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Abstract: Given the strong potential of Yarrowia lipolytica to produce lipids for use as renewable
fuels and oleochemicals, it is important to gain in-depth understanding of the molecular mechanism
underlying its lipid accumulation. As cellular growth rate affects biomass lipid content, we performed
a comparative proteomic analysis of Y. lipolytica grown in nitrogen-limited chemostat cultures at
different dilution rates. After confirming the correlation between growth rate and lipid accumulation,
we were able to identify various cellular functions and biological mechanisms involved in oleaginous-
ness. Inspection of significantly up- and downregulated proteins revealed nonintuitive processes
associated with lipid accumulation in this yeast. This included proteins related to endoplasmic
reticulum (ER) stress, ER–plasma membrane tether proteins, and arginase. Genetic engineering of
selected targets validated that some genes indeed affected lipid accumulation. They were able to
increase lipid content and were complementary to other genetic engineering strategies to optimize
lipid yield.
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1. Introduction

Yarrowia lipolytica is an oleaginous yeast capable of accumulating high amounts of
lipids under nitrogen-limitation conditions, primarily as triacylglycerols (TAGs). This
arouses significant biotechnological interest, as TAGs can be used for biofuel produc-
tion and intermediates for other oleochemicals. As a model unconventional oleaginous
yeast that is genetically tractable and with available genomic information, Y. lipolytica
is arguably among the best candidates for industrial lipid production [1]. However, to
make production meet industrial scale requirements requires further improvement. For
this, effective implementation of modern biotechnological approaches, such as metabolic
engineering and synthetic biology, is instrumental, but a deeper understanding of the
molecular mechanisms behind the oleaginous phenotype is paramount. Over the last few
decades, lipid accumulation in different oleaginous microorganisms has been studied and
is believed to be the consequence of slower growth in nutrient deficiency while having
carbon source in excess [2]. Generally, the molecular specificities leading to this phenotype
remain largely unclear.

Analyzing different types of omics-level data can efficiently improve the understand-
ing via a holistic view on lipid accumulation mechanisms. In this regard, a few attempts
have been successfully made to reveal the molecular mechanism behind lipid accumu-
lation at the transcriptomic level in Y. lipolytica. This is while no comprehensive focus
on the proteomics of lipid accumulation data analyses has yet been performed in this
yeast. Accordingly, other than elucidation of the key enzymes that are directly involved
in lipid biosynthesis, several other genes have been reported to be associated with lipid
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accumulation, as observed from transcriptome analyses [2]. More importantly, an aspect
that not has been thoroughly investigated, however, are the observations that the levels of
lipid accumulation correlate with growth rate in various oleaginous yeasts [3–6]. Generally,
lower growth rates have been associated with higher lipid accumulations. Further investi-
gation of this phenomenon would likely broaden our understanding of lipid accumulation
biology in this yeast.

To this end, we undertook the first comparative proteomic study on a lipid over-
accumulating mutant of Y. lipolytica at different growth rates. To differentiate the regulatory
response related to lipid accumulation from the more general response to growth rate
differences, we included a non-lipid accumulation reference strain. Upon identification
of proteins involved in regulating the lipid-accumulating phenotype, we validated these
results by genetic engineering of selected promising candidate genes.

It is believed that information gained from the data produced is required for improve-
ment in our understanding of mechanisms involved in the transition of growth to lipid
accumulation which will finally be helpful in identifying targets for metabolic or genetic
engineering in Y. lipolytica.

2. Results and Discussion
2.1. Relationship between Growth and Lipid Accumulation in Y. lipolytica

Lipid metabolism and its basic biology have been well studied in Y. lipolytica, many of
which are shared with other oleaginous yeasts. Lipid accumulation in other oleaginous
yeasts has been shown to be growth rate-dependent and maximal lipid amounts to be
accumulated at lower growth rates [3–6]. We postulated that a similar behavior would
be observed in Y. lipolytica, and if so, this would render this phenomenon a promising
approach to further elucidate the regulation of the lipid accumulation phenotype.

To test this, we cultivated the Y. lipolytica OKYL049 strain, which has been genetically
engineered for improved lipid accumulation [7], in nitrogen-limiting chemostats with
dilution rates (D) ranging from 0.02 h−1 to 0.16 h−1 (Table 1). The maximum concentration
of total lipids and lipid content was 1.06 g/L and 30%, respectively, at D = 0.02 h−1.
However, while the nonlipid biomass yields on glucose showed a consistent increase over
the tested dilution rate range, lipid yield on glucose demonstrates a nonlinear pattern, with
lower yields at higher and lower dilution rates, while a maximum is reached at D = 0.06 h−1

(Figure 1a). This denotes that lipid production in Y. lipolytica also has a strong dependence
on growth rate during nitrogen limitation, and that the yeast favors lipid biosynthesis
at specific dilution rates. This represents a true redirection of intracellular fluxes, as the
specific glucose uptake rate consistently increased at higher growth rates (Table 1), even
while the lipid yield peaked at 0.104 g lipid/g glucose. Moreover, although total lipid
concentration and lipid content is the highest while cells are grown at the lowest tested
dilution rate, there seemed to be a shoulder peak at D = 0.06 h−1, breaking up the declining
trend through higher dilution rates (Figure 1b). Micrographs after staining of Y. lipolytica
OKYL049 lipid bodies illustrate the same pattern (Figure S1, Supplementary File S2).

Table 1. Results of the chemostat cultivation of Y. lipolytica OKYL049 at different dilution rates under
nitrogen limitation.

Dilution Rate
(h−1)

Residual
Glucose (g/L)

q-Glucose
(g/g/h)

Total Lipid
(g/L)

Lipid Content
(%)

Non-Lipid
CDW (g/L) CDW (g/L)

0.02 10.03 ± 0.63 0.1 ± 0.005 1.06 ± 0.05 30 ± 0.46 2.51 ± 0.11 3.57 ± 0.16
0.03 11.94 ± 0.98 0.1 ± 0.004 1.04 ± 0.08 28 ± 1.27 2.68 ± 0.05 3.72 ± 0.12
0.04 15.05 ± 0.47 0.12 ± 0.003 0.88 ± 0.06 25 ± 1.09 2.61 ± 0.05 3.49 ± 0.10
0.05 16.58 ± 0.17 0.14 ± 0.019 0.84 ± 0.05 26 ± 1.61 2.36 ± 0.18 3.20 ± 0.20
0.06 16.44 ± 0.16 0.16 ± 0.011 0.95 ± 0.05 27 ± 0.89 2.53 ± 0.03 3.48 ± 0.07
0.08 18.68 ± 0.40 0.19 ± 0.006 0.67 ± 0.08 23 ± 1.90 2.30 ± 0.20 2.97 ± 0.26
0.12 19.61 ± 0.10 0.27 ± 0.015 0.43 ± 0.05 20 ± 1.39 1.71 ± 0.10 2.14 ± 0.14
0.16 20.74 ± 0.17 0.33 ± 0.054 0.28 ± 0.03 17 ± 1.55 1.37 ± 0.03 1.66 ± 0.03

Values are means ± standard deviation of the mean.
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Figure 1. Lipid production profile of Y. lipolytica OKYL040 at different dilution rates. (a) Lipid
and biomass yields (L: lipid, s: substrate which is glucose here, xf: non-lipid biomass, x: biomass);
(b) total lipid production; (c) fatty acid (FA) composition.

In terms of fatty acid profile, other than a slight increase in C18:1 and C18:2 content
in dilution rates of more than 0.12 h−1, no significant differences in the proportions were
observed amongst cultivations at different dilution rates, with oleic acid and palmitic acid
being the dominant fatty acids in all cultivations (Figure 1c).

To investigate the observed growth rate-dependent lipid accumulation via a proteomic
approach, we defined a factorial experimental design and included a strain that is depleted
of the ability to accumulate triacylglycerols. The so-called Q4 strain, deficient in the
acyltransferases YlDGA1, YlDGA2, YlLRO1, and YlARE1, has previously been used to
study the role of each acyltransferase independently [8–10]. The use of the Q4 strain as
control in our analysis would allow us to differentiate the regulatory responses into those
that are either (a) only due to differences in growth rate, or (b) observed if the difference in
growth rate coincides with a change in lipid accumulation. As anticipated, the lipid content
of the Q4 strain was not affected by the tested growth rates (Figure S2, Supplementary
File S2), indicating the feasibility of our strategy. However, the Q4 strains had a lower
maximum growth rate, such that cultivations with dilution rates over 0.1 h−1 resulted in
washout from the chemostat. Accordingly, we settled on sampling from nitrogen-limited
chemostat cultivations of the Y. lipolytica Q4 strain (from here on referred to as control strain)
and Y. lipolytica OKYL049 strain at D = 0.06 h−1 (optimum for highest lipid yield) and
D = 0.1 h−1 (nonoptimal for lipid production matrices).

2.2. Effect of Growth Rate on Proteome Composition of Y. lipolytica during Lipogenic Conditions

A combined number of 4441 proteins were detected from all samples, with no sub-
stantial difference across samples in the number of proteins identified (Supplementary
File S3). Principal component analysis (PCA) was performed to ensure reproducibility
across replicates. Accordingly, the first two PCs accounted for 81% of protein variance
and showed a clear separation of all groups (Figure 2a). As shown in Figure 2a, OKYL049
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samples were well separated from the control samples subjected to pressure by PC1, while
PC2 seemed to better distinguish the dilution rates 0.1 and 0.06. Overall, PCA analysis
reflects pronounced proteome changes in OKYL049 vs. the control strain in the two tested
dilution rates.
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Figure 2. Differential expression analysis on the proteomic data. (a) PCA (principal component
analysis) plot highlighting similarities between individual replicates and clear separation between
test groups; (b) box plots of examples of protein expression-change behaviors that the current study
is or is not interested in (see text); (c) volcano plot highlighting differentially expressed proteins in
OKYL049 with lower dilution rate compared to the control strain. The dots in red and blue indicate
proteins with significantly altered levels (|log2 FC| > 1, p-value < 0.01).

To identify the differential protein expression patterns that concurred with the max-
imum lipid content at D = 0.06 h−1, we extracted the interaction term of a generalized
linear model. As such, the results presented here describe how protein expression is af-
fected when lipid yield is maximized. This is obtained by comparing protein expression
at D = 0.06 h−1 relative to D = 0.10 h−1 (cf. Figure 1a), while simultaneously filtering out
those protein expression changes that correlated with dilution rate, but not with the lipid
content (due to the inability of the control strain to accumulate triacylglycerols). The re-
maining protein expression changes are therefore only correlating with the maximum lipid
yield (Figure 2b). To exemplify, the expression profile of formate dehydrogenase (Q6C5X6,
Figure 2b) showed no change in the control strain when comparing dilution rates, but its
expression drastically increased at maximum lipid yield in the OKYL049 strain at 0.06 h−1.
In addition, arginase (Q6C6P6, Figure 2b) was downregulated in both control and OKYL49
strains, signifying growth-correlated expression; however, the scale of the downregulation
was far less profound in the lipid-accumulating strain in comparison to the control. Such
expression profiles, where the OKYL049 strain and the control strain show quantitatively
different responses to the growth rate, are identified when extracting the interaction term
of the linear model. Contrastingly, the proteins Q6CAQ5 (E3 ubiquitin-protein ligase),
Q6CDJ7 (YALI0B23408p), and Q6CHE0 (glycine cleavage system P protein) (Figure 2b)
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exemplify expression changes with similar patterns in both strains, and thus such pro-
files were not considered in the current study. By this approach, 59 proteins changed
abundance upon maximized lipid accumulation (p-value < 0.01, |log2 FC| > 1), 35 of
which were upregulated (Figure 2c and Table S1, Supplementary File S4). Table 2 shows
the top 10 proteins with largest differential expression (ranked by Euclidean distance) at
maximized lipid yield.

Table 2. Top 10 proteins with the largest differential expression upon maximized lipid yield.

Protein Accession Protein
Annotation GO (Molecular Function) Change log2 (FC) −log10

(p-Value)

Q6C5X6 Formate
dehydrogenase

formate dehydrogenase (NAD+)
activity [GO:0008863]; oxidoreductase
activity, acting on the CH-OH group of

donors, NAD or NADP as
acceptor [GO:0016616]

Up 2.48 8.64

Q6CAP1 - carbohydrate:proton symporter
activity [GO:0005351] Up 3.66 7.88

F2Z678 Alcohol
dehydrogenase 2

alcohol dehydrogenase (NAD+)
activity [GO:0004022]; zinc ion

binding [GO:0008270]
Up 1.81 8.42

Q6CI12 -

hydrolase activity, acting on
carbon-nitrogen (but not peptide)

bonds, in linear amidines [GO:0016813];
peptidase activity [GO:0008233]

Up 1.18 8.47

Q6C676 - - Up 1.69 7.71

Q6CBW3 - - Down 2.73 6.94

Q92389 Acid extracellular
protease

aspartic-type endopeptidase
activity [GO:0004190] Up 2.37 7.04

Q6CBQ1 Superoxide
dismutase

manganese ion binding [GO:0030145];
superoxide dismutase
activity [GO:0004784]

Up 1.33 7.27

Q6C395 Triose phosphate
isomerase

triose-phosphate isomerase
activity [GO:0004807] Up 2.12 6.99

Q6C8H3 - hydrolase activity, hydrolyzing
O-glycosyl compounds [GO:0004553] Down 1.67 7.01

The annotations of the most significantly downregulated proteins were insufficient
to construe their biological significance, even though they might be important for fur-
ther characterization. Among the remaining upregulated proteins at maximized lipid
yield were several known dehydrogenases, including formate dehydrogenase (FDH) and
alcohol dehydrogenase (ADH). Both enzymes are well known for their role in cofactor
recovery, t mainly to promote NAD(P)H-dependent enzymes that are in high demand for
lipid biosynthesis [2,11]. Moreover, conversion of dihydroxyacetone phosphate (DHAP)
to glyceraldehyde-3-phosphate (G3P) by upregulated triose phosphate isomerase could
possibly enhance lipid accumulation. This could promote the activity of glyceraldehyde-
3-phosphate dehydrogenase (GAPDH), the NADH product of which can be transformed
into NADPH in the cytoplasm through the pyruvate–oxaloacetate–malate cycle [12].

Lately, a dual role for the influence of reactive oxygen species (ROS) on lipid accu-
mulation oleaginous microorganisms has been suggested. While the mechanism is largely
unknown, balanced levels of ROS are reported to be favored in lipid accumulation [13]. On
the other hand, high levels of ROS enhance lipid peroxidation. In general, generation of
ROS is inevitable as byproducts of aerobic metabolism in high lipid production conditions.
Moreover, lipid overproducers are highly exposed to oxidative stress, as reducing power is
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mostly driven to fatty acid biosynthesis, rather than being available for protection against
oxidative stress [14]. Superoxide dismutase (SOD) acts as the first line of defense against
ROS, and the upregulation of this enzyme observed here shows the importance of ROS
stress response in lipid accumulation in this yeast.

To gain a pervasive view on the differential proteome composition and to put single
protein alterations into a larger biological context, gene set analysis (GSA) was performed
on all normalized protein abundances, while again focusing on the expression changes at
maximized lipid yield. To accomplish this, all proteins were defined by Gene Ontology
(GO) term annotations obtained from various databases. Using the created Y. lipolytica GO
dataset consisting of 5509 GO terms (Table S2, Supplementary File S4), GSA showed 59 and
37 GO terms to be significantly (adj-p-value < 0.05) up- and downregulated at maximized
lipid yield, respectively (Figure 3, Table S3, Supplementary File S4).
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Figure 3. Gene set analysis of protein expression at maximized lipid yield. Protein sets are defined by
GO terms. For each GO term showing significant enrichment (in this figure: adjusted p-value < 0.02),
the direction of the relative changes in protein levels are shown, together with the total number of
proteins within each GO term. Note that GO term annotations are redundant and the same genes are
likely members of multiple GO terms.

Overall, the maximum lipid yield seemed to coincide with Y. lipolytica tending to
maximize its cofactor regeneration capacity, as well as organizing its stress responses.
Mostly, the upregulated GO terms were involved in direct lipogenesis, oxidoreduction,
protein folding, and ribosome biogenesis, whereas downregulated GO terms were mainly
related to growth and cell division (Figure 3).

Guided by the overall GSA results, we identified a selection of novel proteomic
responses that could help to further unravel the regulation of lipid accumulation, and we
investigated these protein sets in more detail by examining the expression profiles of their
individual proteins.

2.2.1. Alternative NAPDH Suppliers for Lipid Accumulation

According to the GSA results, protein sets annotated with the GO terms alditol:NADP+ 1-
oxidoreductase activity (GO:0004032), alcohol dehydrogenase (NADP+) activity (GO:0008106),
and D-threo-aldose-1-dehydrogenase activity (GO:0047834) were significantly upregulated.
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While many of these proteins have previously been characterized to play a role in lipid
accumulation, we were able to implicate several new proteins in providing NADPH for
lipid production (Table S4, Supplementary File S4).

Among the most upregulated proteins were two proteins annotated as formate dehy-
drogenases (FDH) (Q6CDN8 and Q6C5X6), where both were present with high abundance.
Q6C5X6 was the protein with the lowest p-value (2.3 × 10−9) among all analyzed proteins,
firmly supporting the biologically significant role of FDH upregulation. Indeed, these two
FDHs were found to significantly correlate with fatty alcohol production in a Y. lipolytica
transcriptomic study [15]. Other Y. lipolytica genes encoding for FDHs have been reported
to be upregulated in lipid-accumulating Y. lipolytica at low pH [16]. However, the biological
significance of the upregulation remains unclear.

FDH is an NAD(P)+-dependent enzyme that catalyzes the reversible reaction between
formate and carbon dioxide. Accordingly, the importance of NADPH in lipid biosynthesis
is well known. Being highly reduced molecular species, overproduction of neutral lipids
requires large quantities of NADPH, which is believed to be provided mainly by the
pentose phosphate pathway (PPP) and malic enzyme [17]. The mannitol cycle has also been
suggested to play a role in providing reducing power for neutral lipid overproduction [18].
Furthermore, enzyme engineering of FDHs with exclusive preference for NAD+, to broaden
its preference to encompass NADPH regeneration, has been shown to improve lipid
production [19]. From these results, it transpires that FDH might indeed play a significant
role in lipid accumulation by providing reducing power, and here we identified two new
candidate FDHs involved in this process.

Besides FDH, an NADP+-dependent isocitrate dehydrogenase (Q6C2Y4) and two
NADP+-dependent glyoxylate reductases (Q6C7U5, Q6C284) were shown to be upregu-
lated, suggesting complementary pathways to provide sufficient reducing power for lipid
accumulation in Y. lipolytica.

2.2.2. Boosting Precursor Supply

Well-known key lipogenic enzymes, such as fatty acid synthase (FAS), ATP citrate-
lyase (ACL), and acetyl-CoA carboxylase (ACC), were significantly upregulated at the
maximum lipid yield. In addition, several enzymes related to acetyl-CoA and other lipid
precursors were differentially expressed (Table S5, Supplementary File S4). For instance, all
subunits of the pyruvate dehydrogenase (PDH) complex were upregulated (GO:0006086,
p-value 9 × 10−4 for all proteins). PDH catalyzes the conversion of pyruvate to acetyl-CoA,
the lipid biosynthesis precursor, with lower energy costs in comparison to other strategies,
such as via ACLs [20]. It is important to note that previous studies have shown that the
main genes governing fatty acid synthesis are not directly controlled at the transcriptomic
level [21,22].

Acetyl-CoA synthetase (Q6C2Q5) was also among the most significant upregulated
proteins (p-value 7.92 × 10−6), which produces acetyl-CoA from acetate in the cytosol.
Dihydrolipoyllysine-residue succinyltransferase (Q6C5L8) is upregulated (p-value 8.6 × 10−2)
at maximized lipid yield. This enzyme subunit is part of oxoglutarate dehydrogenase but
also involved in the degradation of L-lysine to acetyl-CoA via saccharopine. In particular,
the latter function may boost the acetyl-CoA pool required for lipid biosynthesis. Mean-
while, significant downregulation (p-value 2.8 × 10−6) of acetyl-CoA hydrolase (Q6C0C0)
minimized the degradation of this lipid precursor. Downregulation of other proteins also
likely contributed to increasing the lipid biosynthesis precursor pool. For instance, biotin
synthase (Q6C903), catalyzing the last step of de novo synthesis of biotin, was significantly
downregulated (p-value 5 × 10−3). While downregulation of biotin synthesis seems coun-
terintuitive as it is essential for ACC activity, it should be noted that the growth medium
used in our study was supplemented with biotin, while the de novo biosynthesis of biotin
shares precursors with fatty acid biosynthesis [23].
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Therefore, enhancing precursor supply and redox cofactor regeneration in parallel
transpired to be the most important metabolic strategies by which oleaginous Y. lipolytica
was able to redirect its carbon flux and maximize its lipid yield.

2.2.3. The Link between Unfolded Protein Response (UPR) and Lipid Accumulation

Among the significantly upregulated protein sets were eight that were assigned with
GO terms related to protein folding. When inspecting the constituent proteins, these sets
mostly contained proteins with roles as endoplasmic reticulum (ER)-located molecular
chaperones, protein-folding enzymes, and those involved in cellular responses to unfolded
proteins (Table S6, Supplementary File S4).

Accumulation of unfolded protein in the ER lumen causes ER stress, which in turn
stimulates the unfolded protein response (UPR) via a conserved mechanism among eu-
karyotes. However, lipid overproduction is unlikely to accompany ER accumulation of
unfolded proteins, and accordingly, comparison of the total cellular protein content de-
noted that maximum lipid yield indeed coincided with lower protein contents (Figure S2b,
Supplementary File S3). Instead, also oxidative stress and accumulation of reactive oxy-
gen species (ROS) are known to trigger ER stress [24] as a result of lipid oxidation and
peroxidation in lipid overproducers [13,25].

Coinciding with upregulation of ER stress-related proteins was significant down-
regulation of proteins with ER–plasma membrane (PM) tethering activity (Table S2),
including Q6CA74 (p-value 9.81 × 10−5), Q6C3Y8 (p-value 3 × 10−4), and Q6CA78
(p-value 3.6 × 10−3). Recent studies show that ER-PM junctions might have roles dis-
tinct from protein translocation into the ER [26–28]. More importantly, yeast cells lacking
proteins for the ER-PM junction exhibited continuous UPR signaling, suggesting that func-
tional ERs depend on ER-PM contact [29,30]. Therefore, upon loss of ER-PM signaling, cells
may become dependent on other cell signaling and stress response systems, such as the
UPR, to maintain ER homeostasis. While full elucidation of the role of ER-PM junction loss
in lipid-accumulating Y. lipolytica requires further studies, our results demonstrated a co-
occurrence of ER stress and UPR that could potentially be attributed to lipid accumulation.

Indeed, in Saccharomyces cerevisiae, ER stress has been shown to activate lipid droplet
formation [31]. In a number of recent studies performed mainly on human cells, lipid
accumulation was also shown to lead to ER stress, which along with UPR played essential
roles in maintaining metabolic and lipid homeostasis and regulation [32–35]. Regardless,
the current knowledge on these mechanisms is far from complete. Moreover, none of the
Y. lipolytica orthologues of human UPR regulators involved in lipid metabolism [34] were
shown to be differentially expressed in our data, suggesting that the link between UPR and
lipid accumulation might be regulated at the phosphoproteomic level.

Among other members of the protein folding protein sets, several annotated to
chaperone-mediated autophagy (CMA) were shown to be upregulated (Q6C0E9, p-value
1.2 × 10−2; Q6C3G5, p-value 1.2 × 10−5; Q6C864, p-value 6.3 × 10−5; Q6CCN4, p-value
1.8 × 10−6). CMA is the most selective form of autophagy that maintains cellular proteosta-
sis in response to diverse stress conditions [36]. Previously, major forms of autophagy
(macro- and microautophagy) have been reported to be upregulated in Y. lipolytica grown
in nitrogen limitation in comparison to carbon limitation [21]. In the present study, where
all cultivations were experiencing nitrogen limitation, the autophagy protein set was not
differentially expressed. This suggests that CMA specifically correlates with maximum
lipid yield, on top of general regulation of autophagy that would be observed during
nitrogen limitation. Moreover, ER stress is known to activate CMA via a process named
ERICA for ER stress-induced chaperone-mediated autophagy, a large part of which is still
elusive [36]. It is also associated with the induction of UPR, and therefore could be linked
with lipid accumulation via the ER stress–UPR axis.
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2.2.4. Sulfur Amino Acid (SAA) Metabolism May Affect Lipid Accumulation

Sulfur compound metabolic process (GO:0006790) was among the significantly up-
regulated protein sets and contained proteins with SAA metabolism activity (Table S7,
Supplementary File S4). Most members of this protein set whose expression was signifi-
cantly changed at maximum lipid yield were involved in methionine (Met) and homocys-
teine (Hcy) biosynthesis. The link between methionine and lipid biosynthesis in yeasts
has only been reported by a handful of studies. Other than a study where methionine
addition increased palmitoleic acid production in S. cerevisiae [37], He et al. reported the
upregulation of one gene (MET17) in methionine biosynthesis by studying the transcrip-
tional profile of an oleaginous strain of S. cerevisiae in comparison to a non-oleaginous
strain [38]. Another line of evidence suggests that Met metabolism can enhance oxidative
stress resistance in S. cerevisiae by upregulating the NADPH-producing PPP [39].

Met and Hcy metabolism has also been linked to lipid accumulation in human-related
studies, where elevated intracellular levels of Hcy triggered ER stress [40], which is known
to promote lipid accumulation, as previously described.

While downregulation of amino acid biosynthesis upon nitrogen limitation and lipid
accumulation has been reported in Y. lipolytica [21], current data suggest that—besides
the redirection of carbon flux from amino acid biosynthesis to lipid overproduction—an
active regulation to specific amino acids (such as methionine) might positively affect the
lipid yield.

2.2.5. Other Differentially Expressed Proteins and Protein Sets

Various other protein sets were found to be differentially regulated at maximum lipid
yield (Figure 3). Of these, proteins involved in ribosome biogenesis and function were
shown to be upregulated. Although more likely associated with growth rather than lipoge-
nesis, our linear modeling approach suggested that there might be some interconnections
with lipid biosynthesis. Noteworthy is that the cellular protein content was reduced at the
maximum lipid yield (Figure S2, Supplementary File S2), such that a downregulation of
ribosomal proteins would have been anticipated. The upregulation of protein sets with
rRNA and translation-related proteins can therefore denote translational regulation of lipid
metabolism. Moreover, although ribosomal proteins are mainly considered to be involved
in protein production, some of them are known to have pleiotropic functions that mediate a
wide range of cell homeostasis-regulatory roles. Accordingly, there are reports that several
ribosomal proteins activate UPR [41–44], whose role in lipid biosynthesis regulation is
described above.

Arginase (Q6C6P6) is a member of the upregulated protein set of nonpeptide amidine
hydrolases (GO:0016813). When inspecting its expression, a complex pattern appeared
(Figure 2b): while downregulated at lower dilution rates, this downregulation was far less
profound in the lipid-accumulating strain, so that it was identified as relatively upregulated
at maximum lipid yield. Moreover, the relative abundance of this protein was almost triple
in the control strain. Through its role in the urea cycle, arginase releases ammonium, and
with nitrogen limitation as inducer of lipid accumulation, a lower abundance of arginase
could generally be beneficial at maximized lipid yield.

Among the downregulated protein sets was protein kinase activity (GO:0004672), con-
taining several hypothetical regulators. HOG1 (Q6C4M9, p-value 1 × 10−3) is a mitogen-
activated protein kinase (MAPK) primarily characterized to be involved in its response
to osmotic stress. Recently, a role of HOG1 in controlling lipid homeostasis in Candida
albicans was shown as hog1 mutants accumulated lipid droplets [45]. Furthermore, in
S. cerevisiae, HOG1 was suggested to control fatty acid mobilization and beta-oxidation
upon salt addition or glucose deprivation [46]. Although no osmotic stress was exerted
in our current study, the meaningful downregulation of HOG1 at maximum lipid yield
makes it an interesting target for further analysis. Besides being a well-known osmoreg-
ulation factor, more diverse roles have been proposed for HOG1, especially in different
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stress responses [45], somewhat increasing the possibility of its involvement in regulating
lipid biosynthesis.

Although autophagy protein sets were not differentially expressed in the current study,
a few autophagy-related proteins were shown to be significantly downregulated. This
included Q6C375, a hypothetical protein with sequence similarity to S. cerevisiae MDM1,
which is proposed to maintain yeast cellular homeostasis by promoting the incorporation
of lipids in lipid droplets for efficient delivery to the vacuole for lipophagy. This is in line
with maximum lipid yield in Y. lipolytica coinciding with downregulation of this protein
(p-value 2 × 10−3). Also, in other organisms, e.g., human hepatic cells, it was shown that
the knockdown of some autophagy-related genes can increase neutral lipid levels [47].

2.3. Strain Engineering

Guided by the results from GSA and analysis of its protein sets, six proteins were
selected from diverse protein sets with high significance scores, solid biological relevance,
and novelty in terms of their role in lipid accumulation. Their role in lipid accumulation
was investigated by genetic engineering of either knockout or overexpression (Table 3).

Table 3. Selected mutation targets for experimental analysis of lipid accumulation in Y. lipolytica.

Mutant (in
OKYL049)

Mutant (in
OKYL029) Target Accession Target Name Biological Significance FC Direction and

p-Value
Mutation
Strategy

NJYL01 NJYL08 Q6C903 Biotin synthase Biotin shares biosynthetic
precursors with lipids Down, 5.4 × 10−3 Knockout

NJYL02 NJYL09 Q6C6P6 Arginase

Puts burden on cell
energetically, produces
ammonia to alleviate
nitrogen limitation

Down, 5.4 × 10−7 Knockout

NJYL03 Q6CA74 PapD-like protein ER-PM tether which
maintains ER homeostasis Down, 9.8 × 10−5 Knockout

NJYL04 Q6C375 Similar to MdM1 Role in lipophagy Down, 2 × 10−3 Knockout

NJYL05 NJYL10 Q6C4M9 HOG1
A MAPK known to affect

lipogenesis during
osmotic stress

Down, 1.5 × 10−3 Knockout

NJYL06 and
NJYL07 Q6C5X6 Formate

dehydrogenase
NADPH is a key cofactor

for lipid biogenesis Up, 2.3 × 10−9
Overexpression,

different
promoters

Using the lipid-accumulating OKYL049 as parental strain, NJYL01 to NJYL07 strains
were constructed (See Section 3) and their fatty acid contents evaluated from shake-flask
cultivations after 96 h (Figure 4a). It is noteworthy that this approach focuses all mutants,
except for FDH overproducers producing higher amounts of lipid (p-value < 0.05). Al-
though FDH was among the most significantly upregulated proteins at maximum lipid
yield, overexpression of this gene did not increase lipid production. Meanwhile, a some-
what higher lipid content was observed when a stronger promoter sequence was used
(cf. NJYL06 and NJYL07, Figure 4a), suggesting that FDH overexpression was insufficient
to invoke a significant increase in lipid content. The total fatty acid composition in all
mutants followed the same pattern as its parental strain (Figure 4b). NJYL01, NJYL02, and
NJYL05, representing knockdowns of biotin synthase, arginase, and HOG1, respectively,
showed the biggest increases in lipid production among all mutants. The three mutants
had roughly 23%, 14%, and 20% higher lipid contents than their parental strain after 96 h
(Figure 4a). Additional time-course measurements of these promising strains showed
consistently higher lipid content (Figure 4c).
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as the average of three independent experiments, Error bars represent means ± standard deviation.

As the lipid-accumulating parental strain OKYL049 was already engineered to overpro-
duce lipids, it might have already approached its limits after rewiring of native lipogenesis
regulation. Therefore, we also implemented the same three most promising genetic muta-
tions in the OKYL029 strain (parental to OKYL049) that did not already contain mutations
affecting lipid metabolism, yielding strains NJYL08–10. All three mutants, i.e., knockouts of
biotin synthase, arginase, and HOG1, resulted in faster initiation of lipid accumulation, as
indicated by a sharper slope until 48 h (Figure 4d). However, these genetic mutations were
far from sufficient to reach the lipid content observed in the OKYL049 strain, implicating
that these genetic strategies are complementary to direct rewiring of lipid biosynthesis.
While we only selected a handful of genes for validation by genetic manipulation, the
observed results (Figure 4) strongly support most of the conclusions that were drawn from
the proteomic data.

Conclusively, our strategy of elucidating how growth rate affects lipid accumulation
by using a factorial experimental design with a non-lipid-accumulating control strain and a
generalized linear model using proteomic data has proven successful. This is also impor-
tant, since in transcriptional profiling, the commonly utilized strategy for identifying genes
associated with certain biological processes, such as lipid biosynthesis, the correlation
between transcription and translation is known to be generally low. The mechanisms iden-
tified through this study were shown to be vastly variable in terms of biological context,
demonstrating a systematic orchestration of cellular function for maximized lipid yield. In
particular, other than prereported proteins, we were also able to elucidate novel proteins
with roles in precursor supply and redox cofactor regeneration. More importantly, nonintu-
itive biological functions, such as the contribution of ER stress and UPR in oleaginousness
of Y. lipolytica was shown. To the best of our knowledge, such a link has not previously been
reported in oleaginous yeasts. While proposed in human-based studies, the mechanism of
the contribution of UPR and ER stress in lipid metabolism is still elusive and is beginning
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to be appreciated. Understanding such links may provide guidance for the development
of stress-based strategies to enhance microbial lipid production. Moreover, while most
of the identified proteins and protein sets could be directly linked to lipid metabolism,
several others were more indirect, such as the roles of arginase, HOG1, chaperone-mediated
autophagy proteins, and ER-PM tether proteins. Characterization of their mechanisms
requires further investigations. Nonetheless, this work provides rich data on the biological
events leading to growth rate-dependent lipid accumulation in Y. lipolytica. This proteomic
information should be valuable for studies related to rational engineering of Y. lipolytica
and other oleaginous yeasts.

3. Materials and Methods
3.1. Yeast Strains, Cultivation, and Sample Collection

Table 4 shows all strains used in this study, which are derived from the Yarrowia
lipolytica strain ST6512 [48]. ST6512 is in turn derived from the W29 background strain
(Y-63746 from the ARS Culture Collection, Peoria, IL, USA; a.k.a. ATCC20460/CBS7504)
which has been engineered to harbor a KU70::Cas9-DsdA to allow fast marker-free genomic
engineering using the EasyCloneYALI toolbox [49].

Table 4. Y. lipolytica strains used in the current study.

Y. lipolytica Strain Genotype Reference

OKYL049 MATa, ∆ku70::Cas9::DsdA, lntE1::Tef1inp-DGA1PEX20t, ∆are1∆mhy1 [50]
OKYL029 MATa, ∆ku70::Cas9::DsdA, ∆mhy1 [7]

JFYL007 (Q4) MATa, ∆ku70::cas9∆mhy1∆ARE1∆LRO1∆DGA1∆DGA2 Unpublished

NJYL01 MATa, ∆ku70::Cas9::DsdA, lntE1::Tef1inp-DGA1PEX20t,
∆are1∆mhy1∆YALI0D15400g This study

NJYL02 MATa, ∆ku70::Cas9::DsdA, lntE1::Tef1inp-DGA1PEX20t,
∆are1∆mhy1∆YALI0E07535g This study

NJYL03 MATa, ∆ku70::Cas9::DsdA, lntE1::Tef1inp-DGA1PEX20t,
∆are1∆mhy1∆YALI0D05291g This study

NJYL04 MATa, ∆ku70::Cas9::DsdA, lntE1::Tef1inp-DGA1PEX20t,
∆are1∆mhy1∆YALI0F02035g This study

NJYL05 MATa, ∆ku70::Cas9::DsdA, lntE1::Tef1inp-DGA1PEX20t,
∆are1∆mhy1∆YALI0E25135g This study

NJYL06 MATa, ∆ku70::Cas9::DsdA, lntE1::Tef1inp-DGA1PEX20t, ∆are1∆mhy1,
lntD1::Tefp- YALI0E14256g-lip2t This study

NJYL07 MATa, ∆ku70::Cas9::DsdA, lntE1::Tef1inp-DGA1PEX20t, ∆are1∆mhy1,
lntD1::Tefinp-YALI0E14256g-lip2t This study

NJYL08 MATa, ∆ku70::Cas9::DsdA, ∆mhy1 ∆YALI0D15400g This study
NJYL09 MATa, ∆ku70::Cas9::DsdA, ∆mhy1 ∆YALI0E07535g This study
NJYL10 MATa, ∆ku70::Cas9::DsdA, ∆mhy1 ∆YALI0E25135g This study

Y. lipolytica OKYL049 and Y. lipolytica JFYL007 (Q4) (hereafter referred to as OKYL049
and Q4, respectively) were used as the main strains for the comparative analysis. Our
Q4 strain is analogous to the earlier reported strain [8–10], but implemented in the same
OKYL029 parental strain as OKYL049. While Q4 strain lacks diacylglycerol acyltransferases
genes and unable to accumulate lipids, OKYL049 is a lipid overproducer due to the intro-
duction of DGA1 over expression by deletion of ARE1 to increase TAG accumulation and
abolish sterol ester formation [7].

All chemostat experiments were performed under nitrogen-limited conditions on
minimal mineral (MM) medium containing per liter: 25 g of glucose, 0.47 g (NH4)2SO4, 3 g
KH2PO4, 0.5 g MgSO4·7H2O, 0.2 mL antifoam 204 (Sigma, Gothenburg, Sweden), as well as
1 mL vitamin solution and 1 mL trace metal solution prepared as mentioned elsewhere [51].
The chemostat fermentations were performed in 1.2 L DASGIP Bioreactors (Dasgip, Jülich,
Germany), equipped with off-gas analysis, pH, temperature, and dissolved oxygen sensors
with the following conditions: working volume 0.5 L, 28 ◦C, airflow of 1 vvm with 21%
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O2, pH 5 controlled with addition of 2 M KOH and dissolved oxygen of 30% via feedback
control of agitation from 400 rpm to a maximum of 1200 rpm. The concentration of O2 and
CO2 in the off-gas were measured using the DASGIP GA4 exhaust analyzer after being
cooled by a condenser operated at 4 ◦C. To select optimum growth rates for comparative
analysis, different dilution rates ranging from 0.02 to 0.16 h−1 were used to run chemostat
experiments. Comparative analysis was then performed based on data from chemostat
fermentations at 0.06 and 0.1 h−1.

To ensure cells were growing at a steady state, chemostats were run for at least five
residence times defined as stable CO2 and O2 outflow before sampling at each dilution rate.
After discarding the dead volume of the sampling port, samples were taken for cell dry
weight (CDW), glucose and organic acid quantification, lipid production analysis via fatty
acid methyl esters (FAME) measurement, and proteomic analysis. CDW measurements
were started by vacuum filtration of cell broth on preweighed 0.45 µm polyethersulfone
(PES) membranes (Sartorius) which were heated via microwaving at 125 to 325 W for 15 min
and placed in a desiccator for at least 2 days before measuring the weight increase, which
was later determined and normalized into gDW/L. Sampling for analysis of metabolites
in extracellular medium was performed by filtration with 0.45 µm filters and storage of
cell-free culture liquid at −20 ◦C. Samples for lipid and FAME measurements were taken
in the form of 2 mL cell broth aliquots, which were centrifuged, the supernatant was
discarded, and the cells were washed twice with 1 mL water. They were lyophilized in form
of fluffy cell pellets and stored in −20 ◦C until analysis. For proteomic analysis, samples
were collected in tubes chilled on ice and further centrifuged for 4 min at 3000× g at 4 ◦C;
cell pellets were washed once with 20 mL of chilled dH2O, flash frozen in liquid nitrogen,
and stored at −80 ◦C until analysis. Samples of each experiment were taken from three
independent chemostats.

Shake-flask cultivation was used to allow the simultaneous evaluation of cell growth
and lipid accumulation of strains in this study with those observed for control strains
(OKYL049 or OKYL029). The experiments were performed in triplicate and the CDW as
well as FAME samples were taken every 24 h and prepared for measurement as mentioned
before. Cultivations lasted for maximum of 120 h when the glucose was exhausted in
the fermentation media. Accordingly, the strains were cultured in 25 mL MM (slightly
modified: phosphate buffer enhanced to 0.2 M) and with C/N ratio 100 to exert nitrogen
limitation incubated at 30 ◦C at 200 rpm.

3.2. Strain Construction

All Y. lipolytica strains constructed in this study are derived from ST6512, which
are the wild-type W29 (Y-63746 from the ARS Culture Collection, Peoria, IL, USA; a.k.a.
ATCC20460/CBS7504)-derived strain harboring Cas9 in KU70 locus to allow fast marker-
free genomic engineering using the EasyCloneYALI toolbox. OKYL029 and OKYL049 were
used as the parental strains. The complete list of plasmids and primers used in this work is
available in the Supplementary File S1. The strains are available upon request.

Unless otherwise stated, for preculture, strain construction, propagation, and cryos-
tocking, yeast strains were grown at 30 ◦C and 240 rpm (Thermo Fisher Scientific, Gothen-
burg, Sweden) in YPD medium (10 g/L yeast extract, 20 g/L peptone, 20 g/L D-glucose).
Media for plates contained 20 g/L agar.

Plasmids required for genome engineering were constructed using the set of vectors
from EasyCloneYALI as backbones [49]. Plasmid assembly and cloning was performed
according to EasyCloneYALI instructions [49]. DNA fragments were amplified by PCR
using Phusion U polymerase (Thermo Fisher Scientific), which were then were purified
from agarose gels using the NucleoSpin gel and PCR cleanup kit (Macherey-Nagel, Gothen-
burg, Sweden). The DNA fragments were assembled into EasyCloneYALI vectors using
USER cloning.

For gene deletions of YALI0D05291p, YALI0D15400g, YALI0E07535g and YALI0F02035p,
repair templates were obtained from equal amounts of two single-stranded oligonucleotides
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(around 120 bp; 100 pmol/µL), which were incubated for 5 min at 98 ◦C and allowed to
cool down to room temperature. For gene deletion of YALI0E25135g, the DNA fragments
consisting of around 450 bp up- and downstream of the target gene were obtained by
fusion PCR and used as the repair template. The guide-RNA (gRNA) vectors for the
5 genes above were constructed using USER cloning methods with corresponding primers.
For overexpression of YALI0E14256, two strong promoters, pTef and pTefintro were used.
The pTef-YALI0E14256 and pTef-YALI0E14256 fragments were integrated into digested
backbone pCfB6684, and the obtained plasmids were digested by NotI and inserted into D1
locus with the gRNA plasmid pCfB6631.

All constructed plasmids were verified by Sanger sequencing (Eurofins Scientific SE,
Gothenburg, Sweden). Yeast transformations were performed using a lithium acetate-based
protocol as previously described [49]. Transformants were selected using natMX or hphMX
resistance markers. YPD plates for natMX selection contained 250 mg/L of nourseothricin
(Jena Bioscience, Malmo, Sweden).

3.3. Exometabolic Analysis

To quantify glucose concentrations in medium and other extracellular metabolites
where needed, fermentation samples were prepared by taking 1 mL of culture, centrifuging
for 5 min at 3000× g, and using the supernatant for high-performance liquid chromatog-
raphy (HPLC) analysis. The HPLC system UltiMate 3000 (Dionex, Stockholm, Sweden)
was utilized with an Aminex HPX-87H ion exclusion column (Bio-Rad, Solna, Sweden).
5 mM H2SO4 was used as eluent at a flow rate of 0.6 mL/min. Glucose and xylose were
quantified using a refractive index detector (Shodex, Munich, Germany).

3.4. Lipid Extraction and Quantification

To measure cellular lipid content, fatty acids were extracted and derivatized to fatty
acid methyl esters (FAMEs) and subsequently analyzed by GC-MS using a previously
published method [52]. Briefly, 100 µg of C17:0 TAG internal standard was added to the
lyophilized cell pellets. Samples were vortex at 1200 rpm at room temperature for 1 h
after addition of 500 µL of methanol solution containing 1M NaOH. The solution was then
neutralized by adding 160 µL of 49% sulfuric acid. Finally, by addition of 500 µL hexane
FAMEs were extracted. After centrifugation at 10,000× g for 1 min, phases were separated
and 100 µL of the upper hexane phase was mixed with 900 µL hexane, 1 µL of which was
autoinjected for analysis on GC-MS (Thermo Scientific Trace 1310 coupled to a Thermo
Scientific ISQ LT) with a ZBFAME column (Phenomenex, length: 20 m; Inner Diameter:
0.18 mm; Film Thickness: 0.15 µm).

C16:0, C16:1, C18:0, C18:1 and C18:2 fatty acids (FAs) were considered for the cal-
culation of lipid content per cell dry weight (g fatty acid/g dry biomass) as well as the
contribution of each FA to the total FA content. To this end, dilution series of the FAME mix-
ture standard, GLC-403 (Nu-Chek Prep, Elysian, MN, USA) was used as external standards
analyzed along with samples under similar conditions.

3.5. Proteomic Analysis
3.5.1. Protein Extraction

Cell pellets were homogenized using a FastPrep-24 instrument (MP Biomedicals) with
lysing matrix D for five repeated cycles (speed 6.5 m/s, 40 s/cycle) in 200 µL of the buffer
containing 3% sodium dodecyl sulfate and 50 mM triethylammonium bicarbonate (TEAB).
Samples were centrifuged at 16,000× g for 10 min and the supernatants were transferred
to clean tubes. The lysis tubes were washed with 100 µL of the lysis buffer, centrifuged at
16,000× g for 10 min, the supernatants were combined with the corresponding lysates from
the previous step. Protein concentration in the combined lysates was determined using a
Pierce BCA protein assay kit (Thermo Scientific) and the Benchmark Plus microplate reader
(Bio-Rad) with bovine serum albumin (BSA) solutions as standards. A representative
reference sample was prepared, containing equal amounts from the 12 individual samples
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3.5.2. Tryptic Digestion and Tandem Mass Tag (TMT) Labeling

Aliquots containing 30 µg of each sample including the reference were reduced with
100 mM DL-dithiothreitol (DTT) at 56 ◦C for 30 min. The reduced samples were processed
using the modified filter-aided sample preparation (FASP) method [53]. In short, reduced
samples were transferred to 30 kDa MWCO Pall Nanosep centrifugation filters (Pall Cor-
poration, Lund, Sweden) and washed three times with 8 M urea. Additional washes with
digestion buffer (1% sodium deoxycholate in 50 mM TEAB) were performed before and
after alkylation with 10 mM methyl methanethiosulfonate for 20 min at room temperature.
Protein digestions were performed using trypsin (Pierce MS grade) in digestion buffer, first
with 0.3 µg trypsin at 37 ◦C for 4 hours followed by new addition of 0.3 µg trypsin and
incubation at 37 ◦C overnight. Produced tryptic peptides were collected by centrifugation
and labeled using tandem mass Tag (TMTpro 16plex) reagents (Thermo Fisher Scientific)
according to the manufacturer’s instructions. The labeled samples were combined into
one pooled sample, concentrated using vacuum centrifugation, and SDC was removed by
acidification with 10% TFA and subsequent centrifugation. The labeled pooled sample was
treated with Pierce peptide desalting spin columns (Thermo Fisher Scientific) according to
the manufacturer’s instructions.

The combined TMT-labeled sample was fractionated into 40 primary fractions by
basic reverse-phase chromatography (bRP-LC) using a Dionex Ultimate 3000 UPLC system
(Thermo Fisher Scientific). Peptide separations were performed using a reversed-phase
XBridge BEH C18 column (3.5 µm, 3.0 × 150 mm, Waters Corporation, Solna, Sweden) and
a linear gradient from 3% to 40% solvent B over 18 min followed by an increase to 100% B
over 5 min and 100% B for 5 min at a flow of 400 µL/min. Solvent A was 10 mM ammonium
formate buffer at pH 10.00 and solvent B was 90% acetonitrile, 10% 10 mM ammonium
formate at pH 10.00. The first 18 primary fractions were concatenated into 9 fractions
(1 + 10, 2 + 11, . . . ) and following fractions were left separately. All were evaporated and
reconstituted in 20 µL of 3% acetonitrile, 0.2% formic acid for nLC-MS/MS analysis.

3.5.3. nLC-MS/MS

The fractions were analyzed on an Orbitrap Fusion Tribrid mass spectrometer in-
terfaced with Easy-nLC1200 liquid chromatography system (Thermo Fisher Scientific).
Peptides were trapped on an Acclaim Pepmap 100 C18 trap column (100 µm × 2 cm, parti-
cle size 5 µm, Thermo Fisher Scientific) and separated on an in-house packed analytical
column (75 µm × 40 cm, particle size 3 µm, Reprosil-Pur C18, Dr Maisch, Ammerbuch,
Germany) using a linear gradient from 5% to 12% B over 5 min, 12% to 35% B over 70 min
followed by an increase to 100% B for 5 min, and 100% B for 10 min at a flow of 300 nL/min.
Solvent A was 0.2% formic acid and solvent B was 80% acetonitrile, 0.2% formic acid. MS
scans were performed at 120,000 resolution, m/z range 375–1500. MS/MS analysis was
performed in a data-dependent manner, with top speed cycle of 3 s for the most intense
doubly or multiply charged precursor ions. Precursor ions were isolated in the quadrupole
with a 0.7 m/z isolation window, with dynamic exclusion set to 10 ppm and duration
of 45 s. Isolated precursor ions were subjected to collision-induced dissociation (CID) at
30 collision energy with a maximum injection time of 50 ms. Produced MS2 fragment
ions were detected in the ion trap followed by multinotch (simultaneous) isolation of the
top 10 most abundant fragment ions for further fragmentation (MS3) by higher-energy
collision dissociation (HCD) at 55% and detection in the Orbitrap at 50,000 resolution,
m/z range 100–500.

3.5.4. Proteomic Data Analysis

The data files of the set were merged for identification and relative quantification using
Proteome Discoverer version 2.4 (Thermo Fisher Scientific). Identification was performed
using Mascot version 2.5.1 (Matrix Science, London, UK) as a search engine by matching
against the Yarrowia lipolytica database of SwissProt (November 2020). The precursor mass
tolerance was set to 5 ppm and fragment mass tolerance to 0.6 Da. Tryptic peptides were
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accepted with 0 missed cleavage; methionine oxidation was set as a variable modification,
cysteine methylthiolation, TMTpro on lysine and peptide N-termini were set as fixed
modifications. Percolator was used for PSM validation with the strict FDR threshold of 1%.

TMT reporter ions were identified in the MS3 HCD spectra with 3 mmu mass tolerance,
and the TMT reporter intensity values for each sample were normalized within Proteome
Discoverer 2.4 on the total peptide amount. Only the unique identified peptides were
considered for the relative quantification. A reference sample made from a mix of all the
samples were used as denominator and for calculation of the ratios.

Differentially expressed proteins were analyzed using DEqMS which is developed on
top of Limma R package [54] while modifying Limma’s variance prior estimation to con-
sider the dependence of variance on the number of detected peptides/PSMs per protein [55].
Considering the number of PSMs, a more accurate data-dependent estimation of protein
variance is allowed and at the same time the inclusion of single peptide identifications
without increasing false discoveries will be possible.

Since there are two experimental dimensions being varied in this analysis (i.e., strain
and dilution rate), a 2 × 2 factorial design was used. Accordingly, a model matrix with so
called treatment contrast parameterization was created as follows:

Dilution rate = c(0,0,1,1,1,0,0,0,1,1)
Strain = c(1,1,1,1,1,0,0,0,0,0)
> design <- model.matrix (~Strain*Dilution rate)
where 0 represents the higher dilution rate and control train, while 1 represents the

OKYL049 and lower dilution rate.
Among the comparisons the design matrix created, results from interaction term were

used for further analysis. The interaction term will show which proteins are differentially
expressed in OKYL049 compared to the control strain (Q4) in the lower dilution rate. The
generated fold changes and p-values from the interaction model were further used as input
data for gene/protein set analysis (GSA) using the “piano” package [56]. The mean of the
fold changes as the set statistic and gene/protein permutation with false-discovery rate
correction of the obtained p-values to estimate significance was used. The protein sets were
generated based on GO term annotation dataset of the detected proteome of Y. lipolytica
created using AmiGO [57], Blast2GO [58], Ensembl [59], InterPro [60] and UniProt [61].
The protein sets with more than two genes and fewer than 100 genes were selected for
the analysis.
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