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Abstract

Motivation: Recent advances in mass spectrometry and related metabolomics technologies have

enabled the rapid and comprehensive analysis of numerous metabolites. However, biosynthetic

and biodegradation pathways are only known for a small portion of metabolites, with most meta-

bolic pathways remaining uncharacterized.

Results: In this study, we developed a novel method for supervised de novo metabolic pathway re-

construction with an improved graph alignment-based approach in the reaction-filling framework.

We proposed a novel chemical graph alignment algorithm, which we called PACHA (Pairwise

Chemical Aligner), to detect the regioisomer-sensitive connectivities between the aligned substruc-

tures of two compounds. Unlike other existing graph alignment methods, PACHA can efficiently

detect only one common subgraph between two compounds. Our results show that the proposed

method outperforms previous descriptor-based methods or existing graph alignment-based meth-

ods in the enzymatic reaction-likeness prediction for isomer-enriched reactions. It is also useful for

reaction annotation that assigns potential reaction characteristics such as EC (Enzyme

Commission) numbers and PIERO (Enzymatic Reaction Ontology for Partial Information) terms to

substrate–product pairs. Finally, we conducted a comprehensive enzymatic reaction-likeness pre-

diction for all possible uncharacterized compound pairs, suggesting potential metabolic pathways

for newly predicted substrate–product pairs.

Contact: maskot@bio.titech.ac.jp

1 Introduction

Understanding cell metabolism is essential in a wide range of fields,

e.g. metabolic engineering, synthetic biology, drug discovery and

clinical treatments of metabolic disorders (Toya and Shimizu, 2013;

Newman and Cragg, 2012; Ramautar et al., 2013). Recent advances

in mass spectrometry and related metabolomics technologies have

enabled the rapid and comprehensive analysis of numerous metabol-

ites. However, biosynthetic and biodegradation pathways are only

known for a small portion of metabolites, with the majority of path-

ways remaining uncharacterized (Sreekumar et al., 2009). For ex-

ample, it is estimated that at least 1 060 000 metabolites are

produced within all plants, for which most chemical transform-

ations remain to be identified (Afendi et al., 2012). Elucidation of

potential metabolic pathways in plants would provide a significant

benefit for environmental, agricultural, pharmaceutical and public

health matters. Experimental determination of metabolic pathways

is difficult, expensive and time consuming (Nakabayashi and Saito,

2013); thus automatic pathway reconstruction on a metabolome

scale is a challenging issue in current computational biology.

The traditional in silico method for metabolic pathway recon-

struction is the predefined pathway approach, where enzyme-coding

genes are mapped onto appropriate positions in the predefined path-

way diagrams based on gene-gene sequence similarities (Bono et al.,

1998). This method has been used for analyzing metabolic pathways

in fully sequenced organisms or in specific conditions of cellular

processes (Kanehisa et al., 2014). Another method in the predefined
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pathway approach is to consider chemical structures for finding

pathways that conserve atoms from start to the target compounds in

predefined pathway diagrams (Boyer and Viari, 2003; Heath et al.,

2010). However, these methods are not applicable to the identifica-

tion of previously unknown pathways (absent from predefined path-

way maps).

Conversely, various de novo pathway reconstruction methods

have been developed to elucidate novel reactions based on metabol-

ite chemical structures, known enzymatic reactions and possible

chemical transformations. The overall problem resembles that of

synthetic organic chemistry (Faulon and Sault, 2001), but few

studies have tackled this problem for enzymatic reactions.

Previously developed de novo methods can be categorized into ei-

ther the compound-filling framework (Darvas, 1988; Ellis et al.,

2008; Greene et al., 1999; Moriya et al., 2010; Talafous

et al., 1994) or the reaction-filling framework (Hatzimanikatis

et al., 2005; Nakamura et al., 2012; Tanaka et al., 2009). However,

previous methods in both frameworks are not applicable to metabo-

lome-scale compound sets because of prohibitive computational

burden.

Recently, de novo pathway reconstruction in the reaction-filling

framework has been formulated as a problem of enzymatic reaction-

likeness, and an efficient supervised method has been proposed to

predict whether the given pairs of metabolites can be chemically

interconverted by single enzymatic reactions (Kotera et al., 2013b).

With this method, the use of chemical descriptors—binary/integer

vectors representing compound chemical characteristics (e.g.

chemical substructures) (Steinbeck et al., 2003)—is key for compu-

tational efficiency, which enables metabolome-scale application for

tens of thousands of metabolites at a time. However, chemical

descriptors cannot handle connectivities among substructures in a

compound; thus, in theory, it is difficult to distinguish regioisomers

(positional isomers), resulting in many false positive predictions in

practice. Regioisomers are a group of compounds with the

same compositional formula (numbers of respective elements)

but are different in connectivity among the substructures. Proper

distinction of isomers is required for appropriate interpretation of

metabolome data (Mitchell et al., 2014). Thus, there is a

strong need to develop an efficient approach that can deal with

regioisomers, thus strengthening the de novo pathway reconstruc-

tion study.

In this study, we developed a novel method for supervised de

novo metabolic pathway reconstruction with an improved graph

alignment-based approach in the reaction-filling framework. We

propose a novel chemical graph alignment algorithm, which we

called PACHA (Pairwise Chemical Aligner), in order to detect

regioisomer-sensitive connectivities between the aligned substruc-

tures of two compounds. Unlike other existing graph alignment

methods [such as SIMCOMP (Hattori et al., 2003)], PACHA can

efficiently detect only one common subgraph between two com-

pounds. Our results show that the proposed method outperforms

previous descriptor-based methods or existing graph alignment-

based methods in the enzymatic reaction-likeness prediction for iso-

mer-enriched reactions. It is also useful for reaction annotation

that assigns potential reaction characteristics such as EC (Enzyme

Commission) numbers (McDonald and Tipton, 2014) and PIERO

(Enzymatic Reaction Ontology for Partial Information) terms

(Kotera et al., 2014) to substrate–product pairs. Finally, we

conducted a comprehensive enzymatic reaction-likeness prediction

for all possible uncharacterized compound pairs, suggesting poten-

tial metabolic pathways for newly predicted substrate–product

pairs.

2 Materials

2.1 Chemical structures of compounds
Chemical structures of metabolic compounds were retrieved from

the KEGG LIGAND database (Kanehisa et al., 2014). MDL mol-

files, which are the de facto standard of chemical structure format

files, were converted to the KEGG Chemical Function (KCF) format

(Hattori et al., 2003). In KCF, atoms (with the exception of hydro-

gen atoms) and bonds were represented as vertices and edges, re-

spectively. Each vertex was given three labels representing the

different levels of physicochemical properties, e.g. ‘C’ for a carbon

atom, ‘C1’ for an sp3 carbon and ‘C1a’ for a methyl carbon (CH3-).

Hydrogen atoms were not explicitly represented as vertices but were

implicitly represented in the attached atoms (see http://www.genome.

jp/kegg/reaction/KCF.html). In this study, the one-letter label (e.g.

C), two-letter label (e.g. C1) and three-letter label (e.g. C1a) were

referred to as the primary, secondary and tertiary labels,

respectively.

2.2 Substrate–product pair datasets
Substrate–product relationships were retrieved from KEGG RPAIR

and used as the positive examples of enzymatic reaction likeness.

Different reaction directions were dealt as different pairs (e.g. ‘L-

Arginine - L-Ornithine’ and ‘L-Ornithine - L-Arginine’) in order to

not miss the similarity between the forward direction of a reaction

and the reverse of another reaction.

Known substrate–product pairs were regarded as positive ex-

amples, whereas the remaining compound pairs were regarded as

negative examples. To a certain extent, substrate–product pairs

share common structures, therefore, chemical similarity is one of the

efficient measures to distinguish positive and negative examples. In

this study, we focused on dealing with similar pairs (Jaccard coeffi-

cient >0.5), which are more difficult and realistic condition. The

numbers of positive examples and negative examples are 10 852

and 518 854, respectively, which is referred to as the ‘all’ dataset.

From the all dataset, the positive and negative pairs were

grouped by the same compositional formulas (i.e. the compound on

one side of a pair is a regioisomer of the compound on the same side

of another pair). The groups were then removed if there were less

than four positive or negative pairs within a group. The set of the re-

maining compound pairs was referred to as the ‘isomer-enriched’

dataset. The numbers of positives and negatives in the isomer-

enriched dataset were 1632 and 53 046, respectively. Note that the

isomer-enriched dataset is more difficult than the ‘all’ dataset in

terms of enzymatic reaction-likeness prediction because of the issue

of regioisomers.

2.3 Chemical descriptors
Chemical structures of compounds were represented by high-

dimensional chemical descriptors, which are the binary/integer

vectors representing the chemical structural characteristics of metab-

olites. We tested CDK Extended fingerprint, CDK GraphOnly fin-

gerprint, CDK Hybridization fingerprint (Steinbeck et al., 2003),

EState fingerprint (Hall and Kier, 1995), KlekotaRoth fingerprint

(Klekota and Roth, 2008), MACCS fingerprint (Durant et al.,

2002), PubChem fingerprint (Chen et al., 2009), the atomic environ-

ment (AE) descriptor (Nakamura et al., 2012) and KCF-S descriptor

(Kotera et al., 2013a). For example, KCF-S descriptors represent the

number of biochemical substructures, e.g. methyl, n-butyl, benzene

and adenine residue. AE and KCF-S descriptors were calculated by

our in-house program, whereas the other descriptors were generated

using the Chemistry Development Kit (Steinbeck et al., 2003).
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2.4 Manually curated reaction annotations
EC numbers and PIERO terms were retrieved from KEGG and

GenomeNet, respectively. EC numbers represent the hierarchical en-

zyme classification based on the full reaction equation (McDonald

and Tipton, 2014). EC sub-subclasses (upto the third digit of the EC

numbers) were used as the reaction annotation by EC. PIERO is a

collection of terminology annotating substrate–product relation-

ships in enzymatic reactions (Kotera et al., 2014).

3 Methods

3.1 Chemical graph alignment problem
We address the problem of chemical graph alignment using a simple

example. Figure 1 shows two compounds of n-butylamine (com-

pound A) and methyl-n-propylamine (compound B) that are

regioisomers (positional isomers). Figure 1(a) shows the atom–atom

mapping by the chemical graph alignment of the two compounds,

which detects the preserved substructure in a putative reaction and

the changed chemical bonds. In this example, four vertices are pre-

served, two of which changed labels; an edge labeled ‘C1a-C1b’ is

eliminated and an edge labeled ‘C1a-N1b’ is generated. To charac-

terize reactions and distinguish regioisomers, it is crucial to detect

type of bond that has changed and the position where it has

changed.

Since the two compounds are regioisomers, no differences would

be detected by counting the elements (C, H and N). Figure 1(b)

shows a feature vector representation of the compound pairs, such

as, using KCF-S descriptors representing the number of substruc-

tures, e.g. methyl (C1a-), ethyl (C1a-C1b-) and n-propyl (C1a-C1b-

C1b-), etc. The feature vector detects preserved (common) and

changed (decreased and increased) chemical characteristics.

However, the descriptor-based feature vector does not necessarily

reflect the exact chemical changes that actually occur in the reaction.

For example, although the feature vector indicates that vertex C1a is

preserved in two compounds, the C1a vertices do not form an

atom–atom pair in the graph alignment. Thus, it is very difficult for

descriptor-based methods to capture the chemically important char-

acteristics of reactions.

In this study, we propose a novel method for chemical graph

alignment that can handle the issue of regioisomers and show

the potential of the proposed method for applications to the enzym-

atic reaction likeness prediction and reaction annotation on a

metabolome-scale. The details of the proposed method are ex-

plained below.

3.2 Pairwise chemical aligner (PACHA)
We propose a novel, efficient algorithm named PACHA for chemical

graph alignments. We represent each compound chemical structure

G by a labeled graph defined as G ¼ ðV;E;LÞ, where V is the set of

vertices (i.e. atoms in this study), E is the set of undirected edges (i.e.

bonds in this study) and L : V ! R is a function that assigns labels

from an alphabet R to vertices (i.e. primary, secondary or tertiary

labels in this study). Let s : V � V !R be a similarity function be-

tween a vertex pair (i.e. an atom–atom pair in this study) and re-

turns �1 if the vertex pair is unmatched. The function s will be

detailed in the next subsection.

Suppose we are given two chemical graphs G ¼ ðV;E;LÞ and

G0 ¼ ðV 0;E0;L0Þ. We formulate the graph alignment as the problem

of finding a set of matching vertex pairs M � V � V 0 that maximizes

the summation of vertex similarities sðv; v0Þ for ðv; v0Þ 2M as follows:

max
M�V�V 0

X
ðv;v0 Þ2M

sðv; v0Þ; (1)

under the following two constraints:

(i) If ðv; v0Þ 2M, then ðv; zÞ 62M for all z 2 V 0 and ðz; v0Þ 62M for

all z 2 V, i.e. a vertex in V can be matched to at most one ver-

tex in V 0.

(ii) The matching vertices in M of G (respectively, G0) and edges E0

(respectively, E0) form connected subgraphs, i.e. there is a pass

from any vertex to the other vertices in G (respectively, G0).

Note that constraint (ii) is absent from existing graph alignment

methods such as SIMCOMP (Hattori et al., 2003), which causes the

generation of many (possibly small) subgraph matches, thus prevent-

ing the sensitive detection of regioisomers.

(a)

(b)

Fig. 1. (a) Graph alignment-based vector proposed in this study. Graph align-

ment yields atom–atom mapping (represented by dashed lines).

Subsequently, the number of atom–atom pairs in the alignment (e.g. the col-

umn labeled ‘a:C1a¼C1a’ in the white boxes on the left), the number of elimi-

nated bonds (e.g. the column labeled ‘e:C1a-C1b’ in the gray boxes in the

middle) and the number of generated bonds (e.g. column labeled ‘g:C1a-N1b’

in the gray boxes on the right) were represented as a vector. The symbols ‘¼’

and ‘�’ represent the atom–atom mapping and the chemical bond, respect-

ively. (b) Descriptor-based vectors in the previous studies (e.g. KCF-S). Each

compound vector represents chemical characteristics (e.g. number of sub-

structures). The feature vector for the compound pair consists of three parts:

common features between the two compounds (in the white boxes on the

left), excess number of features in the left compound (in the gray boxes in the

middle) and right compound (in the gray boxes on the right)
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Because computing the exact solution for the graph alignment is

intractable, we solved it using a greedy strategy. To efficiently select

vertex pairs with the highest similarity in order, we propose to use

the priority queue PQUEUE that stores vertex pairs ðv; v0Þ 2 V � V 0

and their similarities Sðv; v0Þ. PQUEUE supports the following

operations:

• Insert: insert a vertex pair ðv; v0Þ 2 V � V
0

and its similarity sðv;
v0Þ into PQUEUE.

• Get: get the vertex pair ðv; v0Þ with the highest similarity in

PQUEUE.
• Pop: delete the vertex pair ðv; v0Þ with the highest similarity from

PQUEUE.

We propose the following algorithm. We initialize PQUEUE as a

vertex pair ðv; v0Þ 2 V � V0 with the highest similarity and its simi-

larity sðv; v0Þ. The algorithm iterates as follows. We first get the ver-

tex pair ðv; v0Þ with the highest similarity in PQUEUE and delete it

from PQUEUE. We then insert the vertex pair ðv; v0Þ into a set Mc.

Let N(v) be a set of vertices adjacent to v 2 V. We next insert all

combinations of vertex pairs adjacent to v and v0, i.e.

ðx;x0Þ 2 NðvÞ �Nðv0Þ, into PQUEUE, which is necessary to satisfy

constraint (ii) in the graph alignment. Considering constraint (i), we

insert only vertex pairs ðx;x0Þ 2 NðvÞ �Nðv0Þ into PQUEUE such

that ðx; zÞ 62Mc for all z 2 V 0 and ðz; x0Þ 62Mc for all z 2 V. When

PQUEUE is empty, the algorithm stops. For accurate alignments,

the algorithm restarts from each vertex pair chosen among

those with top-k highest similarities, where k is a user defined

parameter; k is set to 10 in this study. The algorithm finally returns

the set of vertex pairs with the highest summation of similarities in

Mc. The pseudocode of the algorithm is presented in Algorithm 1.

Algorithm 1 Chemical graph alignment for two compounds.

1: function PACHA(G;G0)

2: Set K � V � V 0 as a set of k vertex pairs with the top-k

highest vertex similarities

3: for each ðv; v0Þ 2 K do

4: Insert ðv; v0Þ and sðv; v0Þ into PQUEUE

5: Mc  / " Initialize Mc

6: while PQUEUE is not empty do

7: Get ðv; v0Þ from PQUEUE and pop PQUEUE

8: Mc  Mc [ ðv; v0Þ
9: for each ðx; x0Þ 2 NðvÞ �Nðv0Þ do

10: if ðx; zÞ 62Mc for 8z 2 V 0 and ðz; x0Þ 62Mc for

8z 2 V then

11: Insert ðx; x0Þ and sðx; x0Þ into PQUEUE if

sðx;x0Þ 6¼ �1
12: M Mc if the score

X
ðv;v0 Þ2Mc

sðv; v0Þ is at its highest

ever

13: return M

3.3 Vertex similarity function based on fingerprints
We propose to evaluate the similarity of each vertex pair in a graph

by computing the similarity between two fingerprints of the vertices

using the Weisfeiler–Lehman (WL) procedure (Shervashidze et al.,

2011). A fingerprint defined as a binary vector is conceptually

equivalent to the set that contains elements i if the ith bit of the fin-

gerprint is 1, thus we use the set representation of fingerprints in this

paper.

Suppose we are given a chemical graph G ¼ ðV;E;LÞ. The first

fingerprint of a vertex v 2 V is obtained by collecting vertex labels

from N(v), adjacent vertices of v, to create a string. The string is

then converted into a unique integer using a hash function, and it is

added to the fingerprint as a new element. The integer is also as-

signed to a new vertex label for v. The same procedure is repeated T

times. As a consequence, we obtain a fingerprint of T elements per

vertex. The pseudocode of the WL procedure is presented in

Algorithm 2.

Algorithm 2 WL procedure for computing fingerprints

for vertices in a graph. T is a user-defined parameter for

deciding the number of iterations. g : R� ! R is a hash

function that maps a string shðvÞ to an integer such that

gðshðvÞÞ ¼ gðshðwÞÞ if and only if shðvÞ ¼ shðwÞ.

1: function WLprocedure(G)

2: WðvÞ  / for all v 2 V

3: Initialize ‘0ðvÞ to v’s vertex label L(v) for all v 2 V

4: for h ¼ 1; . . . ;T do

5: for each v 2 V do

6: Assign a multi-label MhðvÞ :¼ f‘h�1ðuÞ; u 2 NðvÞg
to v

7: Sort elements in MhðvÞ in the ascending order of

vertex labels and concatenate them into a string

shðvÞ
8: Set ‘hðvÞ :¼ gðshðvÞÞ as a new vertex label of v

9: WðvÞ  WðvÞ [ f‘hðvÞg
10: return fWðvÞ; v 2 Vg

Each vertex in the chemical graph has three types of labels: pri-

mary, secondary and tertiary labels in this study. We apply the WL

procedure to each label. Figure 2 shows an illustration of the WL

procedure. The fingerprint for a vertex v is defined as W(v), which is

the union of the resulting fingerprints for three labels.

Given two compound chemical graphs G ¼ ðV;E;LÞ and

G0 ¼ ðV 0;E0;L0Þ, we propose the following similarity function s : V

�V 0 ! R for a vertex pair ðv; v0Þ using the corresponding finger-

prints W(v) and Wðv0Þ generated by the WL procedure:

sðv; v0Þ :¼

jWðvÞ \Wðv0Þj
jWðvÞ [Wðv0Þj if v0s primary label is identical to

v0s primary label;

�1 otherwise:

8>><
>>:

The vertex similarity is computed by the Tanimoto (also known as

Jaccard) coefficient of fingerprints W(v) and Wðv0Þ if v’s primary label

is identical to v0’s primary label. Otherwise, the vertex similarity is set

to �1, which forces atom pairs with different primary labels to be

unmatched in the graph alignment between two compounds.

3.4 Graph alignment-based feature vector
The PACHA-based graph alignment enables us to assign one of

three alignment states: ‘aligned’, ‘generated’ and ‘eliminated’ to each

vertex pair, defined as follows: (i) aligned: v is aligned to v0 if

ðv; v0Þ 2M; (ii) generated: z is generated from v0 if 9z; v0 2 V 0 s.t. z

2 Nðv0Þ; ðv; v0Þ 2M for any v 2 V; (iii) eliminated: z is eliminated

from v if 9z; v 2 V s.t. z 2 NðvÞ; ðv; v0Þ 2M for any v0 2 V 0. Figure

1(a) shows an example of the three alignment states.

We represent a compound pair ðG;G0Þ as a D-dimensional

non-negative integer vector UpachaðG;G0Þ 2 ND using matching

vertex pairs in M. Considering the three alignment states, we define

i164 Y.Yamanishi et al.



UpachaðG;G0Þ as a combination of three sub-vectors: the aligned sub-

vector UaðG;G0Þ, the generated sub-vector UgðG0Þ and the elimi-

nated sub-vector UeðGÞ.
The aligned sub-vector UaðG;G0Þ counts the number of vertices

v aligned to vertices v0 for each pair of labels L(v) and L0ðv0Þ. Let

Faðv; v0Þ be a local vector for UaðG;G0Þ and each element of Faðv; v0Þ
be the following indicator function:

f aðv; v0Þ :¼
1 if v is aligned to v0with LðvÞ and Lðv0Þ;

0 otherwise:

(

The aligned sub-vector is defined as UaðG;G0Þ ¼
P
ðv;v0 Þ2V�V 0 F

aðv; v0Þ.
The generated sub-vector UgðG0Þ counts the number of vertices z

generated from vertices v0 for each pair of labels L0ðzÞ and L0ðvÞ. Let

Fgðz; v0Þ be a local vector for UgðG;G0Þ and each element of Fgðz; v0Þ
be the following indicator function:

f gðz; v0Þ :¼
1 if z is generated from v0with L0ðzÞ and L0ðv0Þ;

0 otherwise:

(

The generated sub-vector is defined as UgðG0Þ ¼
P
ðz;v0Þ2V 0�V 0

Fgðz; v0Þ.
The eliminated sub-vector UeðGÞ counts the number of vertices z

eliminated from vertices v for each pair of labels L(z) and L(v). Let

Feðz; vÞ be a local vector for UeðGÞ and each element of Fgðz; vÞ be

the following indicator function:

f eðz; vÞ :¼
1 if z is eliminated from v with LðzÞ and LðvÞ;

0 otherwise:

(

The eliminated sub-vector is defined as UeðGÞ ¼
P
ðz;vÞ2V�V Feðz; vÞ.

Finally, UpachaðG;G0Þ is constructed as UpachaðG;G0Þ ¼
ðUaðG;G0Þ>;UgðG0Þ>;UeðGÞ>Þ>, which is referred to as ‘PACHA

descriptor’ in this study. We built the PACHA descriptors using 68

tertiary labels, resulting in 3567-dimensional integer vectors.

Figure 1a represents an example of the PACHA descriptor.

3.5 Predictive models for metabolic pathway

reconstruction
We propose to apply the above PACHA descriptor to the enzymatic

reaction-likeness prediction and reaction annotation, which are im-

portant applications for metabolic pathway reconstruction.

Given two compound chemical graphs G and G0, we consider a

predictive model defined as the linear function f ðG;G0Þ ¼
w>UpachaðG;G0Þ, where w 2 RD is a weight vector. In the case of en-

zymatic reaction-likeness prediction, the weight vector w is esti-

mated such that it can correctly predict the enzymatic reaction-

likeness of compound-compound pairs. In the case of reaction

annotation, the weight vector w is estimated such that it can cor-

rectly predict a specific reaction annotation class (i.e. EC sub-sub-

class or PIERO term in this study) of the compound-compound

pairs.

Given a collection of compound-compound pairs and their

labels ðUpachaðGi;GjÞ; yijÞ, where yij 2 fþ1;�1gði ¼ 1; . . . ; n; j ¼ 1;

. . . ; n; i 6¼ jÞ and n is the number of compounds in the learning set,

we optimize the weight vector w by L1-regularized linear support

vector machine (L1SVM) formulated as

min
w
jjwjj1 þ C

Xn

i¼1

Xi�1

j¼1

Pij þ
Xn

j¼iþ1

Pij

( )
;

where Pij ¼ max f1� yijw
>UpachaðGi;GjÞ; 0g2

, C is a hyper-

parameter and jj � jj1 is L1 norm (the sum of absolute values in the

vector). L1-regularization has an effect of making the weights of unin-

formative features zeros without loss of classification accuracy, which

enables to extract important features characteristic of each task.

4 Results

4.1 Performance evaluation of the enzymatic reaction-

likeness prediction
We tested the proposed PACHA descriptor for its ability to predict

enzymatic reaction-likeness of compound-compound pairs from

their chemical structure data. We compared this with previously

developed chemical descriptors and graph alignment methods:

CDK Extended fingerprint, CDK GraphOnly fingerprint, CDK

Hybridization fingerprint, EState fingerprint, KlekotaRoth finger-

print, MACCS fingerprint, PubChem fingerprint, AE descriptor,

KCF-S descriptor and SIMCOMP alignment (see Section 2 for more

details). First, we focused on analysis of the isomer-enriched reac-

tion data to validate the ability of PACHA to solve the issue of

regioisomers.

We performed the following five-fold cross-validation. First, we

randomly split the compound-compound pairs in the gold standard

reaction data into five subsets of roughly equal sizes, where known

substrate–product pairs were regarded as positive examples and the

other compound-compound pairs were regarded as negative ex-

amples. Second, we took each subset as a test set and the remaining

four subsets as a training set. Third, we learned a predictive model

based only on the training set. Finally, we evaluated the prediction

accuracy based on the prediction scores of compound–compound

pairs in the test set over the 5-folds.

We evaluated the prediction performance using the receiver

operating characteristic (ROC) curve, which is a plot of true-positive

rates as a function of false-positive rates, and the precision-recall

(PR) curve, which is a plot of precision (positive predictive value) as

a function of recall (sensitivity). We summarized the performance by

the area under the ROC curve (AUC) score, where 1 is perfect infer-

ence and 0.5 is random inference, and the area under the PR curve

(AUPR) score, where 1 is perfect inference and the ratio of positive

examples in the gold standard data is random inference.

The third column of Table 1 shows the resulting AUC and AUPR

scores and their standard deviations (SDs) in performing 5-fold

cross-validation experiments for the isomer-enriched reaction data.

It was observed that PACHA worked best among the graph align-

ment-based methods and KCF-S worked the best among the descrip-

tor-based methods. In total, PACHA outperformed the previously

developed methods in terms of higher AUC and AUPR scores. These

results suggest that PACHA can capture the important features of

C1c

S3x

N2c O2c(i) Build a multi-label from adjacent vertices
ex) primary: {S,O,N}, 
     secondary: {O2, N2, S3}
     tertiary: {O2c, N2c, S3x}
(ii) Sort
ex) primary: N, O, S
     secondary: N2, S3, O2
     tertiary: N2c, S3x, O2c
(iii) Add the vertex label as a prefix
ex) primary: C, N, O, S
     secondary: C1, N2, S3, O3
     tertiary: C1c, N2c, S3x, O2c

(iv) Map the label sequence to a unique value
ex) primary: C, N, O, S → X
      secondary: C1, N2, S3, O3 → X10
      tertiary: C1c, N2c, S3x, O2c → X10y
(v) Assign the unique value as a new vertex label

Fig. 2. Updating a node label surrounded by double circle by aggregating

with neighboring labels in the WL procedure. The WL procedure is applied to

each label class of primary, secondary and tertiary labels
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isomer-related chemical changes in reactions, while other methods

can not capture isomer-specific chemical changes.

Next, we tested the PACHA descriptor on its ability to predict

enzymatic reaction-likeness using the ‘all’ reaction data that con-

tains not only isomer-enriched reactions but also other enzymatic re-

actions. We performed Five-fold cross-validation experiments in a

similar manner as the previous experiments.

The fourth column of Table 1 shows the resulting AUC and

AUPR scores and their SDs in performing the Five-fold cross-valid-

ation experiments of the enzymatic reaction-likeness prediction for

all reactant pair data. It was also observed that PACHA worked the

best among graph alignment-based methods and KCF-S worked the

best among the descriptor-based methods. Thus, we attempted to

combine PACHA and KCF-S by vector concatenation, which we call

‘PACHAþKCF-S’. As a result, PACHAþKCFS worked much bet-

ter than other individual methods, implying that descriptor- and

graph alignment-based methods are complementary to each other

and the integration of both approaches is useful in practice.

4.2 Analysis of chemical changes in isomer-related

reactions
We examined the detailed prediction results of the cross-validation

experiments and analyzed the relationship with chemical changes in

isomer-related reactions. We then compared PACHA (the best

among graph alignment-based methods) and KCF-S (the best among

descriptor-based methods).

Figure 3 shows some examples of the predicted chemical trans-

formations grouped by isomeric compounds. Most positive ex-

amples (a1, b1 and c1) were predicted correctly by KCF-S and

PACHA, whereas some negative examples (a2, a3, b2, b3, c2 and

c3) were predicted differently. Pairs a2, b2 and c2 were predicted as

negative by KCF-S and positive by PACHA. Although these pairs

were not known substrate–product pairs, these chemical changes

were already known in other compounds, which occurs only once in

each pair. Therefore, we can conclude that these pairs represent po-

tential reactions that are likely to occur.

Conversely, pairs a3, b3 and c3 were predicted negative by

PACHA and positive by KCF-S. If these chemical conversions were

to occur, at least two reactions would be needed for each pair. Pair

a3, representing the chemical change from pinocarveol (C11941) to

myrtenal (C11939), would require dehydroxylation and hydroxyl-

ation reactions and the isomerization of the pi-conjugated system.

Pair b3, genistein (C06563) and vitexin (C01460), would require

not only C-glycosylation but also in the rearrangement of the ring

attachment. Pair c3, benzo[e]pyrene (C14435) and benzo[a]pyrene-

7,8-epoxide (C14850), would also require at least two reactions, not

only an epoxydation but also the rearrangement of the ring struc-

ture. Thus, we can conclude that these pairs do not represent single

reactions.

4.3 Performance evaluation of reaction annotation and

extraction of reaction class-specific features
We investigated the usefulness of the proposed PACHA descriptor

for reaction annotation. As enzymatic reaction characteristics, we

used EC sub-subclasses and PIERO terms. Reaction annotation is

generally performed by predicting potential EC sub-subclasses or

PIERO terms directly from differential chemical structures of com-

pound–compound pairs, which is referred to as ‘direct approach’.

Here, we proposed a two-step approach that first performs enzym-

atic reaction-likeness prediction for compound–compound pairs,

followed by the reaction annotation for only the predicted sub-

strate–product pairs, which is referred to as the ‘filtering approach’.

Because PACHAþKCF-S worked the best in the cross-validation

experiments for enzymatic reaction-likeness prediction, we focused

on the use of PACHAþKCF-S and made a performance comparison

between the previous direct approach and our proposed filtering

approach.

We performed the following Five-fold cross-validation. First, we

randomly split compound–compound pairs in the gold standard re-

action data with an EC sub-subclass (respectively, PIERO term) into

five subsets of roughly equal sizes, where compound–compound

pairs with the EC sub-subclass (respectively, PIERO term) were re-

garded as positive examples and other compound–compound pairs

were regarded as negative examples. Second, we took each subset as

a test set and the remaining four subsets as a training set. Third, we

learned an EC-specific (respectively, PIERO-specific) predictive

model based only on the training set. Fourth, we evaluated the

prediction accuracy based on the prediction scores of compound–

compound pairs in the test set over the Five-folds. Finally, we re-

peated the above processes for all EC sub-subclasses (respectively,

all PIERO terms).

Figures 4 and 5 show the resulting AUC and AUPR scores for EC

sub-subclasses and PIERO terms, respectively. In both cases, our pro-

posed filtering approach outperformed the previous direct approach

Table 1. Performance evaluation of the enzymatic reaction-likeness prediction for isomer-enriched reaction data and all reaction data

Method Input feature vector Isomer-enriched reaction data All reaction data

Descriptor

based

Graph alignment

based

AUC 6 SD AUPR 6 SD AUC 6 SD AUPR 6 SD

Random — — 0.5000 0.0306 0.5000 0.0204

CDK extended Yes — 0.7112 6 0.0065 0.0840 6 0.0021 0.6918 6 0.0042 0.0594 6 0.0001

CDK graph-only Yes — 0.7243 6 0.0080 0.0842 6 0.0042 0.7158 6 0.0002 0.0614 6 0.0005

CDK hybridization Yes — 0.7061 6 0.0055 0.0792 6 0.0026 0.7013 6 0.0010 0.0502 6 0.0006

E-state Yes — 0.5455 6 0.0021 0.0607 6 0.0057 0.6046 6 0.0012 0.0346 6 0.0002

KlekotaRoth Yes — 0.5702 6 0.0011 0.0512 6 0.0013 0.6028 6 0.0029 0.0354 6 0.0001

MACCS Yes — 0.7001 6 0.0033 0.0750 6 0.0007 0.6830 6 0.0004 0.0504 6 0.0006

PubChem Yes — 0.6945 6 0.0018 0.0744 6 0.0028 0.7199 6 0.0008 0.0538 6 0.0001

AE Yes — 0.8476 6 0.0012 0.1521 6 0.0033 0.8853 6 0.0001 0.2110 6 0.0004

KCF-S Yes — 0.9340 6 0.0013 0.2815 6 0.0062 0.9654 6 0.0006 0.4050 6 0.0060

SIMCOMP — Yes 0.9222 6 0.0018 0.2533 6 0.0014 0.9470 6 0.0001 0.3127 6 0.0004

PACHA — Yes 0.9401 6 0.0004 0.3205 6 0.0052 0.9617 6 0.0001 0.3880 6 0.0005

PACHAþKCF-S Yes Yes 0.9454 6 0.0006 0.3224 6 0.0044 0.9741 6 0.0003 0.4711 6 0.0061
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a1

a2

a3

b1

b2

b3

c1

c2

c3

(a) C  H  O - C  H  O10 16 10 14 C  H  O  - C  H  O(b) 15 10 5 21 20 10 (c) C  H   - C  H  O20 12 20 12

known pair
positive by PACHA
positive by KCF-S

unknown pair

negative by KCF-S
positive by PACHA

unknown pair
negative by PACHA
positive by KCF-S

(1)

(2)

(3)

Fig. 3. Examples of predicted chemical transformations grouped by isomeric compounds, with compositional formula (a) C10H16O - C10H14O, (b) C15H10O5 -

C21H20O10 and (c) C20H12 - C20H12O. Vertically aligned compounds, e.g. C11938, C11415 and C11491 in (a), are regioisomers. Pairs a1, b1 and c1 are known sub-

strate–product pairs for which the predictions were correct for KCF-S and PACHA. Pairs a2, b2 and c2 are negative examples and were predicted negative by KCF-

S and positive by PACHA. Pairs a3, b3 and c3 are also negative examples and were predicted negative by PACHA and positive by KCF-S

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

AUC for EC sub−subclasses

EC sub−subclass index

A
U

C

Direct approach
Filtering approach

0 20 40 60 80 0 20 40 60 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

AUPR for EC sub−subclasses

EC sub−subclass index

A
U

P
R

Direct approach
Filtering approach

AUC direct AUC filtering AUPR direct AUPR filtering

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Boxplot representation for EC sub−subclasses

sc
or

e

Fig. 4. AUC and AUPR scores for EC sub-subclasses using previous direct approach and our proposed filtering approach
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Fig. 5. AUC and AUPR scores for PIERO terms using previous direct approach and our proposed filtering approach
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in terms of higher AUC and AUPR scores. These results suggest that,

in practice, comprehensive filtering of compound-compound pairs by

enzymatic reaction-likeness is useful for more accurate reaction

annotation.

Table 2 shows the examples of respective reaction annotations

predicted by the direct and filtering approaches. The filtering ap-

proach worked better than the direct approach in terms of AUC and

AUPR. The best performance was achieved for EC1.3.5 ‘oxidore-

ductase reactions acting on the CH-CH group of donors with a

quinone or related compound as an acceptor’ as EC sub-subclasses

and ‘diesterification’ as PIERO. Regardless of AUC or AUPR, the

predictive values were generally higher in PIERO than in EC. This

result reflects the fact that EC numbers were given to full reaction

equations, whereas PIERO terms were given to substrate–product

pairs.

Table 3 shows several examples of the extracted vector features

in PACHA and KCF-S that are significant to EC and PIERO. Note

that the predictive model used in this study (i.e. L1SVM) has the

ability of feature extraction. Interestingly, the extracted PACHA

features correspond to the chemical changes that occurred in the

preserved atoms. For example, the feature ‘a:O2x¼O7x’ repre-

sents the preserved oxygen atom that changes from a cyclic ether to

a cyclic ester, which is one of the typical EC1.1.1 reactions that

causes dehydrogenation of sugars to yield lactone sugars. This

feature was a reasonably important and characteristic feature of

EC1.1.1 and ‘dehydrogenation’. Conversely, the extracted fea-

tures from descriptors-based methods (e.g. KCF-S) were generally

difficult to interpret because descriptor-based methods cannot dis-

tinguish the relationships between preserved atoms and their

chemical changes. All results can be found at http://www.bioreg.

kyushu-u.ac.jp/labo/systemcohort/pacha/.

4.4 Novel prediction
Finally, we conducted a comprehensive prediction of enzymatic reac-

tion-likeness for all possible compound pairs, with the exception of

known substrate–product pairs. We trained a predictive model using

all known substrate–product pairs in the gold standard data (10 852

pairs retrieved from KEGG as of December 2012) and applied the

model to all possible uncharacterized compound-compound pairs (30

719 540 pairs) for which pathways and reaction characteristics were

not known. PACHA and PACHAþKCFS predicted 54 919 and 28

192 compound pairs as potential substrate–product pairs, respect-

ively. We confirmed the validity of 672 compound pairs predicted by

PACHA and 683 compound pairs predicted by PACHAþKCF-S

using independent resources such as recent scientific literatures and

the latest databases (KEGG as of December 2014).

Figure 6 shows an example of the newly predicted pathways by

PACHA and PACHAþKCF-S methods, which are supported by the

latest database information. Note that the reactions in the pathway

were not used in the learning set for constructing the predictive

model. These reactions and compounds were not in the January

2014 release of KEGG but were recently added to the December

2014 release. This pathway represents the biosynthesis of

Table 2. Examples of correctly assigned reaction annotations

Direct Filtering

AUC AUPR AUC AUPR

EC sub-subclasses

EC1.3.5 0.9317 0.7782 0.957 0.8364

EC5.1.3 0.9988 0.7673 0.9982 0.808

EC1.8.1 0.965 0.7564 0.9906 0.7626

EC2.7.4 0.997 0.605 0.9982 0.7302

EC6.2.1 0.9852 0.6583 0.9916 0.715

PIERO terms

Diesterification 0.9912 0.3795 0.9989 0.8496

Transacylation 0.9983 0.6753 0.9989 0.8467

Sulfonation 0.9978 0.6545 0.9986 0.8301

Diphosphorylation 0.995 0.4714 0.9987 0.7836

Lipoxygenation 0.9973 0.6307 0.9985 0.7522

The EC and PIERO annotations are listed in the descending order of the

AUPR scores by the filtered approach.

Table 3. Examples of extracted vector features significant to re-

spective annotations

Subvector Feature Weight

EC sub-subclasses and PACHA

EC1.1.1 Aligned a:O2x¼O7x 2.5502

EC1.4.3 Aligned a:C1b¼C4a 2.1923

EC3.1.3 Aligned a:O1a¼O2b 1.9833

EC3.5.1 Aligned a:C5a¼C6a 1.8904

EC4.1.1 Generated g:C6a-C8y 1.8426

PIERO terms and PACHA

Dehydrogenation Eliminated e:C1z-O7x 2.4881

Dehydrogenation Aligned a:O2x¼O7x 2.4666

Dehydrogenation Generated g:C1z-O7x 2.4621

Monooxygenation Eliminated e:C1b-C8x 2.0967

Deamination Aligned a:C1b¼C4a 2.0079

EC sub-subclasses and KCF-S

EC1.2.7 Common C1c-O1a 1.7583

EC3.1.2 Decreased O-C-S 1.3214

EC4.2.1 Increased C8y-C8x-N4x 1.2998

EC1.14.13 Common C8y-O7x 1.196

EC2.5.1 Common C1b-C1b-N1a 1.0245

PIERO terms and KCF-S

Hydration Common C1y-C1b-O2b 1.5443

Oxidoreduction Increased C2b-C1b-S2a 1.4682

Oxidoreduction Increased C1y-N1b-C2c 1.3741

Decarboxylation Decreased C1a-C1c-N1a 1.2947

Oxidoreduction Decreased C2c-C1b-O1a 1.2013

Fig. 6. One of the newly predicted pathway supported by both PACHA and

PACHAþKCF-S, as well as the recent KEGG release
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brassinosteroids, important steroid hormones that regulate plant de-

velopment and physiology (Ohnishi et al., 2006). This pathway was

successfully reconstructed by our proposed methods but was not re-

constructed by previous methods.

5 Discussion

We developed a novel method for supervised de novo metabolic

pathway reconstruction with an improved graph alignment algo-

rithm called PACHA. Our proposed PACHA enabled us to detect

regioisomer-sensitive connectivities between aligned substructures

of two compounds. The novelty of our proposed method lies in the

detection of a unique graph alignment, scalability for analyzing a

vast amount of compounds on a metabolome-scale and applicability

to many tasks in metabolic pathway reconstruction. We showed the

usefulness of the PACHA descriptors for enzymatic reaction-likeness

prediction and reaction annotation with a sparsity-induced

classifier.

This study addressed the importance of the distinction of

regioisomers for metabolic pathway analysis. Although a popular

approach for representing compounds is to use chemical descriptors

that deal with many small chemical substructures, they cannot cor-

rectly consider the substructure connectivity. Thus, the comparison

of two chemical descriptors is insufficient to generate atom–atom

mapping, which makes it impossible for all descriptor-based meth-

ods to describe sensitive chemical changes in a single enzymatic reac-

tion, as illustrated in Figure 1.

SIMCOMP (Hattori et al., 2003), the most related previous

graph-based method, was designed for searching similar compounds

in databases by allowing some small common substructures. The

common procedure in SIMCOMP and PACHA is to generate an as-

sociation graph, where the vertices (association nodes) represent the

atom–atom pairs of two compounds and obtain common sub-

graph(s) considering adjacency. The difference between SIMCOMP

and PACHA lies in the definition of ‘adjacency’ in the association

graph. PACHA defines the association nodes as being adjacent to

each other only when the corresponding atoms are adjacent in both

compounds; therefore, only one common subgraph occurs and the

second common subgraph is not allowed. SIMCOMP defines the as-

sociation nodes to be adjacent either when the corresponding atoms

are adjacent in both compounds or when they are not adjacent in

both compounds. The adjacency in the SIMCOMP association

graph often generates multiple common subgraphs, which are inte-

grated afterwards; however, in some cases, the integrated subgraph

contains many gaps.

Having such gaps is not an issue when finding similar com-

pounds, e.g. for pharmaceutical purposes. However, it is of crucial

importance for metabolic pathway analysis, because most reactions

generate or eliminate only a few chemical bonds. Therefore, the

number of gaps affects the prediction accuracy of enzymatic reac-

tion-likeness. Our proposed PACHA algorithm solved this problem

successfully as demonstrated by significant improvement of the de

novo pathway reconstruction, especially in the analysis of isomer-

enriched data. Future extensions would involve the detection of fre-

quent substructure changes and stereoinversions, which requires

more sophisticated tuning of PACHA.
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