86 0.20–0.77 0.29–0.66

CK AUC 0.91 0.49 0.48 0.51 0.5 0.47 0.50
95% CL 0.02–0.98 0.34–0.65 0.17–0.85 0.12–0.86 0.30–0.71 0.24–0.76 0.36–0.65

AST AUC 0.96 0.50 0.58 0.56 0.50 0.54 0.44
95% CL 0.92–1.00 0.30–0.75 0.20–0.82 0.09–0.91 0.19–0.81 0.33–0.75 0.20–0.65

“CBC” RC3 model

ALC, ANC, APC AUC 1 1 1 1 0.87 0.92 0.97
95% CL 0.51–1.00 0.61–1.00 0.91–1.00

“CBC-SCHEM” RC3 model
ALC, ANC, APC, HCT,
LDH, CK, AST

AUC 1 1 1 1 0.95 0.96 0.99
95% CL 0.99-1.00 0.95–1.00 0.95–1.00 0.98–1.00 0.76–1.00 0.82–1.00 0.97–1.00

values maintained the separation (AUC = 0.84 and 1.0, resp.).
HCT showed a general increase in AUC between 7 d and 25 d
from0.58 to 0.98, respectively. LDH,CK, andAST showed the
highest AUC values at 7 d after irradiation only (AUC ≥ 0.73)
and then decreased at 10 d (AUC ≤ 0.57) and remained low
through 25 d.The combination of seven biomarkers, the same
as used in the CBC RC3 model, showed the highest overall
AUC values across all time points.

3.9. Testing the RC3 Algorithms. An assessment of the accu-
racy of the RC3 algorithms (𝛽-coefficients) was performed
using the same dataset for formulating the RC3 models.
Measured blood and time values were entered into the two
algorithm templates (shown in Section 2.11).

Calculations related to the estimated RC3 values for
either nonradiation (0Gy) or a 6.5 Gy 60Co 𝛾-ray TBI dose
were then performed using the alpha and beta-coefficients
obtained by multivariate analyses from the two RC3 models.

Estimated RC3 assignment accuracies (how close amodel
estimated an RC3 condition) were compared between the
two models. Values for the models were compared by their
individual estimated RC3 values and upper and lower 95%
confidence and prediction interval bandwidths as shown
in Tables 6(a) and 6(b). Both algorithms estimated RC3
spanning 7 to 25 days after irradiation with over 90% pre-
dictive power (CBC: 91% ±1.01, 𝑃 = 0.00001, 𝑛 = 92;

CBC-SCHEM: 93% ±0.88, 𝑃 = 0.00001, 𝑛 = 92). Only the
CBC-SCHEMRC3 algorithm, however, met the critical three
assumptions of linear least squares demonstrating slightly
greater precision for RC3 estimation, but with significantly
increased prediction error (𝑡 > 108, 𝑃 = 0.00001) suggesting
increased robustness of the CBC-SCHEMmodel.

Assignment accuracies were derived from the CBC and
CBC-SCHEM algorithms and compared with the NHP
cohorts at 7, 10, 14, 17, 21, and 25 d after irradiation (Figure 4).
The percentages were based on the total number ofNHPs that
were within the range >2.5–<3.5 for the six postirradiation
days. Comparison of the overall assignment accuracies of the
two models indicates that neither model is predicted with
significantly higher accuracy than the other (CBC overall
assignment accuracy = 95.3%, 9 ± 2.58, 𝑛 = 46; CBC-SCHEM
overall assignment accuracy = 96.5%, ±2.04, 𝑛 = 46).

When comparing the RC3 assignment accuracies
between the CBC and CBC-SCHEM RC3 algorithms, total-
ing the number of NHPs that were within the ranges of
>2.4–<3.5, RC3 assignment accuracy was at 75% and 62.5%
for the CBC and CBC-SCHEM, respectively, on day 7. 100%
accuracy was reached on day 10 with the CBC-SCHEM
algorithm and only 67.5% with the CBC. Both algorithms,
however, estimated radiation severity at 57.1% accuracy on
day 14 and 71.4% accuracy on day 17. The CBC algorithm
estimated better on day 21 at 75% accuracy with the CBC-
SCHEM estimating at 62.5%. On day 25, the CBC-SCHEM
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Table 6: RC3 estimations.

CBC∗ CBC-SCHEM†

Day
Estimated
Response
Category

95% Prediction
Limit Width

95%
Confidence
Interval Limit

Width

Day Estimated
Response Category

95%
Prediction Limit

Width

95%
Confidence
Interval Limit

Width

7

1.73 1.90 0.39

7

2.26 1.76 0.63
2.56 1.89 0.32 2.54 1.70 0.39
2.93 1.90 0.30 2.72 1.88 0.33
2.78 1.90 0.60 2.85 1.67 0.54
3.17 1.89 0.63 3.20 1.68 0.57
2.09 1.88 0.33 2.48 1.99 0.44
2.57 1.89 0.33 2.34 1.68 0.39
3.16 1.93 0.37 3.00 1.84 0.42

10

3.33 1.89 0.35

10

3.16 1.68 0.41
3.31 1.89 0.39 3.22 1.68 0.36
3.50 1.90 0.53 3.48 1.68 0.54
2.24 1.90 0.35 3.08 1.68 0.93
2.78 1.90 0.39 2.67 1.68 0.37
3.18 1.89 0.37 3.06 1.68 0.35
3.48 1.90 0.36 3.47 1.68 0.37
3.48 1.90 0.38 3.43 1.72 0.37

14

3.30 1.89 0.49

14

3.22 1.67 0.46
1.90 1.90 0.37 1.96 1.69 0.33
2.70 1.90 0.37 2.54 1.68 0.36
3.14 1.90 0.36 2.99 1.68 0.36
3.43 1.89 0.37 3.13 1.67 0.41
3.77 1.89 0.38 3.76 1.74 0.36
4.02 1.89 0.46 3.79 1.68 0.46

17

2.00 1.89 0.33

17

2.28 1.69 0.37
2.66 1.90 0.35 2.46 1.68 0.35
3.06 1.90 0.34 2.86 1.69 0.34
2.97 1.89 0.33 2.81 1.67 0.32
2.86 1.89 0.52 2.86 1.68 0.47
3.41 1.89 0.49 3.38 1.67 0.45
1.91 1.89 0.28 2.87 1.72 1.13

21

2.55 1.96 0.32

21

2.40 1.73 0.39
3.10 1.90 0.34 3.27 1.68 0.58
3.28 1.90 0.32 3.45 1.68 0.37
2.87 1.90 0.46 3.04 1.68 0.74
2.25 1.94 0.87 2.51 1.70 0.86
2.14 1.92 0.33 2.40 1.80 0.37
2.73 2.01 0.38 2.48 1.77 0.39
3.06 1.94 0.33 2.77 1.73 0.37

25

3.12 1.94 0.34

25

2.99 1.74 0.34
2.65 1.94 0.75 2.59 1.72 0.68
3.15 1.93 0.55 3.09 1.70 0.52
2.21 1.92 0.48 2.83 1.70 0.84
2.68 1.93 0.36 2.69 1.70 0.54
3.07 20.6 0.33 3.42 1.85 0.53
2.32 1.94 0.55 2.37 1.72 0.55
2.97 1.99 0.69 3.07 1.76 0.63
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Table 6: Continued.

CBC∗ CBC-SCHEM†

Day
Estimated
Response
Category

95% Prediction
Limit Width

95%
Confidence
Interval Limit

Width

Day Estimated
Response Category

95%
Prediction Limit

Width

95%
Confidence
Interval Limit

Width
Mean 2.86 1.91 0.42 Mean 2.90 1.71 0.48
SD 0.52 0.03 0.13 SD 0.42 0.06 0.18
SEM 0.08 0.01 0.02 SEM 0.06 0.01 0.03
∗The “CBC” RC3 model failed to meet the critical three assumptions of Linear-Least-Squares and was therefore NOT ACCEPTED as statistically sound for
estimating H-ARS RC3.
†The “CBC-SCHEM”RC3modelmet the critical three assumptions of Linear-Least-Squares andwas therefore ACCEPTED as statistically sound for estimating
H-ARS RC3.
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Figure 4: RC3 assignment accuracies derived from the CBC and
CBC-SCHEM algorithms were compared with the NHP cohorts (7,
10, 14, 17, 21, and 25 d) after irradiation. Percentages were based on
the total number of NHPs that were within the range >2.5–<3.5 for
the six postirradiation days (bars represent SD).

estimated with greater accuracy at 87.5% while the CBC
algorithm estimated radiation severity at only 75% accuracy.

4. Discussion

The joint action METREPOL (medical treatment protocols
for radiation accident victims) formed within the framework
of the Nuclear Fission Safety Program (DG XII Science) of
the European Atomic Energy Community was developed
to provide guidance for the treatment of radiation accident
victims based on experimental and actual data from radiation
accident victims. The METREPOL protocols attempt to
classify victims suffering from ARS exposure into one of the
four response categories (RC), ranging from mild to very
severe. The response categorization system is not based on
the estimated amount of radiation dose received, but rather
on an injury severity score based on a variety of clinical
symptoms that are expressed (nausea, vomiting anorexia,
fever, headache, blood cell changes, etc.). A flowchart is used

as a guide for determining the degree of radiation injury
from four specific organs (neurovascular, hematopoietic,
cutaneous, and gastrointestinal). Grading codes from 1 to 4 (4
being the most severe) are used for evaluating the severity of
radiation injury. The exposed subject is then designated into
RC in accordance with the highest grade value [6].

The focus of our study was to develop amultivariate algo-
rithm for calculating the appropriate RC severity for H-ARS
with a rhesus monkey TBI model using a 6.5Gy radiation
dose, which based on the literature was predicted to cause
RC3 [34]. In place of the METREPOL methodology, time
after irradiation and time-dependent blood variable levels
would instead be entered into this multivariate algorithm to
estimate an H-ARS RC severity.

4.1. Multivariate Analysis Application in Estimating RC3
Severity. Themain findings in the study were as follows:

(1) that classical statistical methods can be applied for
developing a rapid simple approach using peripheral
blood parameters taken between 7 and 25 days, for
estimating a severe H-ARS (i.e., METREPOL RC3),

(2) that an RC3 condition can be simulated in an NHP
model receiving a total body 6.5Gy radiation dose,

(3) that a proof of concept was demonstrated that a mul-
tivariate model composed of seven blood parameters
consisting of CBC plus serum chemistry enzymes
can estimate RC3 with greater accuracy than a
three-parameter CBC model (we thank one of the
anonymous reviewers for bringing this very helpful
suggestion to our attention).

At present individuals who are judged to have H-ARS
RC3 severity would be given cytokine therapy [8], which
would be continued daily until neutrophils returned to
normal levels typically 3-4weeks after exposure.The practical
application of using multivariate algorithms for predicting
RC3 conditions would be in the aid in initiating medical
intervention decisions for beginning of cytokine therapy.
The CBC-SCHEM model at 10 d was the only model that
successfully identified all of the NHPs in the radiation
cohort as being correctly assigned to RC3 (Figure 4). Once
individuals are categorized as being in RC3 severity, the
algorithms can then provide a secondary function tomonitor
recovery from ARS and treatment efficacy.
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The predictive power of how close the models estimated
an RC3 (6.5 Gy) radiation dose was evaluated using the
Student 𝑡-test for prediction-confidence intervals.The “confi-
dence interval limit width” mean values confirmed the CBC-
SCHEM model as having the highest accuracy. Results from
the SW normality test, designed for detecting all departures
from normality in the residuals of the fitted equations, were
consistent with this conclusion. Typically, the SW normality
test rejects the hypothesis of normality in the residuals when a
𝑃 value is less than or equal to 0.05.TheCBCmodel failed this
normality test. This allows one to infer with 95% confidence
that the fitted equation does not satisfy the requirement for
normal distribution of the residuals, thus raising uncertainty
about the statistical soundness of the standard deviations of
the individual coefficients of any linear regression fit [12].
In comparing “normal probability” between the two models,
only the CBC-SCHEMmodelmet the requirement of normal
distribution of the residuals.

The ordinary-least-squares (OLS) diagnostic test for het-
eroscedasticity also was applied to the two regression models
for determining whether the variance of the residuals and
randomness from the regressions in the two models were
dependent on the values of the independent variables. The
presence of heteroscedasticity was not detected indicating
that all randomvariables in the sequence had similar variance
[12, 35].

The Durbin Watson (DW) test for autocorrelation also
was applied to the models for detecting the presence of auto-
correlation. Autocorrelation is a systematic (as opposed to
random) relationship between residuals separated from each
other by a given time lag. The presence of autocorrelation
can distort and often understate the SEMs of the alpha-
and beta-coefficients (prediction errors) from a regression
analysis.The DW-statistic ranges between 0 and 4. A value of
2 indicates no autocorrelation. Values approaching 0 indicate
positive autocorrelation and values toward 4 indicate negative
autocorrelation. The basic CBC model design generated a
DW-test value of 1.61. The expanded CBC-SCHEM model
had a slightly higher DW-test value of 1.75. Both these values,
however, are in the inconclusive range; that is, there was
no definitive evidence of autocorrelation in the residuals in
either of the models.

Of the two diagnostic models formulated, the expanded
CBC-SCHEM model composed of the seven selected blood
variables produced the highest R-squared value for estimat-
ing radiation injury (93%).The addition of the extra variables
AST, CK, HCT, and LDH improved the normal valued R-
square, which was 2% higher but not statistically significant.
However, the prediction limit was slightly improved with no
difference in the confidence limit (Table 6) for the CBC-
SCHEM algorithm.

The interaction coefficients designated by the beta (𝛽)
symbol were derived from the correlation software. The
beta-coefficients multiply the time and blood variables by
how much they are affected by an condition. In the CBC
model, the four variables each interact with their specific
beta interaction coefficients in estimating radiation injury.
The CBC-SCHEM model is composed of eight variables
which interact with their specific beta interaction coefficients

for deriving its injury estimation. The CBC-SCHEM model
has twice the amount (a 100% increase) in the interaction
dynamics of variables responding to radiation dose which
results in some of the variables no longer counting as highly
as they once did in the CBC model.

From the series of statistical tests performed, it was
determined that both models are statistically acceptable in
terms of R-squared, DW-statistic, eigenvalues, and possibly
the 95% confidence and prediction intervals. The CBC-
SCHEM model showed slightly higher R-squared and lower
residual sum-of-square (RSS) values and clearly significantly
narrower prediction interval limits (decreased prediction
error). Based on the variance inflation factor (VIF) statistic
and eigenvalues of the predictor’s statistic, there is no sub-
stantial evidence that the independent variables are collinear.
The DW-test did not indicate definitive autocorrelation of
residuals or model miss-specification. The error variance
was reasonably constant in both models using the OLS het-
eroscedasticity test but the SW-statistic rejected the hypoth-
esis of equal variances in the basic CBC configuration but
not in the expanded CBC-SCHEM model. As expected, the
RSS decreased from the CBC model to the CBC-SCHEM
model. Therefore, the predictions ± SEMs are more robust
and hence reliable and thus more acceptable in the expanded
CBC-SCHEMmodel than in the basic CBC model.

The consequence of having a nonnormal distribution
scenario of the residuals around the fitted numbers is that the
statistical confidence must be low in the error of predictions.
In our case, for the clinical application, the highest level of
confidence was desired in these predictions, meaning that the
residuals should be higher than P(W) = 0.05 in the SW test
and that the prediction interval widths should be as narrow
as possible. In our CBC model, the SW value was at P(W) =
0.02, indicating a nonnormal distribution; in addition, the
prediction interval limits widthswere increased relative to the
expandedCBC-SCHEMmodelmeaning reduced accuracy in
the predictions.

4.2. Significance of the 2% Difference in the 𝑅-Squared Values
between the Two Models. In evaluating the residuals and
efficacy of the two models, it was concluded that the 2%
(±0.88) difference between the twomodelswas not significant
in estimating RC3.

4.3. Validation from the Receiving Operator Curve Analysis.
Validation of the accuracy of the individual variables and
the two models was performed using the ROC analysis.
The ROC discriminated irradiated (diseased) cases from
nonirradiated (normal) cases. The AUC value indicated the
degree of separation between irradiated and control values,
with 1 indicating a “perfect separation.”The ROC graphically
plotted the performance of a binary classifier system with
variations occurring throughout its discrimination threshold.
The fraction of true positives out of the total actual number
of positives was plotted against the fraction of false positives
out of the total actual number of negatives [36]. The multiple
biomarker receiver operating characteric (M-ROC) analysis
validated the inclusion of the additional variables (HCT,



14 Computational and Mathematical Methods in Medicine

LDH, CK, and AST) in the CBC-SCHEM model as improv-
ing prediction power (separation). The increase in blood
variables from 3 to seven significantly improved the model’s
separation at the 21- and 25-day time points without causing
a loss of compliance with critical least squares assumption.

4.4. The Effects of Ionizing Radiation on NHPs. There is cur-
rently a large knowledge gap in the effects of ionizing
radiation on NHPs. Our study attempted to help fill this gap.
Our approach utilized a TBI dose of 6.5 Gy in order to cause
RC3 H-ARS severity. This radiation injury, depending on the
level of minimal supportive care, is consistent with inducing
∼50% mortality was based on the literature [37]. Mortality
in a radiation model is dependent not only on several
parameters including dose, but also on the level of treatment
care and intrinsic radiosensitivity of the individual. We have
demonstrated the utility of modeling RC3.This approach was
developed using NHP radiosensitive whole blood variables
deduced from a standard multivariate analytical model. Our
modeling approach demonstrated how standard medical
diagnostic information, in this case significant CBC and
serum chemistry parameters, could be quantified for esti-
mating a METREPOL H-ARS RC3 condition induced from
a 6.5Gy radiation dose.

Studies modeling biomarkers for characterizing radiation
injury in NHPs have been limited. Multivariate discriminant
analysis techniques have been applied for estimating a 6.0Gy
radiation exposure in anNHPTBImodel using blood plasma
collected at 1-2 d after irradiation [16]. The parameters p21
WAF1/CIP 1, Interleukin-6 (IL6), SAA, and CRP were found
to be indicators of a 6.0Gy dose measured at d 1 after
irradiation. CRP and SAA were also demonstrated in a
similar NHPTBImodel as early phase indicatorsmeasured at
24 h after irradiation for estimating acute radiation exposures
between 1 and 8.5Gy [15].

A repeatedmeasures approach was applied for estimating
a 6.5Gy dose on an NHP TBI model [17, 18]. CRP, SAA,
lymphocytes, and neutrophils to lymphocytes ratio were
shown to be indicators of radiation injury between 1 and 15 d
after irradiation.

CRP and blood recovery profiles in response to TBI were
compared between the Gottingen minipig and NHPs [19].
Changes between early and late phase time points ranging
from 3 h to 60 d were compared.

To date, models examining radiation injury on NHPs
have primarily focused on the utility of early phase (1–6 d after
irradiation) time points for characterizing and predicting TBI
injury. A need exists, however, for biomarkers and models
for characterizing radiation injury in the intermediate phase
(7–25 d). We addressed this challenge by using the practi-
cal utility of readily available CBCs and serum chemistry
parameters. A multivariate modeling technique was applied
using specific noncollinear radiosensitive blood parameters,
for estimating an RC3 condition during the intermediate
phase. By using combinations of blood parameters that
demonstrated low multicollinearity [13, 14] for the develop-
ment of our RC models, we were able to achieve a high
percent accuracy in our characterization of radiation injury

(97% ±2) and expand our estimation capability from 7 to
25 d after irradiation. It should be noted that the approach
of specifically using noncollinear independent variables for
modeling a METREPOL RC has not been reported in the
literature.

Our pilot study demonstrated how late phase (>7 d)
hematology and serum chemistry biomarkers could be used
in unison for estimating a METREPOL H-ARS RC3 con-
dition. Moreover, the integration of molecular biomarkers
that are known to manifest in the prodromal and/or late
ARS phases (Flt3 ligand, citrulline, C-reactive protein, and
serum amylase IL-6) may contribute to our algorithm design
in improving accuracy in determining the degree of an RC
condition at various time points [15, 28, 38–40].

An algorithm that was sensitive enough to detect the
prodromal symptoms of a response category suggests the
possibility of initiating early treatment. For example, if the
early symptoms of RC4 could be detected in time, appropriate
treatment could then be promptly initiated such as in admin-
istering blood cells transfusions to bridge the accident victim
until bone marrow transplant therapy can reconstitute bone
marrow stem cells.

4.5. Limitations and Alternatives. The archival data used in
the present study originated from a previous experiment
performed at AFRRI using NHPs exposed to a single total
body 6.5Gy radiation dose sufficient to cause severe H-ARS.
The study design was focused specifically on determining
survival outcome of NHPs after radiation exposure. All of
the NHPs survived, which was likely due to the excellent
postirradiation basic clinical supportive care.

The AFRRI experimental study protocol was not ideal
for generating data that could later be utilized for modeling
changes in radiation injury. Because of the limited 6.5Gy
cohort dataset, it was only possible to design an algorithm
for estimating a METREPOL H-ARS RC3 condition. Ideally,
it would have been better to have had a greater number than
8 NHPs and to have designed our algorithm from a systemic
gradient of radiation doses for potentially robust estimations
of all the response METREPOL categories.

The number of postirradiation days available for blood
sampling was also a limiting factor. This limitation com-
promised the possibility of identifying all possible sensitive
hematology subsets associated with an RC3 condition from a
6.5Gy TBI dose. Ideally, earlier (before 7 d after irradiation)
and later time points (after d 25) would have permitted
expanded early and late phase estimations of the RC3 profile.
This approachwould have demonstrated greater relevance for
rapid and more reliable medical assessments.

The selection criterion for candidate variables to formu-
late the CBC-SCHEM RC3 model also may have been a
limiting factor in the fact that it may have been too stringent
and thus eliminated other significant and potentially highly
predictive variables. In the study criterion, only radiosensitive
parameters with SEM values ≤ 10% of the statistical mean
were considered for modeling. Importantly, the lack of an
independent dataset (not used in the modeling efforts) to
fully test the efficiency and accuracy of the radiation injury
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estimation algorithm also was a limitation. Because of the
absence of an additional blood component dataset, we were
limited to the existing dataset for testing the precision of the
derived algorithms.

Despite the considerable limitations of this study, how-
ever, we demonstrated that our original hypothesis was
correct such that the application of multivariate analysis can
be applied for identifying radiation sensitive complete blood
counts (CBCs) and serum blood chemistry parameters in
the development of diagnostic H-ARS RC3 algorithms for
estimating a METREPOL H-ARS RC3 condition in the time
frame between 7 and 25 days after irradiation.

This pilot study demonstrated the potential utility and
power of the multivariate modeling approach for diagnosing
an RC3 condition based on simple whole blood cell and
biochemical parameters.The development of predictive algo-
rithms based on multivariate modeling offers considerable
biodosimetry applications. The modeling and estimation
techniques reported in this paper can be applied to both
linear and nonlinear models based on raw data from any
mammalian cellular, biochemical, andmolecular parameters.

5. Summary

Taken together, the results from graphing of the RC3 assign-
ment accuracies demonstrate the utility of using a multivari-
ate approach for developing RC3 estimation algorithms for
utility between 7 and 25 days.

From our study we have shown that some blood variables
are more radiation sensitive than others and that certain
combinations of variables will work better for estimating an
RC3 condition than others. It is likely that some variables
may not demonstrate sensitivity at lower radiation doses,
while others will. Variables with sensitivity to relatively low
radiation doses, however, may demonstrate some degree of
overlap with the higher doses, which would render the use
of these variables impractical for modeling. This has yet to
be determined. We believe the next logical step would be
to model a full dose gradient for determining the optimal
combination of variables for detecting the three additional
METREPOL response categories.

From a cost effectiveness standpoint, at present, vari-
ables from both the CBC and serum chemistry panels are
needed for building a statistically sound model. However,
after modeling data from a gradient of radiation doses, new
combinations of variables may be discovered. It may be
possible to develop an accurate H-ARS RC algorithm from
strictly hematology parameters, in which case the modeling
procedure would be not only simpler and faster but alsomore
cost effective.
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